Skip to content
Volume 68 Number 2
  • ISSN: 2056-5135


The article places emphasis on the latest advancements in this field, particularly focusing on indoor and outdoor microplastic (MP) pollution, including their emission, behaviour and potential health hazards. Gaining an in-depth understanding of these factors is crucial for devising effective strategies to mitigate the impact of microplastics (MPs) on human health and the environment. Indoor MP abundance is generally higher than outdoor levels, with textiles serving as a primary source of indoor airborne MPs. Traffic-derived MP particles, MP fibres in residential areas, agricultural plastic mulch, marine MPs and landfill sites appear to be contributors to outdoor atmospheric MP pollution. Factors such as wind direction, wind speed, precipitation and snowfall, along with the physical characteristics and secondary suspension of MPs, collectively influence their behaviour, distribution and fate. Inhalation and ingestion constitute the main exposure pathways for airborne MPs, potentially leading to health issues like respiratory inflammation. Therefore, gaining a deeper insight into the behaviour and impact mechanisms of atmospheric MPs aids in formulating effective risk management strategies to safeguard human health and maintain environmental sustainability.


Article metrics loading...

Loading full text...

Full text loading...



  1. Zettler E. R., Mincer T. J., and Amaral-Zettler L. A. Environ. Sci. Technol., 2013, 47, (13), 7137 LINK [Google Scholar]
  2. Allen A. S., Seymour A. C., and Rittschof D. Mar. Pollut. Bull., 2017, 124, (1), 198 LINK [Google Scholar]
  3. Liu X., Jie C., Song L., Sang W., and Ni W. J. Rare Earth, 2007, 25, 53 [Google Scholar]
  4. Liang Y., Tan Q., Song Q., and Li J. Waste Manag., 2021, 119, 242 LINK [Google Scholar]
  5. Geyer R., Jambeck J. R., and Law K. L. Sci. Adv., 2017, 3, (7), e1700782 LINK [Google Scholar]
  6. Zhao X., Wang J., Leung K. M. Y., and Wu F. Environ. Sci. Technol., 2022, 56, (13), 9161 LINK [Google Scholar]
  7. Thompson R. C., Olsen Y., Mitchell R. P., Davis A., Rowland S. J., John A. W. G., McGonigle D., and Russell A. E. Science, 2004, 304, (5672), 838 LINK [Google Scholar]
  8. Wang T., Li B., Zou X., Wang Y., Li Y., Xu Y., Mao L., Zhang C., and Yu W. Water Res., 2019, 162, 214 LINK [Google Scholar]
  9. Cole M., Lindeque P., Halsband C., and Galloway T. S. Mar. Pollut. Bull., 2011, 62, (12), 2588 LINK [Google Scholar]
  10. Hartmann N. B., Hüffer T., Thompson R. C., Hassellöv M., Verschoor A., Daugaard A. E., Rist S., Karlsson T., Brennholt N., Cole M., Herrling M. P., Hess M. C., Ivleva N. P., Lusher A. L., and Wagner M. Environ. Sci. Technol., 2019, 53, (3), 1039 LINK [Google Scholar]
  11. Kanhai L. D. K., Gardfeldt K., Krumpen T., Thompson R. C., and O’Connor I. Sci. Rep., 2020, 10, 5004 LINK [Google Scholar]
  12. Samandra S., Mescall O. J., Plaisted K., Symons B., Xie S., Ellis A. V., and Clarke B. O. Sci. Total Environ., 2022, 837, 155329 LINK [Google Scholar]
  13. Wan Y., Chen X., Liu Q., Hu H., Wu C., and Xue Q. Environ. Pollut., 2022, 293, 118586 LINK [Google Scholar]
  14. Goeppert N., and Goldscheider N. J. Hazard. Mater., 2021, 408, 124844 LINK [Google Scholar]
  15. Shan W., Li B., Zhang H., Zhang Z., Wang Y., Gao Z., and Li J. Front. Environ. Sci. Eng., 2022, 16, (1), 6 LINK [Google Scholar]
  16. Koutnik V. S., Leonard J., El Rassi L. A., Choy M. M., Brar J., Glasman J. B., Cowger W., and Mohanty S. K. Sci. Total Environ., 2023, 854, 158866 LINK [Google Scholar]
  17. Wang Z., Zhang Y., Kang S., Yang L., Luo X., Chen P., Guo J., Hu Z., Yang C., Yang Z., and Gao T. Environ. Pollut., 2022, 306, 119415 LINK [Google Scholar]
  18. Bergmann M., Mützel S., Primpke S., Tekman M. B., Trachsel J., and Gerdts G. Sci. Adv., 2019, 5, (8), eaax1157 LINK [Google Scholar]
  19. Dris R., Gasperi J., Rocher V., Saad M., Renault N., and Tassin B. Environ. Chem., 2015, 12, (5), 592 LINK [Google Scholar]
  20. Amato-Lourenço L. F., dos Santos Galvão L., Wiebeck H., Carvalho-Oliveira R., and Mauad T. Sci. Total Environ., 2022, 821, 153450 LINK [Google Scholar]
  21. Ding J., Sun C., He C., Zheng L., Dai D., and Li F. Sci. Total Environ., 2022, 829, 154337 LINK [Google Scholar]
  22. Xie L., Luo S., Liu Y., Ruan X., Gong K., Ge Q., Li K., Valev V. K., Liu G., and Zhang L. Environ. Sci. Technol., 2023, 57, (46), 18203 LINK [Google Scholar]
  23. Mahjoub A., Hashemi S. H., and Petroody S. S. A. J. Contam. Hydrol., 2023, 256, 104180 LINK [Google Scholar]
  24. Luo X., Wang Z., Yang L., Gao T., and Zhang Y. Sci. Total Environ., 2022, 828, 154487 LINK [Google Scholar]
  25. Ding J., Sun C., He C., Zheng L., Dai D., and Li F. Sci. Total Environ., 2022, 829, 154337 LINK [Google Scholar]
  26. Stefánsson H., Peternell M., Konrad-Schmolke M., Hannesdóttir H., Ásbjörnsson E. J., and Sturkell E. Sustainability, 2021, 13, (8), 4183 LINK [Google Scholar]
  27. Shen R., Yang K., Cheng X., Guo C., Xing X., Sun H., Liu D., Liu X., and Wang D. Environ. Pollut., 2022, 300, 118986 LINK [Google Scholar]
  28. Prata J. C. Environ. Pollut., 2018, 234, 115 LINK [Google Scholar]
  29. Perera K., Ziajahromi S., Nash S. B., Manage P. M., and Leusch F. D. L. Environ. Sci. Technol., 2022, 56, (23), 16676 LINK [Google Scholar]
  30. Welsh B., Aherne J., Paterson A. M., Yao H., and McConnell C. Sci. Total Environ., 2022, 835, 155426 LINK [Google Scholar]
  31. Zhang R., Jia X., Wang K., Lu L., Li F., Li J., and Xu L. Sci. Total Environ., 2023, 883, 163567 LINK [Google Scholar]
  32. Jia Q., Duan Y., Han X., Sun X., Munyaneza J., Ma J., and Xiu G. Sci. Total Environ., 2022, 847, 157609 LINK [Google Scholar]
  33. Yao Y., Glamoclija M., Murphy A., and Gao Y. Environ. Res., 2022, 207, 112142 LINK [Google Scholar]
  34. Liu K., Wang X., Fang T., Xu P., Zhu L., and Li D. Sci. Total Environ., 2019, 675, 462 LINK [Google Scholar]
  35. Athey S. N., Adams J. K., Erdle L. M., Jantunen L. M., Helm P. A., Finkelstein S. A., and Diamond M. L. Environ. Sci. Technol. Lett., 2020, 7, (11), 840 LINK [Google Scholar]
  36. Tao D., Zhang K., Xu S., Lin H., Liu Y., Kang J., Yim T., Giesy J. P., and Leung K. M. Y. Environ. Sci. Technol. Lett., 2022, 9, (2), 120 LINK [Google Scholar]
  37. Lant N. J., Defaye M. M. A., Smith A. J., Kechi-Okafor C., Dean J. R., and Sheridan K. J. PLoS One, 2022, 17, (4), e0265912 LINK [Google Scholar]
  38. Cai Y., Yang T., Mitrano D. M., Heuberger M., Hufenus R., and Nowack B. Environ. Sci. Technol., 2020, 54, (8), 4847 LINK [Google Scholar]
  39. Kärkkäinen N., and Sillanpää M. Environ. Sci. Pollut. Res., 2021, 28, (13), 16253 LINK [Google Scholar]
  40. De Falco F., Cocca M., Avella M., and Thompson R. C. Environ. Sci. Technol., 2020, 54, (6), 3288 LINK [Google Scholar]
  41. Yang T., Gao M., and Nowack B. Sci. Total Environ., 2023, 862, 160758 LINK [Google Scholar]
  42. Pinlova B., and Nowack B. Environ. Pollut., 2023, 322, 121012 LINK [Google Scholar]
  43. Chen Y., Li X., Zhang X., Zhang Y., Gao W., Wang R., and He D. Environ. Pollut., 2022, 292, (B), 118465 LINK [Google Scholar]
  44. Yuk H., Jo H. H., Nam J., Kim Y. U., and Kim S. J. Hazard. Mater., 2022, 437, 129290 LINK [Google Scholar]
  45. Mennekes D., and Nowack B. Sci. Total Environ., 2022, 830, 154655 LINK [Google Scholar]
  46. Zhang J., Peng J., Song C., Ma C., Men Z., Wu J., Wu L., Wang T., Zhang X., Tao S., Gao S., Hopke P. K., and Mao H. Environ. Pollut., 2020, 266, (2), 115268 LINK [Google Scholar]
  47. Järlskog I., Jaramillo-Vogel D., Rausch J., Gustafsson M., Strömvall A.-M., and Andersson-Sköld Y. Environ. Int., 2022, 170, 107618 LINK [Google Scholar]
  48. Sun J., Ho S. S. H., Niu X., Xu H., Qu L., Shen Z., Cao J., Chuang H.-C., and Ho K.-F. Sci. Total Environ., 2022, 823, 153717 LINK [Google Scholar]
  49. Liu Y., Chen H., Wu S., Gao J., Li Y., An Z., Mao B., Tu R., and Li T. Sci. Total Environ., 2022, 842, 156950 LINK [Google Scholar]
  50. Brahney J., Mahowald N., Prank M., Cornwell G., Klimont Z., Matsui H., and Prather K. A. Proc. Natl. Acad. Sci., 2021, 118, (16), e2020719118 LINK [Google Scholar]
  51. Masry M., Rossignol S., Roussel B. T., Bourgogne D., Bussière P.-O., R’mili B., and Wong-Wah-Chung P. Environ. Pollut., 2021, 280, 116949 LINK [Google Scholar]
  52. Allen S., Allen D., Moss K., Le Roux G., Phoenix V. R., and Sonke J. E. PLoS One, 2020, 15, (5), e0232746 LINK [Google Scholar]
  53. Huang B., Sun L., Liu M., Huang H., He H., Han F., Wang X., Xu Z., Li B., and Pan X. Environ. Sci. Pollut. Res., 2021, 28, (2), 1675 LINK [Google Scholar]
  54. Peñalver R., Costa-Gómez I., Arroyo-Manzanares N., Moreno J. M., López-García I., Moreno-Grau S., and Córdoba M. H. Sci. Total Environ., 2021, 787, 147656 LINK [Google Scholar]
  55. Tian X., Yang M., Guo Z., Chang C., Li J., Guo Z., Wang R., Li Q., and Zou X. Sci. Total Environ., 2022, 813, 152490 LINK [Google Scholar]
  56. Hu T., He P., Yang Z., Wang W., Zhang H., Shao L., and F. Sci. Total Environ., 2022, 828, 154400 LINK [Google Scholar]
  57. Loppi S., Roblin B., Paoli L., and Aherne J. Sci. Rep., 2021, 11, 4564 LINK [Google Scholar]
  58. Morales A. C., Tomlin J. M., West C. P., Rivera-Adorno F. A., Peterson B. N., Sharpe S. A. L., Noh Y., Sendesi S. M. T., Boor B. E., Howarter J. A., Moffet R. C., China S., O’Callahan B. T., El-Khoury P. Z., Whelton A. J., and Laskin A. Nat. Nanotechnol., 2022, 17, (11), 1171 LINK [Google Scholar]
  59. Kernchen S., Löder M. G. J., Fischer F., Fischer D., Moses S. R., Georgi C., Nölscher A. C., Held A., and Laforsch C. Sci. Total Environ., 2022, 818, 151812 LINK [Google Scholar]
  60. Trainic M., Flores J. M., Pinkas I., Pedrotti M. L., Lombard F., Bourdin G., Gorsky G., Boss E., Rudich Y., Vardi A., and Koren I. Commun. Earth Environ., 2020, 1, 64 LINK [Google Scholar]
  61. Wang F., Lai Z., Peng G., Luo L., Liu K., Huang X., Xu Y., Shen Q., and Li D. Sci. Total Environ., 2021, 800, 149529 LINK [Google Scholar]
  62. Dong H., Wang L., Wang X., Xu L., Chen M., Gong P., and Wang C. Environ. Sci. Technol., 2021, 55, (19), 12951 LINK [Google Scholar]
  63. Cunningham E. M., Seijo N. R., Altieri K. E., Audh R. R., Burger J. M., Bornman T. G., Fawcett S., Gwinnett C. M. B., Osborne A. O., and Woodall L. C. Front. Mar. Sci., 2022, 9, 1056081 LINK [Google Scholar]
  64. Bullard J. E., Ockelford A., O’Brien P., and McKenna Neuman C. Atmos. Environ., 2021, 245, 118038 LINK [Google Scholar]
  65. Liu K., Wang X., Song Z., Wei N., and Li D. Sci. Total Environ., 2020, 742, 140523 LINK [Google Scholar]
  66. Long X., Fu T.-M., Yang X., Tang Y., Zheng Y., Zhu L., Shen H., Ye J., Wang C., Wang T., and Li B. Environ. Sci. Technol., 2022, 56, (10), 6243 LINK [Google Scholar]
  67. Evangeliou N., Grythe H., Klimont Z., Heyes C., Eckhardt S., Lopez-Aparicio S., and Stohl A. Nat. Commun., 2020, 11, (1), 3381 LINK [Google Scholar]
  68. Ferrero L., Scibetta L., Markuszewski P., Mazurkiewicz M., Drozdowska V., Makuch P., Jutrzenka-Trzebiatowska P., Zaleska-Medynska A., Andò S., Saliu F., Nilsson E. D., and Bolzacchini E. Sci. Total Environ., 2022, 824, 153709 LINK [Google Scholar]
  69. Wang X., Wei N., Liu K., Zhu L., Li C., Zong C., and Li D. Sci. Total Environ., 2022, 849, 157702 LINK [Google Scholar]
  70. Yuan Z., Pei C., Li H., Lin L., Liu S., Hou R., Liao R., and Xu X. Sci. Total Environ., 2023, 869, 161839 LINK [Google Scholar]
  71. Huang Y., He T., Yan M., Yang L., Gong H., Wang W., Qing X., and Wang J. J. Hazard. Mater., 2021, 416, 126168 LINK [Google Scholar]
  72. Li C., Wang X., Zhu L., Liu K., Zong C., Wei N., and Li D. Sci. Total Environ., 2022, 806, (4), 150767 LINK [Google Scholar]
  73. Abbasi S., Alirezazadeh M., Razeghi N., Rezaei M., Pourmahmood H., Dehbandi R., Mehr M. R., Ashayeri S. Y., Oleszczuk P., and Turner A. Sci. Total Environ., 2022, 822, 153451 LINK [Google Scholar]
  74. Kozjek M., Vengust D., Radošević T., Žitko G., Koren S., Toplak N., Jerman I., Butala M., Podlogar M., and Viršek M. K. Sci. Total Environ., 2023, 856, (1), 158786 LINK [Google Scholar]
  75. Kumar R., Ivy N., Bhattacharya S., Dey A., and Sharma P. Sci. Total Environ., 2022, 836, 155619 LINK [Google Scholar]
  76. Zhang L., and Tao Y. Environ. Sci.: Processes Impacts, 2022, 24, (11), 2100 LINK [Google Scholar]
  77. Wang J., Qin X., Guo J., Jia W., Wang Q., Zhang M., and Huang Y. Water Res., 2020, 183, 116113 LINK [Google Scholar]
  78. Zocchi M., and Sommaruga R. Sci. Total Environ., 2019, 697, 134194 LINK [Google Scholar]
  79. Prokof’eva T. V, Shoba S. A., Lysak L. V, Ivanova A. E., Glushakova A. M., Shishkov V. A., Lapygina E. V., Shilaika P. D., and Glebova A. A. Eurasian Soil Sci., 2021, 54, (10), 1532 LINK [Google Scholar]
  80. Ortega D. E., and Cortés-Arriagada D. Environ. Pollut., 2023, 318, 120860 LINK [Google Scholar]
  81. Mao R., Lang M., Yu X., Wu R., Yang X., and Guo X. J. Hazard. Mater., 2020, 393, 122515 LINK [Google Scholar]
  82. Gao F., Li J., Sun C., Zhang L., Jiang F., Cao W., and Zheng L. Mar. Pollut. Bull., 2019, 144, 61 LINK [Google Scholar]
  83. Liu Q., and Schauer J. Aerosol Air Qual. Res., 2021, 21, (1), 200439 LINK [Google Scholar]
  84. Wang Y., Wang X., Li Y., Li J., Liu Y., Xia S., and Zhao J. Chem. Eng. J., 2021, 404, 126412 LINK [Google Scholar]
  85. Cui J., Chen C., Gan Q., Wang T., Li W., Zeng W., Xu X., Chen G., Wang L., Lu Z., Li J., and Jin B. Sci. Total Environ., 2022, 852, 158233 LINK [Google Scholar]
  86. Li H., Wang F., Li J., Deng S., and Zhang S. Chemosphere, 2021, 264, (2), 128556 LINK [Google Scholar]
  87. Li J., Huang X., Hou Z., and Ding T. Chemosphere, 2022, 290, 133311 LINK [Google Scholar]
  88. Hu M., Hou N., Li Y., Liu Y., Zhang H., Zeng D., and Tan H. J. Hazard. Mater., 2021, 418, 126176 LINK [Google Scholar]
  89. Gong W., Jiang M., Han P., Liang G., Zhang T., and Liu G. Environ. Pollut., 2019, 254, (A), 112927 LINK [Google Scholar]
  90. Vianello A., Jensen R. L., Liu L., and Vollertsen J. Sci. Rep., 2019, 9, 8670 LINK [Google Scholar]
  91. Yang H., He Y., Yan Y., Junaid M., and Wang J. Nanomaterials, 2021, 11, (10), 2747 LINK [Google Scholar]
  92. Geng Y., Zhang Z., Zhou W., Shao X., Li Z., and Zhou Y. Environ. Sci. Technol. Lett., 2023, 10, (6), 464 LINK [Google Scholar]
  93. Zhang J., Wang L., and Kannan K. Environ. Int., 2020, 134, 105314 LINK [Google Scholar]
  94. Fang M., Liao Z., Ji X., Zhu X., Wang Z., Lu C., Shi C., Chen Z., Ge L., Zhang M., Dahlgren R. A., and Shang X. J. Hazard. Mater., 2022, 432, 128674 LINK [Google Scholar]
  95. Abbasi S., and Turner A. J. Hazard. Mater., 2021, 403, 123799 LINK [Google Scholar]
  96. Akhatova F., Ishmukhametov I., Fakhrullina G., and Fakhrullin R. Int. J. Mol. Sci., 2022, 23, (2), 806 LINK [Google Scholar]
  97. Song Y. K., Hong S. H., Jang M., Han G. M., Jung S. W., and Shim W. J. Environ. Sci. Technol., 2017, 51, (8), 4368 LINK [Google Scholar]
  98. Jiang Y., Han J., Na J., Fang J., Qi C., Lu J., Liu X., Zhou C., Feng J., Zhu W., Liu L., Jiang H., Hua Z., Pan G., Yan L., Sun W., and Yang Z. Chemosphere, 2022, 307, (3), 136067 LINK [Google Scholar]
  99. Amato-Lourenço L. F., Carvalho-Oliveira R., Júnior G. R., dos Santos Galvão L., Ando R. A., and Mauad T. J. Hazard. Mater., 2021, 416, 126124 LINK [Google Scholar]
  100. Leslie H. A., van Velzen M. J. M., Brandsma S. H., Vethaak A. D., Garcia-Vallejo J. J., and Lamoree M. H. Environ. Int., 2022, 163, 107199 LINK [Google Scholar]
  101. Fournier S. B., D’Errico J. N., Adler D. S., Kollontzi S., Goedken M. J., Fabris L., Yurkow E. J., and Stapleton P. A. Part. Fibre Toxicol., 2020, 17, 55 LINK [Google Scholar]
  102. Vasiljevic T., and Harner T. Sci. Total Environ., 2021, 789, 148013 LINK [Google Scholar]
  103. Jenner L. C., Rotchell J. M., Bennett R. T., Cowen M., Tentzeris V., and Sadofsky L. R. Sci. Total Environ., 2022, 831, 154907 LINK [Google Scholar]
  104. Zhang N., Li Y. B., He H. R., Zhang J. F., and Ma G. S. Sci. Total Environ., 2021, 767, 144345 LINK [Google Scholar]
  105. Zhu L., Zhu J., Zuo R., Xu Q., Qian Y., and AN L. Sci. Total Environ., 2023, 856, (1), 159060 LINK [Google Scholar]
  106. Huang J., Dong G., Liang M., Wu X., Xian M., An Y., Zhan J., Xu L., Xu J., Sun W., Chen S., Chen C., and Liu T. Chemosphere, 2022, 307, (4), 136093 LINK [Google Scholar]
  107. Liu T., Hou B., Wang Z., and Yang Y. Ecotoxicol. Environ. Saf., 2022, 237, 113520 LINK [Google Scholar]
  108. Yang S., Cheng Y., Chen Z., Liu T., Yin L., Pu Y., and Liang G. Ecotoxicol. Environ. Saf., 2021, 226, 112837 LINK [Google Scholar]
  109. Gautam R., Jo J., Acharya M., Maharjan A., Lee D., Kim P. B. K. C. C., Kim K., Kim H., and Heo Y. Sci. Total Environ., 2022, 838, (2), 156089 LINK [Google Scholar]
  110. Lee S., Kang K.-K., Sung S.-E., Choi J.-H., Sung M., Seong K.-Y., Lee S., Yang S. Y., Seo M.-S., and Kim K. Polymers, 2022, 14, (3), 402 LINK [Google Scholar]
  111. Bengalli R., Zerboni A., Bonfanti P., Saibene M., Mehn D., Cella C., Ponti J., La Spina R., and Mantecca P. J. Appl. Toxicol., 2022, 42, (12), 2030 LINK [Google Scholar]
  112. Zhang H., Zhang S., Duan Z., and Wang L. Environ. Int., 2022, 162, 107177 LINK [Google Scholar]
  113. Li L., Xu Y., Li S., Zhang X., Feng H., Dai Y., Zhao J., and Yue T. J. Hazard. Mater., 2022, 427, 127872 LINK [Google Scholar]
  114. Tolardo V., Magrì D., Fumagalli F., Cassano D., Athanassiou A., Fragouli D., and Gioria S. Nanomaterials, 2022, 12, (12), 1947 LINK [Google Scholar]
  115. Zhu K., Jia H., Sun Y., Dai Y., Zhang C., Guo X., Wang T., and Zhu L. Environ. Int., 2020, 145, 106137 LINK [Google Scholar]
  116. Lehner R., Weder C., Petri-Fink A., and Rothen-Rutishauser B. Environ. Sci. Technol., 2019, 53, (4), 1748 LINK [Google Scholar]
  117. Li Y., Shi T., Li X., Sun H., Xia X., Ji X., Zhang J., Liu M., Lin Y., Zhang R., Zheng Y., and Tang J. Environ. Int., 2022, 164, 107257 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error