Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135

Abstract

The article places emphasis on the latest advancements in this field, particularly focusing on indoor and outdoor microplastic (MP) pollution, including their emission, behaviour and potential health hazards. Gaining an in-depth understanding of these factors is crucial for devising effective strategies to mitigate the impact of microplastics (MPs) on human health and the environment. Indoor MP abundance is generally higher than outdoor levels, with textiles serving as a primary source of indoor airborne MPs. Traffic-derived MP particles, MP fibres in residential areas, agricultural plastic mulch, marine MPs and landfill sites appear to be contributors to outdoor atmospheric MP pollution. Factors such as wind direction, wind speed, precipitation and snowfall, along with the physical characteristics and secondary suspension of MPs, collectively influence their behaviour, distribution and fate. Inhalation and ingestion constitute the main exposure pathways for airborne MPs, potentially leading to health issues like respiratory inflammation. Therefore, gaining a deeper insight into the behaviour and impact mechanisms of atmospheric MPs aids in formulating effective risk management strategies to safeguard human health and maintain environmental sustainability.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16964141254874
2023-10-04
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Zhang_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16964141254874&mimeType=html&fmt=ahah

References

  1. Zettler E. R., Mincer T. J., and Amaral-Zettler L. A. Environ. Sci. Technol., 2013, 47, (13), 7137 LINK https://doi.org/10.1021/es401288x [Google Scholar]
  2. Allen A. S., Seymour A. C., and Rittschof D. Mar. Pollut. Bull., 2017, 124, (1), 198 LINK https://doi.org/10.1016/j.marpolbul.2017.07.030 [Google Scholar]
  3. Liu X., Jie C., Song L., Sang W., and Ni W. J. Rare Earth, 2007, 25, 53 [Google Scholar]
  4. Liang Y., Tan Q., Song Q., and Li J. Waste Manag., 2021, 119, 242 LINK https://doi.org/10.1016/j.wasman.2020.09.049 [Google Scholar]
  5. Geyer R., Jambeck J. R., and Law K. L. Sci. Adv., 2017, 3, (7), e1700782 LINK https://doi.org/10.1126/sciadv.1700782 [Google Scholar]
  6. Zhao X., Wang J., Leung K. M. Y., and Wu F. Environ. Sci. Technol., 2022, 56, (13), 9161 LINK https://doi.org/10.1021/acs.est.2c02402 [Google Scholar]
  7. Thompson R. C., Olsen Y., Mitchell R. P., Davis A., Rowland S. J., John A. W. G., McGonigle D., and Russell A. E. Science, 2004, 304, (5672), 838 LINK https://doi.org/10.1126/science.1094559 [Google Scholar]
  8. Wang T., Li B., Zou X., Wang Y., Li Y., Xu Y., Mao L., Zhang C., and Yu W. Water Res., 2019, 162, 214 LINK https://doi.org/10.1016/j.watres.2019.06.042 [Google Scholar]
  9. Cole M., Lindeque P., Halsband C., and Galloway T. S. Mar. Pollut. Bull., 2011, 62, (12), 2588 LINK https://doi.org/10.1016/j.marpolbul.2011.09.025 [Google Scholar]
  10. Hartmann N. B., Hüffer T., Thompson R. C., Hassellöv M., Verschoor A., Daugaard A. E., Rist S., Karlsson T., Brennholt N., Cole M., Herrling M. P., Hess M. C., Ivleva N. P., Lusher A. L., and Wagner M. Environ. Sci. Technol., 2019, 53, (3), 1039 LINK https://doi.org/10.1021/acs.est.8b05297 [Google Scholar]
  11. Kanhai L. D. K., Gardfeldt K., Krumpen T., Thompson R. C., and O’Connor I. Sci. Rep., 2020, 10, 5004 LINK https://doi.org/10.1038/s41598-020-61948-6 [Google Scholar]
  12. Samandra S., Mescall O. J., Plaisted K., Symons B., Xie S., Ellis A. V., and Clarke B. O. Sci. Total Environ., 2022, 837, 155329 LINK https://doi.org/10.1016/j.scitotenv.2022.155329 [Google Scholar]
  13. Wan Y., Chen X., Liu Q., Hu H., Wu C., and Xue Q. Environ. Pollut., 2022, 293, 118586 LINK https://doi.org/10.1016/j.envpol.2021.118586 [Google Scholar]
  14. Goeppert N., and Goldscheider N. J. Hazard. Mater., 2021, 408, 124844 LINK https://doi.org/10.1016/j.jhazmat.2020.124844 [Google Scholar]
  15. Shan W., Li B., Zhang H., Zhang Z., Wang Y., Gao Z., and Li J. Front. Environ. Sci. Eng., 2022, 16, (1), 6 LINK https://doi.org/10.1007/s11783-021-1440-4 [Google Scholar]
  16. Koutnik V. S., Leonard J., El Rassi L. A., Choy M. M., Brar J., Glasman J. B., Cowger W., and Mohanty S. K. Sci. Total Environ., 2023, 854, 158866 LINK https://doi.org/10.1016/j.scitotenv.2022.158866 [Google Scholar]
  17. Wang Z., Zhang Y., Kang S., Yang L., Luo X., Chen P., Guo J., Hu Z., Yang C., Yang Z., and Gao T. Environ. Pollut., 2022, 306, 119415 LINK https://doi.org/10.1016/j.envpol.2022.119415 [Google Scholar]
  18. Bergmann M., Mützel S., Primpke S., Tekman M. B., Trachsel J., and Gerdts G. Sci. Adv., 2019, 5, (8), eaax1157 LINK https://doi.org/10.1126/sciadv.aax1157 [Google Scholar]
  19. Dris R., Gasperi J., Rocher V., Saad M., Renault N., and Tassin B. Environ. Chem., 2015, 12, (5), 592 LINK https://doi.org/10.1071/en14167 [Google Scholar]
  20. Amato-Lourenço L. F., dos Santos Galvão L., Wiebeck H., Carvalho-Oliveira R., and Mauad T. Sci. Total Environ., 2022, 821, 153450 LINK https://doi.org/10.1016/j.scitotenv.2022.153450 [Google Scholar]
  21. Ding J., Sun C., He C., Zheng L., Dai D., and Li F. Sci. Total Environ., 2022, 829, 154337 LINK https://doi.org/10.1016/j.scitotenv.2022.154337 [Google Scholar]
  22. Xie L., Luo S., Liu Y., Ruan X., Gong K., Ge Q., Li K., Valev V. K., Liu G., and Zhang L. Environ. Sci. Technol., 2023, 57, (46), 18203 LINK https://doi.org/10.1021/acs.est.3c03210 [Google Scholar]
  23. Mahjoub A., Hashemi S. H., and Petroody S. S. A. J. Contam. Hydrol., 2023, 256, 104180 LINK https://doi.org/10.1016/j.jconhyd.2023.104180 [Google Scholar]
  24. Luo X., Wang Z., Yang L., Gao T., and Zhang Y. Sci. Total Environ., 2022, 828, 154487 LINK https://doi.org/10.1016/j.scitotenv.2022.154487 [Google Scholar]
  25. Ding J., Sun C., He C., Zheng L., Dai D., and Li F. Sci. Total Environ., 2022, 829, 154337 LINK https://doi.org/10.1016/j.scitotenv.2022.154337 [Google Scholar]
  26. Stefánsson H., Peternell M., Konrad-Schmolke M., Hannesdóttir H., Ásbjörnsson E. J., and Sturkell E. Sustainability, 2021, 13, (8), 4183 LINK https://doi.org/10.3390/su13084183 [Google Scholar]
  27. Shen R., Yang K., Cheng X., Guo C., Xing X., Sun H., Liu D., Liu X., and Wang D. Environ. Pollut., 2022, 300, 118986 LINK https://doi.org/10.1016/j.envpol.2022.118986 [Google Scholar]
  28. Prata J. C. Environ. Pollut., 2018, 234, 115 LINK https://doi.org/10.1016/j.envpol.2017.11.043 [Google Scholar]
  29. Perera K., Ziajahromi S., Nash S. B., Manage P. M., and Leusch F. D. L. Environ. Sci. Technol., 2022, 56, (23), 16676 LINK https://doi.org/10.1021/acs.est.2c05885 [Google Scholar]
  30. Welsh B., Aherne J., Paterson A. M., Yao H., and McConnell C. Sci. Total Environ., 2022, 835, 155426 LINK https://doi.org/10.1016/j.scitotenv.2022.155426 [Google Scholar]
  31. Zhang R., Jia X., Wang K., Lu L., Li F., Li J., and Xu L. Sci. Total Environ., 2023, 883, 163567 LINK https://doi.org/10.1016/j.scitotenv.2023.163567 [Google Scholar]
  32. Jia Q., Duan Y., Han X., Sun X., Munyaneza J., Ma J., and Xiu G. Sci. Total Environ., 2022, 847, 157609 LINK https://doi.org/10.1016/j.scitotenv.2022.157609 [Google Scholar]
  33. Yao Y., Glamoclija M., Murphy A., and Gao Y. Environ. Res., 2022, 207, 112142 LINK https://doi.org/10.1016/j.envres.2021.112142 [Google Scholar]
  34. Liu K., Wang X., Fang T., Xu P., Zhu L., and Li D. Sci. Total Environ., 2019, 675, 462 LINK https://doi.org/10.1016/j.scitotenv.2019.04.110 [Google Scholar]
  35. Athey S. N., Adams J. K., Erdle L. M., Jantunen L. M., Helm P. A., Finkelstein S. A., and Diamond M. L. Environ. Sci. Technol. Lett., 2020, 7, (11), 840 LINK https://doi.org/10.1021/acs.estlett.0c00498 [Google Scholar]
  36. Tao D., Zhang K., Xu S., Lin H., Liu Y., Kang J., Yim T., Giesy J. P., and Leung K. M. Y. Environ. Sci. Technol. Lett., 2022, 9, (2), 120 LINK https://doi.org/10.1021/acs.estlett.1c00911 [Google Scholar]
  37. Lant N. J., Defaye M. M. A., Smith A. J., Kechi-Okafor C., Dean J. R., and Sheridan K. J. PLoS One, 2022, 17, (4), e0265912 LINK https://doi.org/10.1371/journal.pone.0265912 [Google Scholar]
  38. Cai Y., Yang T., Mitrano D. M., Heuberger M., Hufenus R., and Nowack B. Environ. Sci. Technol., 2020, 54, (8), 4847 LINK https://doi.org/10.1021/acs.est.9b07395 [Google Scholar]
  39. Kärkkäinen N., and Sillanpää M. Environ. Sci. Pollut. Res., 2021, 28, (13), 16253 LINK https://doi.org/10.1007/s11356-020-11988-2 [Google Scholar]
  40. De Falco F., Cocca M., Avella M., and Thompson R. C. Environ. Sci. Technol., 2020, 54, (6), 3288 LINK https://doi.org/10.1021/acs.est.9b06892 [Google Scholar]
  41. Yang T., Gao M., and Nowack B. Sci. Total Environ., 2023, 862, 160758 LINK https://doi.org/10.1016/j.scitotenv.2022.160758 [Google Scholar]
  42. Pinlova B., and Nowack B. Environ. Pollut., 2023, 322, 121012 LINK https://doi.org/10.1016/j.envpol.2023.121012 [Google Scholar]
  43. Chen Y., Li X., Zhang X., Zhang Y., Gao W., Wang R., and He D. Environ. Pollut., 2022, 292, (B), 118465 LINK https://doi.org/10.1016/j.envpol.2021.118465 [Google Scholar]
  44. Yuk H., Jo H. H., Nam J., Kim Y. U., and Kim S. J. Hazard. Mater., 2022, 437, 129290 LINK https://doi.org/10.1016/j.jhazmat.2022.129290 [Google Scholar]
  45. Mennekes D., and Nowack B. Sci. Total Environ., 2022, 830, 154655 LINK https://doi.org/10.1016/j.scitotenv.2022.154655 [Google Scholar]
  46. Zhang J., Peng J., Song C., Ma C., Men Z., Wu J., Wu L., Wang T., Zhang X., Tao S., Gao S., Hopke P. K., and Mao H. Environ. Pollut., 2020, 266, (2), 115268 LINK https://doi.org/10.1016/j.envpol.2020.115268 [Google Scholar]
  47. Järlskog I., Jaramillo-Vogel D., Rausch J., Gustafsson M., Strömvall A.-M., and Andersson-Sköld Y. Environ. Int., 2022, 170, 107618 LINK https://doi.org/10.1016/j.envint.2022.107618 [Google Scholar]
  48. Sun J., Ho S. S. H., Niu X., Xu H., Qu L., Shen Z., Cao J., Chuang H.-C., and Ho K.-F. Sci. Total Environ., 2022, 823, 153717 LINK https://doi.org/10.1016/j.scitotenv.2022.153717 [Google Scholar]
  49. Liu Y., Chen H., Wu S., Gao J., Li Y., An Z., Mao B., Tu R., and Li T. Sci. Total Environ., 2022, 842, 156950 LINK https://doi.org/10.1016/j.scitotenv.2022.156950 [Google Scholar]
  50. Brahney J., Mahowald N., Prank M., Cornwell G., Klimont Z., Matsui H., and Prather K. A. Proc. Natl. Acad. Sci., 2021, 118, (16), e2020719118 LINK https://doi.org/10.1073/pnas.2020719118 [Google Scholar]
  51. Masry M., Rossignol S., Roussel B. T., Bourgogne D., Bussière P.-O., R’mili B., and Wong-Wah-Chung P. Environ. Pollut., 2021, 280, 116949 LINK https://doi.org/10.1016/j.envpol.2021.116949 [Google Scholar]
  52. Allen S., Allen D., Moss K., Le Roux G., Phoenix V. R., and Sonke J. E. PLoS One, 2020, 15, (5), e0232746 LINK https://doi.org/10.1371/journal.pone.0232746 [Google Scholar]
  53. Huang B., Sun L., Liu M., Huang H., He H., Han F., Wang X., Xu Z., Li B., and Pan X. Environ. Sci. Pollut. Res., 2021, 28, (2), 1675 LINK https://doi.org/10.1007/s11356-020-10527-3 [Google Scholar]
  54. Peñalver R., Costa-Gómez I., Arroyo-Manzanares N., Moreno J. M., López-García I., Moreno-Grau S., and Córdoba M. H. Sci. Total Environ., 2021, 787, 147656 LINK https://doi.org/10.1016/j.scitotenv.2021.147656 [Google Scholar]
  55. Tian X., Yang M., Guo Z., Chang C., Li J., Guo Z., Wang R., Li Q., and Zou X. Sci. Total Environ., 2022, 813, 152490 LINK https://doi.org/10.1016/j.scitotenv.2021.152490 [Google Scholar]
  56. Hu T., He P., Yang Z., Wang W., Zhang H., Shao L., and F. Sci. Total Environ., 2022, 828, 154400 LINK https://doi.org/10.1016/j.scitotenv.2022.154400 [Google Scholar]
  57. Loppi S., Roblin B., Paoli L., and Aherne J. Sci. Rep., 2021, 11, 4564 LINK https://doi.org/10.1038/s41598-021-84251-4 [Google Scholar]
  58. Morales A. C., Tomlin J. M., West C. P., Rivera-Adorno F. A., Peterson B. N., Sharpe S. A. L., Noh Y., Sendesi S. M. T., Boor B. E., Howarter J. A., Moffet R. C., China S., O’Callahan B. T., El-Khoury P. Z., Whelton A. J., and Laskin A. Nat. Nanotechnol., 2022, 17, (11), 1171 LINK https://doi.org/10.1038/s41565-022-01219-9 [Google Scholar]
  59. Kernchen S., Löder M. G. J., Fischer F., Fischer D., Moses S. R., Georgi C., Nölscher A. C., Held A., and Laforsch C. Sci. Total Environ., 2022, 818, 151812 LINK https://doi.org/10.1016/j.scitotenv.2021.151812 [Google Scholar]
  60. Trainic M., Flores J. M., Pinkas I., Pedrotti M. L., Lombard F., Bourdin G., Gorsky G., Boss E., Rudich Y., Vardi A., and Koren I. Commun. Earth Environ., 2020, 1, 64 LINK https://doi.org/10.1038/s43247-020-00061-y [Google Scholar]
  61. Wang F., Lai Z., Peng G., Luo L., Liu K., Huang X., Xu Y., Shen Q., and Li D. Sci. Total Environ., 2021, 800, 149529 LINK https://doi.org/10.1016/j.scitotenv.2021.149529 [Google Scholar]
  62. Dong H., Wang L., Wang X., Xu L., Chen M., Gong P., and Wang C. Environ. Sci. Technol., 2021, 55, (19), 12951 LINK https://doi.org/10.1021/acs.est.1c03227 [Google Scholar]
  63. Cunningham E. M., Seijo N. R., Altieri K. E., Audh R. R., Burger J. M., Bornman T. G., Fawcett S., Gwinnett C. M. B., Osborne A. O., and Woodall L. C. Front. Mar. Sci., 2022, 9, 1056081 LINK https://doi.org/10.3389/fmars.2022.1056081 [Google Scholar]
  64. Bullard J. E., Ockelford A., O’Brien P., and McKenna Neuman C. Atmos. Environ., 2021, 245, 118038 LINK https://doi.org/10.1016/j.atmosenv.2020.118038 [Google Scholar]
  65. Liu K., Wang X., Song Z., Wei N., and Li D. Sci. Total Environ., 2020, 742, 140523 LINK https://doi.org/10.1016/j.scitotenv.2020.140523 [Google Scholar]
  66. Long X., Fu T.-M., Yang X., Tang Y., Zheng Y., Zhu L., Shen H., Ye J., Wang C., Wang T., and Li B. Environ. Sci. Technol., 2022, 56, (10), 6243 LINK https://doi.org/10.1021/acs.est.1c07825 [Google Scholar]
  67. Evangeliou N., Grythe H., Klimont Z., Heyes C., Eckhardt S., Lopez-Aparicio S., and Stohl A. Nat. Commun., 2020, 11, (1), 3381 LINK https://doi.org/10.1038/s41467-020-17201-9 [Google Scholar]
  68. Ferrero L., Scibetta L., Markuszewski P., Mazurkiewicz M., Drozdowska V., Makuch P., Jutrzenka-Trzebiatowska P., Zaleska-Medynska A., Andò S., Saliu F., Nilsson E. D., and Bolzacchini E. Sci. Total Environ., 2022, 824, 153709 LINK https://doi.org/10.1016/j.scitotenv.2022.153709 [Google Scholar]
  69. Wang X., Wei N., Liu K., Zhu L., Li C., Zong C., and Li D. Sci. Total Environ., 2022, 849, 157702 LINK https://doi.org/10.1016/j.scitotenv.2022.157702 [Google Scholar]
  70. Yuan Z., Pei C., Li H., Lin L., Liu S., Hou R., Liao R., and Xu X. Sci. Total Environ., 2023, 869, 161839 LINK https://doi.org/10.1016/j.scitotenv.2023.161839 [Google Scholar]
  71. Huang Y., He T., Yan M., Yang L., Gong H., Wang W., Qing X., and Wang J. J. Hazard. Mater., 2021, 416, 126168 LINK https://doi.org/10.1016/j.jhazmat.2021.126168 [Google Scholar]
  72. Li C., Wang X., Zhu L., Liu K., Zong C., Wei N., and Li D. Sci. Total Environ., 2022, 806, (4), 150767 LINK https://doi.org/10.1016/j.scitotenv.2021.150767 [Google Scholar]
  73. Abbasi S., Alirezazadeh M., Razeghi N., Rezaei M., Pourmahmood H., Dehbandi R., Mehr M. R., Ashayeri S. Y., Oleszczuk P., and Turner A. Sci. Total Environ., 2022, 822, 153451 LINK https://doi.org/10.1016/j.scitotenv.2022.153451 [Google Scholar]
  74. Kozjek M., Vengust D., Radošević T., Žitko G., Koren S., Toplak N., Jerman I., Butala M., Podlogar M., and Viršek M. K. Sci. Total Environ., 2023, 856, (1), 158786 LINK https://doi.org/10.1016/j.scitotenv.2022.158786 [Google Scholar]
  75. Kumar R., Ivy N., Bhattacharya S., Dey A., and Sharma P. Sci. Total Environ., 2022, 836, 155619 LINK https://doi.org/10.1016/j.scitotenv.2022.155619 [Google Scholar]
  76. Zhang L., and Tao Y. Environ. Sci.: Processes Impacts, 2022, 24, (11), 2100 LINK https://doi.org/10.1039/d2em00309k [Google Scholar]
  77. Wang J., Qin X., Guo J., Jia W., Wang Q., Zhang M., and Huang Y. Water Res., 2020, 183, 116113 LINK https://doi.org/10.1016/j.watres.2020.116113 [Google Scholar]
  78. Zocchi M., and Sommaruga R. Sci. Total Environ., 2019, 697, 134194 LINK https://doi.org/10.1016/j.scitotenv.2019.134194 [Google Scholar]
  79. Prokof’eva T. V, Shoba S. A., Lysak L. V, Ivanova A. E., Glushakova A. M., Shishkov V. A., Lapygina E. V., Shilaika P. D., and Glebova A. A. Eurasian Soil Sci., 2021, 54, (10), 1532 LINK https://doi.org/10.1134/s1064229321100094 [Google Scholar]
  80. Ortega D. E., and Cortés-Arriagada D. Environ. Pollut., 2023, 318, 120860 LINK https://doi.org/10.1016/j.envpol.2022.120860 [Google Scholar]
  81. Mao R., Lang M., Yu X., Wu R., Yang X., and Guo X. J. Hazard. Mater., 2020, 393, 122515 LINK https://doi.org/10.1016/j.jhazmat.2020.122515 [Google Scholar]
  82. Gao F., Li J., Sun C., Zhang L., Jiang F., Cao W., and Zheng L. Mar. Pollut. Bull., 2019, 144, 61 LINK https://doi.org/10.1016/j.marpolbul.2019.04.039 [Google Scholar]
  83. Liu Q., and Schauer J. Aerosol Air Qual. Res., 2021, 21, (1), 200439 LINK https://doi.org/10.4209/aaqr.2020.07.0439 [Google Scholar]
  84. Wang Y., Wang X., Li Y., Li J., Liu Y., Xia S., and Zhao J. Chem. Eng. J., 2021, 404, 126412 LINK https://doi.org/10.1016/j.cej.2020.126412 [Google Scholar]
  85. Cui J., Chen C., Gan Q., Wang T., Li W., Zeng W., Xu X., Chen G., Wang L., Lu Z., Li J., and Jin B. Sci. Total Environ., 2022, 852, 158233 LINK https://doi.org/10.1016/j.scitotenv.2022.158233 [Google Scholar]
  86. Li H., Wang F., Li J., Deng S., and Zhang S. Chemosphere, 2021, 264, (2), 128556 LINK https://doi.org/10.1016/j.chemosphere.2020.128556 [Google Scholar]
  87. Li J., Huang X., Hou Z., and Ding T. Chemosphere, 2022, 290, 133311 LINK https://doi.org/10.1016/j.chemosphere.2021.133311 [Google Scholar]
  88. Hu M., Hou N., Li Y., Liu Y., Zhang H., Zeng D., and Tan H. J. Hazard. Mater., 2021, 418, 126176 LINK https://doi.org/10.1016/j.jhazmat.2021.126176 [Google Scholar]
  89. Gong W., Jiang M., Han P., Liang G., Zhang T., and Liu G. Environ. Pollut., 2019, 254, (A), 112927 LINK https://doi.org/10.1016/j.envpol.2019.07.095 [Google Scholar]
  90. Vianello A., Jensen R. L., Liu L., and Vollertsen J. Sci. Rep., 2019, 9, 8670 LINK https://doi.org/10.1038/s41598-019-45054-w [Google Scholar]
  91. Yang H., He Y., Yan Y., Junaid M., and Wang J. Nanomaterials, 2021, 11, (10), 2747 LINK https://doi.org/10.3390/nano11102747 [Google Scholar]
  92. Geng Y., Zhang Z., Zhou W., Shao X., Li Z., and Zhou Y. Environ. Sci. Technol. Lett., 2023, 10, (6), 464 LINK https://doi.org/10.1021/acs.estlett.3c00147 [Google Scholar]
  93. Zhang J., Wang L., and Kannan K. Environ. Int., 2020, 134, 105314 LINK https://doi.org/10.1016/j.envint.2019.105314 [Google Scholar]
  94. Fang M., Liao Z., Ji X., Zhu X., Wang Z., Lu C., Shi C., Chen Z., Ge L., Zhang M., Dahlgren R. A., and Shang X. J. Hazard. Mater., 2022, 432, 128674 LINK https://doi.org/10.1016/j.jhazmat.2022.128674 [Google Scholar]
  95. Abbasi S., and Turner A. J. Hazard. Mater., 2021, 403, 123799 LINK https://doi.org/10.1016/j.jhazmat.2020.123799 [Google Scholar]
  96. Akhatova F., Ishmukhametov I., Fakhrullina G., and Fakhrullin R. Int. J. Mol. Sci., 2022, 23, (2), 806 LINK https://doi.org/10.3390/ijms23020806 [Google Scholar]
  97. Song Y. K., Hong S. H., Jang M., Han G. M., Jung S. W., and Shim W. J. Environ. Sci. Technol., 2017, 51, (8), 4368 LINK https://doi.org/10.1021/acs.est.6b06155 [Google Scholar]
  98. Jiang Y., Han J., Na J., Fang J., Qi C., Lu J., Liu X., Zhou C., Feng J., Zhu W., Liu L., Jiang H., Hua Z., Pan G., Yan L., Sun W., and Yang Z. Chemosphere, 2022, 307, (3), 136067 LINK https://doi.org/10.1016/j.chemosphere.2022.136067 [Google Scholar]
  99. Amato-Lourenço L. F., Carvalho-Oliveira R., Júnior G. R., dos Santos Galvão L., Ando R. A., and Mauad T. J. Hazard. Mater., 2021, 416, 126124 LINK https://doi.org/10.1016/j.jhazmat.2021.126124 [Google Scholar]
  100. Leslie H. A., van Velzen M. J. M., Brandsma S. H., Vethaak A. D., Garcia-Vallejo J. J., and Lamoree M. H. Environ. Int., 2022, 163, 107199 LINK https://doi.org/10.1016/j.envint.2022.107199 [Google Scholar]
  101. Fournier S. B., D’Errico J. N., Adler D. S., Kollontzi S., Goedken M. J., Fabris L., Yurkow E. J., and Stapleton P. A. Part. Fibre Toxicol., 2020, 17, 55 LINK https://doi.org/10.1186/s12989-020-00385-9 [Google Scholar]
  102. Vasiljevic T., and Harner T. Sci. Total Environ., 2021, 789, 148013 LINK https://doi.org/10.1016/j.scitotenv.2021.148013 [Google Scholar]
  103. Jenner L. C., Rotchell J. M., Bennett R. T., Cowen M., Tentzeris V., and Sadofsky L. R. Sci. Total Environ., 2022, 831, 154907 LINK https://doi.org/10.1016/j.scitotenv.2022.154907 [Google Scholar]
  104. Zhang N., Li Y. B., He H. R., Zhang J. F., and Ma G. S. Sci. Total Environ., 2021, 767, 144345 LINK https://doi.org/10.1016/j.scitotenv.2020.144345 [Google Scholar]
  105. Zhu L., Zhu J., Zuo R., Xu Q., Qian Y., and AN L. Sci. Total Environ., 2023, 856, (1), 159060 LINK https://doi.org/10.1016/j.scitotenv.2022.159060 [Google Scholar]
  106. Huang J., Dong G., Liang M., Wu X., Xian M., An Y., Zhan J., Xu L., Xu J., Sun W., Chen S., Chen C., and Liu T. Chemosphere, 2022, 307, (4), 136093 LINK https://doi.org/10.1016/j.chemosphere.2022.136093 [Google Scholar]
  107. Liu T., Hou B., Wang Z., and Yang Y. Ecotoxicol. Environ. Saf., 2022, 237, 113520 LINK https://doi.org/10.1016/j.ecoenv.2022.113520 [Google Scholar]
  108. Yang S., Cheng Y., Chen Z., Liu T., Yin L., Pu Y., and Liang G. Ecotoxicol. Environ. Saf., 2021, 226, 112837 LINK https://doi.org/10.1016/j.ecoenv.2021.112837 [Google Scholar]
  109. Gautam R., Jo J., Acharya M., Maharjan A., Lee D., Kim P. B. K. C. C., Kim K., Kim H., and Heo Y. Sci. Total Environ., 2022, 838, (2), 156089 LINK https://doi.org/10.1016/j.scitotenv.2022.156089 [Google Scholar]
  110. Lee S., Kang K.-K., Sung S.-E., Choi J.-H., Sung M., Seong K.-Y., Lee S., Yang S. Y., Seo M.-S., and Kim K. Polymers, 2022, 14, (3), 402 LINK https://doi.org/10.3390/polym14030402 [Google Scholar]
  111. Bengalli R., Zerboni A., Bonfanti P., Saibene M., Mehn D., Cella C., Ponti J., La Spina R., and Mantecca P. J. Appl. Toxicol., 2022, 42, (12), 2030 LINK https://doi.org/10.1002/jat.4372 [Google Scholar]
  112. Zhang H., Zhang S., Duan Z., and Wang L. Environ. Int., 2022, 162, 107177 LINK https://doi.org/10.1016/j.envint.2022.107177 [Google Scholar]
  113. Li L., Xu Y., Li S., Zhang X., Feng H., Dai Y., Zhao J., and Yue T. J. Hazard. Mater., 2022, 427, 127872 LINK https://doi.org/10.1016/j.jhazmat.2021.127872 [Google Scholar]
  114. Tolardo V., Magrì D., Fumagalli F., Cassano D., Athanassiou A., Fragouli D., and Gioria S. Nanomaterials, 2022, 12, (12), 1947 LINK https://doi.org/10.3390/nano12121947 [Google Scholar]
  115. Zhu K., Jia H., Sun Y., Dai Y., Zhang C., Guo X., Wang T., and Zhu L. Environ. Int., 2020, 145, 106137 LINK https://doi.org/10.1016/j.envint.2020.106137 [Google Scholar]
  116. Lehner R., Weder C., Petri-Fink A., and Rothen-Rutishauser B. Environ. Sci. Technol., 2019, 53, (4), 1748 LINK https://doi.org/10.1021/acs.est.8b05512 [Google Scholar]
  117. Li Y., Shi T., Li X., Sun H., Xia X., Ji X., Zhang J., Liu M., Lin Y., Zhang R., Zheng Y., and Tang J. Environ. Int., 2022, 164, 107257 LINK https://doi.org/10.1016/j.envint.2022.107257 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651324X16964141254874
Loading
/content/journals/10.1595/205651324X16964141254874
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error