Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135

Abstract

The article places emphasis on the latest advancements in this field, particularly focusing on indoor and outdoor microplastic (MP) pollution, including their emission, behaviour and potential health hazards. Gaining an in-depth understanding of these factors is crucial for devising effective strategies to mitigate the impact of microplastics (MPs) on human health and the environment. Indoor MP abundance is generally higher than outdoor levels, with textiles serving as a primary source of indoor airborne MPs. Traffic-derived MP particles, MP fibres in residential areas, agricultural plastic mulch, marine MPs and landfill sites appear to be contributors to outdoor atmospheric MP pollution. Factors such as wind direction, wind speed, precipitation and snowfall, along with the physical characteristics and secondary suspension of MPs, collectively influence their behaviour, distribution and fate. Inhalation and ingestion constitute the main exposure pathways for airborne MPs, potentially leading to health issues like respiratory inflammation. Therefore, gaining a deeper insight into the behaviour and impact mechanisms of atmospheric MPs aids in formulating effective risk management strategies to safeguard human health and maintain environmental sustainability.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16964141254874
2023-10-04
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Zhang_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16964141254874&mimeType=html&fmt=ahah

References

  1. E. R. Zettler, T. J. Mincer, L. A. Amaral-Zettler, Environ. Sci. Technol., 2013, 47, (13), 7137 LINK https://doi.org/10.1021/es401288x [Google Scholar]
  2. A. S. Allen, A. C. Seymour, D. Rittschof, Mar. Pollut. Bull., 2017, 124, (1), 198 LINK https://doi.org/10.1016/j.marpolbul.2017.07.030 [Google Scholar]
  3. X. Liu, C. Jie, L. Song, W. Sang, W. Ni, J. Rare Earth, 2007, 25, 53 [Google Scholar]
  4. Y. Liang, Q. Tan, Q. Song, J. Li, Waste Manag., 2021, 119, 242 LINK https://doi.org/10.1016/j.wasman.2020.09.049 [Google Scholar]
  5. R. Geyer, J. R. Jambeck, K. L. Law, Sci. Adv., 2017, 3, (7), e1700782 LINK https://doi.org/10.1126/sciadv.1700782 [Google Scholar]
  6. X. Zhao, J. Wang, K. M. Y. Leung, F. Wu, Environ. Sci. Technol., 2022, 56, (13), 9161 LINK https://doi.org/10.1021/acs.est.2c02402 [Google Scholar]
  7. R. C. Thompson, Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D. McGonigle, A. E. Russell, Science, 2004, 304, (5672), 838 LINK https://doi.org/10.1126/science.1094559 [Google Scholar]
  8. T. Wang, B. Li, X. Zou, Y. Wang, Y. Li, Y. Xu, L. Mao, C. Zhang, W. Yu, Water Res., 2019, 162, 214 LINK https://doi.org/10.1016/j.watres.2019.06.042 [Google Scholar]
  9. M. Cole, P. Lindeque, C. Halsband, T. S. Galloway, Mar. Pollut. Bull., 2011, 62, (12), 2588 LINK https://doi.org/10.1016/j.marpolbul.2011.09.025 [Google Scholar]
  10. N. B. Hartmann, T. Hüffer, R. C. Thompson, M. Hassellöv, A. Verschoor, A. E. Daugaard, S. Rist, T. Karlsson, N. Brennholt, M. Cole, M. P. Herrling, M. C. Hess, N. P. Ivleva, A. L. Lusher, M. Wagner, Environ. Sci. Technol., 2019, 53, (3), 1039 LINK https://doi.org/10.1021/acs.est.8b05297 [Google Scholar]
  11. L. D. K. Kanhai, K. Gardfeldt, T. Krumpen, R. C. Thompson, I. O’Connor, Sci. Rep., 2020, 10, 5004 LINK https://doi.org/10.1038/s41598-020-61948-6 [Google Scholar]
  12. S. Samandra, O. J. Mescall, K. Plaisted, B. Symons, S. Xie, A. V. Ellis, B. O. Clarke, Sci. Total Environ., 2022, 837, 155329 LINK https://doi.org/10.1016/j.scitotenv.2022.155329 [Google Scholar]
  13. Y. Wan, X. Chen, Q. Liu, H. Hu, C. Wu, Q. Xue, Environ. Pollut., 2022, 293, 118586 LINK https://doi.org/10.1016/j.envpol.2021.118586 [Google Scholar]
  14. N. Goeppert, N. Goldscheider, J. Hazard. Mater., 2021, 408, 124844 LINK https://doi.org/10.1016/j.jhazmat.2020.124844 [Google Scholar]
  15. W. Shan, B. Li, H. Zhang, Z. Zhang, Y. Wang, Z. Gao, J. Li, Front. Environ. Sci. Eng., 2022, 16, (1), 6 LINK https://doi.org/10.1007/s11783-021-1440-4 [Google Scholar]
  16. V. S. Koutnik, J. Leonard, L. A. El Rassi, M. M. Choy, J. Brar, J. B. Glasman, W. Cowger, S. K. Mohanty, Sci. Total Environ., 2023, 854, 158866 LINK https://doi.org/10.1016/j.scitotenv.2022.158866 [Google Scholar]
  17. Z. Wang, Y. Zhang, S. Kang, L. Yang, X. Luo, P. Chen, J. Guo, Z. Hu, C. Yang, Z. Yang, T. Gao, Environ. Pollut., 2022, 306, 119415 LINK https://doi.org/10.1016/j.envpol.2022.119415 [Google Scholar]
  18. M. Bergmann, S. Mützel, S. Primpke, M. B. Tekman, J. Trachsel, G. Gerdts, Sci. Adv., 2019, 5, (8), eaax1157 LINK https://doi.org/10.1126/sciadv.aax1157 [Google Scholar]
  19. R. Dris, J. Gasperi, V. Rocher, M. Saad, N. Renault, B. Tassin, Environ. Chem., 2015, 12, (5), 592 LINK https://doi.org/10.1071/en14167 [Google Scholar]
  20. L. F. Amato-Lourenço, L. dos Santos Galvão, H. Wiebeck, R. Carvalho-Oliveira, T. Mauad, Sci. Total Environ., 2022, 821, 153450 LINK https://doi.org/10.1016/j.scitotenv.2022.153450 [Google Scholar]
  21. J. Ding, C. Sun, C. He, L. Zheng, D. Dai, F. Li, Sci. Total Environ., 2022, 829, 154337 LINK https://doi.org/10.1016/j.scitotenv.2022.154337 [Google Scholar]
  22. L. Xie, S. Luo, Y. Liu, X. Ruan, K. Gong, Q. Ge, K. Li, V. K. Valev, G. Liu, L. Zhang, Environ. Sci. Technol., 2023, 57, (46), 18203 LINK https://doi.org/10.1021/acs.est.3c03210 [Google Scholar]
  23. A. Mahjoub, S. H. Hashemi, S. S. A. Petroody, J. Contam. Hydrol., 2023, 256, 104180 LINK https://doi.org/10.1016/j.jconhyd.2023.104180 [Google Scholar]
  24. X. Luo, Z. Wang, L. Yang, T. Gao, Y. Zhang, Sci. Total Environ., 2022, 828, 154487 LINK https://doi.org/10.1016/j.scitotenv.2022.154487 [Google Scholar]
  25. J. Ding, C. Sun, C. He, L. Zheng, D. Dai, F. Li, Sci. Total Environ., 2022, 829, 154337 LINK https://doi.org/10.1016/j.scitotenv.2022.154337 [Google Scholar]
  26. H. Stefánsson, M. Peternell, M. Konrad-Schmolke, H. Hannesdóttir, E. J. Ásbjörnsson, E. Sturkell, Sustainability, 2021, 13, (8), 4183 LINK https://doi.org/10.3390/su13084183 [Google Scholar]
  27. R. Shen, K. Yang, X. Cheng, C. Guo, X. Xing, H. Sun, D. Liu, X. Liu, D. Wang, Environ. Pollut., 2022, 300, 118986 LINK https://doi.org/10.1016/j.envpol.2022.118986 [Google Scholar]
  28. J. C. Prata, Environ. Pollut., 2018, 234, 115 LINK https://doi.org/10.1016/j.envpol.2017.11.043 [Google Scholar]
  29. K. Perera, S. Ziajahromi, S. B. Nash, P. M. Manage, F. D. L. Leusch, Environ. Sci. Technol., 2022, 56, (23), 16676 LINK https://doi.org/10.1021/acs.est.2c05885 [Google Scholar]
  30. B. Welsh, J. Aherne, A. M. Paterson, H. Yao, C. McConnell, Sci. Total Environ., 2022, 835, 155426 LINK https://doi.org/10.1016/j.scitotenv.2022.155426 [Google Scholar]
  31. R. Zhang, X. Jia, K. Wang, L. Lu, F. Li, J. Li, L. Xu, Sci. Total Environ., 2023, 883, 163567 LINK https://doi.org/10.1016/j.scitotenv.2023.163567 [Google Scholar]
  32. Q. Jia, Y. Duan, X. Han, X. Sun, J. Munyaneza, J. Ma, G. Xiu, Sci. Total Environ., 2022, 847, 157609 LINK https://doi.org/10.1016/j.scitotenv.2022.157609 [Google Scholar]
  33. Y. Yao, M. Glamoclija, A. Murphy, Y. Gao, Environ. Res., 2022, 207, 112142 LINK https://doi.org/10.1016/j.envres.2021.112142 [Google Scholar]
  34. K. Liu, X. Wang, T. Fang, P. Xu, L. Zhu, D. Li, Sci. Total Environ., 2019, 675, 462 LINK https://doi.org/10.1016/j.scitotenv.2019.04.110 [Google Scholar]
  35. S. N. Athey, J. K. Adams, L. M. Erdle, L. M. Jantunen, P. A. Helm, S. A. Finkelstein, M. L. Diamond, Environ. Sci. Technol. Lett., 2020, 7, (11), 840 LINK https://doi.org/10.1021/acs.estlett.0c00498 [Google Scholar]
  36. D. Tao, K. Zhang, S. Xu, H. Lin, Y. Liu, J. Kang, T. Yim, J. P. Giesy, K. M. Y. Leung, Environ. Sci. Technol. Lett., 2022, 9, (2), 120 LINK https://doi.org/10.1021/acs.estlett.1c00911 [Google Scholar]
  37. N. J. Lant, M. M. A. Defaye, A. J. Smith, C. Kechi-Okafor, J. R. Dean, K. J. Sheridan, PLoS One, 2022, 17, (4), e0265912 LINK https://doi.org/10.1371/journal.pone.0265912 [Google Scholar]
  38. Y. Cai, T. Yang, D. M. Mitrano, M. Heuberger, R. Hufenus, B. Nowack, Environ. Sci. Technol., 2020, 54, (8), 4847 LINK https://doi.org/10.1021/acs.est.9b07395 [Google Scholar]
  39. N. Kärkkäinen, M. Sillanpää, Environ. Sci. Pollut. Res., 2021, 28, (13), 16253 LINK https://doi.org/10.1007/s11356-020-11988-2 [Google Scholar]
  40. F. De Falco, M. Cocca, M. Avella, R. C. Thompson, Environ. Sci. Technol., 2020, 54, (6), 3288 LINK https://doi.org/10.1021/acs.est.9b06892 [Google Scholar]
  41. T. Yang, M. Gao, B. Nowack, Sci. Total Environ., 2023, 862, 160758 LINK https://doi.org/10.1016/j.scitotenv.2022.160758 [Google Scholar]
  42. B. Pinlova, B. Nowack, Environ. Pollut., 2023, 322, 121012 LINK https://doi.org/10.1016/j.envpol.2023.121012 [Google Scholar]
  43. Y. Chen, X. Li, X. Zhang, Y. Zhang, W. Gao, R. Wang, D. He, Environ. Pollut., 2022, 292, (B), 118465 LINK https://doi.org/10.1016/j.envpol.2021.118465 [Google Scholar]
  44. H. Yuk, H. H. Jo, J. Nam, Y. U. Kim, S. Kim, J. Hazard. Mater., 2022, 437, 129290 LINK https://doi.org/10.1016/j.jhazmat.2022.129290 [Google Scholar]
  45. D. Mennekes, B. Nowack, Sci. Total Environ., 2022, 830, 154655 LINK https://doi.org/10.1016/j.scitotenv.2022.154655 [Google Scholar]
  46. J. Zhang, J. Peng, C. Song, C. Ma, Z. Men, J. Wu, L. Wu, T. Wang, X. Zhang, S. Tao, S. Gao, P. K. Hopke, H. Mao, Environ. Pollut., 2020, 266, (2), 115268 LINK https://doi.org/10.1016/j.envpol.2020.115268 [Google Scholar]
  47. I. Järlskog, D. Jaramillo-Vogel, J. Rausch, M. Gustafsson, A.-M. Strömvall, Y. Andersson-Sköld, Environ. Int., 2022, 170, 107618 LINK https://doi.org/10.1016/j.envint.2022.107618 [Google Scholar]
  48. J. Sun, S. S. H. Ho, X. Niu, H. Xu, L. Qu, Z. Shen, J. Cao, H.-C. Chuang, K.-F. Ho, Sci. Total Environ., 2022, 823, 153717 LINK https://doi.org/10.1016/j.scitotenv.2022.153717 [Google Scholar]
  49. Y. Liu, H. Chen, S. Wu, J. Gao, Y. Li, Z. An, B. Mao, R. Tu, T. Li, Sci. Total Environ., 2022, 842, 156950 LINK https://doi.org/10.1016/j.scitotenv.2022.156950 [Google Scholar]
  50. J. Brahney, N. Mahowald, M. Prank, G. Cornwell, Z. Klimont, H. Matsui, K. A. Prather, Proc. Natl. Acad. Sci., 2021, 118, (16), e2020719118 LINK https://doi.org/10.1073/pnas.2020719118 [Google Scholar]
  51. M. Masry, S. Rossignol, B. T. Roussel, D. Bourgogne, P.-O. Bussière, B. R’mili, P. Wong-Wah-Chung, Environ. Pollut., 2021, 280, 116949 LINK https://doi.org/10.1016/j.envpol.2021.116949 [Google Scholar]
  52. S. Allen, D. Allen, K. Moss, G. Le Roux, V. R. Phoenix, J. E. Sonke, PLoS One, 2020, 15, (5), e0232746 LINK https://doi.org/10.1371/journal.pone.0232746 [Google Scholar]
  53. B. Huang, L. Sun, M. Liu, H. Huang, H. He, F. Han, X. Wang, Z. Xu, B. Li, X. Pan, Environ. Sci. Pollut. Res., 2021, 28, (2), 1675 LINK https://doi.org/10.1007/s11356-020-10527-3 [Google Scholar]
  54. R. Peñalver, I. Costa-Gómez, N. Arroyo-Manzanares, J. M. Moreno, I. López-García, S. Moreno-Grau, M. H. Córdoba, Sci. Total Environ., 2021, 787, 147656 LINK https://doi.org/10.1016/j.scitotenv.2021.147656 [Google Scholar]
  55. X. Tian, M. Yang, Z. Guo, C. Chang, J. Li, Z. Guo, R. Wang, Q. Li, X. Zou, Sci. Total Environ., 2022, 813, 152490 LINK https://doi.org/10.1016/j.scitotenv.2021.152490 [Google Scholar]
  56. T. Hu, P. He, Z. Yang, W. Wang, H. Zhang, L. Shao, F. , Sci. Total Environ., 2022, 828, 154400 LINK https://doi.org/10.1016/j.scitotenv.2022.154400 [Google Scholar]
  57. S. Loppi, B. Roblin, L. Paoli, J. Aherne, Sci. Rep., 2021, 11, 4564 LINK https://doi.org/10.1038/s41598-021-84251-4 [Google Scholar]
  58. A. C. Morales, J. M. Tomlin, C. P. West, F. A. Rivera-Adorno, B. N. Peterson, S. A. L. Sharpe, Y. Noh, S. M. T. Sendesi, B. E. Boor, J. A. Howarter, R. C. Moffet, S. China, B. T. O’Callahan, P. Z. El-Khoury, A. J. Whelton, A. Laskin, Nat. Nanotechnol., 2022, 17, (11), 1171 LINK https://doi.org/10.1038/s41565-022-01219-9 [Google Scholar]
  59. S. Kernchen, M. G. J. Löder, F. Fischer, D. Fischer, S. R. Moses, C. Georgi, A. C. Nölscher, A. Held, C. Laforsch, Sci. Total Environ., 2022, 818, 151812 LINK https://doi.org/10.1016/j.scitotenv.2021.151812 [Google Scholar]
  60. M. Trainic, J. M. Flores, I. Pinkas, M. L. Pedrotti, F. Lombard, G. Bourdin, G. Gorsky, E. Boss, Y. Rudich, A. Vardi, I. Koren, Commun. Earth Environ., 2020, 1, 64 LINK https://doi.org/10.1038/s43247-020-00061-y [Google Scholar]
  61. F. Wang, Z. Lai, G. Peng, L. Luo, K. Liu, X. Huang, Y. Xu, Q. Shen, D. Li, Sci. Total Environ., 2021, 800, 149529 LINK https://doi.org/10.1016/j.scitotenv.2021.149529 [Google Scholar]
  62. H. Dong, L. Wang, X. Wang, L. Xu, M. Chen, P. Gong, C. Wang, Environ. Sci. Technol., 2021, 55, (19), 12951 LINK https://doi.org/10.1021/acs.est.1c03227 [Google Scholar]
  63. E. M. Cunningham, N. R. Seijo, K. E. Altieri, R. R. Audh, J. M. Burger, T. G. Bornman, S. Fawcett, C. M. B. Gwinnett, A. O. Osborne, L. C. Woodall, Front. Mar. Sci., 2022, 9, 1056081 LINK https://doi.org/10.3389/fmars.2022.1056081 [Google Scholar]
  64. J. E. Bullard, A. Ockelford, P. O’Brien, C. McKenna Neuman, Atmos. Environ., 2021, 245, 118038 LINK https://doi.org/10.1016/j.atmosenv.2020.118038 [Google Scholar]
  65. K. Liu, X. Wang, Z. Song, N. Wei, D. Li, Sci. Total Environ., 2020, 742, 140523 LINK https://doi.org/10.1016/j.scitotenv.2020.140523 [Google Scholar]
  66. X. Long, T.-M. Fu, X. Yang, Y. Tang, Y. Zheng, L. Zhu, H. Shen, J. Ye, C. Wang, T. Wang, B. Li, Environ. Sci. Technol., 2022, 56, (10), 6243 LINK https://doi.org/10.1021/acs.est.1c07825 [Google Scholar]
  67. N. Evangeliou, H. Grythe, Z. Klimont, C. Heyes, S. Eckhardt, S. Lopez-Aparicio, A. Stohl, Nat. Commun., 2020, 11, (1), 3381 LINK https://doi.org/10.1038/s41467-020-17201-9 [Google Scholar]
  68. L. Ferrero, L. Scibetta, P. Markuszewski, M. Mazurkiewicz, V. Drozdowska, P. Makuch, P. Jutrzenka-Trzebiatowska, A. Zaleska-Medynska, S. Andò, F. Saliu, E. D. Nilsson, E. Bolzacchini, Sci. Total Environ., 2022, 824, 153709 LINK https://doi.org/10.1016/j.scitotenv.2022.153709 [Google Scholar]
  69. X. Wang, N. Wei, K. Liu, L. Zhu, C. Li, C. Zong, D. Li, Sci. Total Environ., 2022, 849, 157702 LINK https://doi.org/10.1016/j.scitotenv.2022.157702 [Google Scholar]
  70. Z. Yuan, C. Pei, H. Li, L. Lin, S. Liu, R. Hou, R. Liao, X. Xu, Sci. Total Environ., 2023, 869, 161839 LINK https://doi.org/10.1016/j.scitotenv.2023.161839 [Google Scholar]
  71. Y. Huang, T. He, M. Yan, L. Yang, H. Gong, W. Wang, X. Qing, J. Wang, J. Hazard. Mater., 2021, 416, 126168 LINK https://doi.org/10.1016/j.jhazmat.2021.126168 [Google Scholar]
  72. C. Li, X. Wang, L. Zhu, K. Liu, C. Zong, N. Wei, D. Li, Sci. Total Environ., 2022, 806, (4), 150767 LINK https://doi.org/10.1016/j.scitotenv.2021.150767 [Google Scholar]
  73. S. Abbasi, M. Alirezazadeh, N. Razeghi, M. Rezaei, H. Pourmahmood, R. Dehbandi, M. R. Mehr, S. Y. Ashayeri, P. Oleszczuk, A. Turner, Sci. Total Environ., 2022, 822, 153451 LINK https://doi.org/10.1016/j.scitotenv.2022.153451 [Google Scholar]
  74. M. Kozjek, D. Vengust, T. Radošević, G. Žitko, S. Koren, N. Toplak, I. Jerman, M. Butala, M. Podlogar, M. K. Viršek, Sci. Total Environ., 2023, 856, (1), 158786 LINK https://doi.org/10.1016/j.scitotenv.2022.158786 [Google Scholar]
  75. R. Kumar, N. Ivy, S. Bhattacharya, A. Dey, P. Sharma, Sci. Total Environ., 2022, 836, 155619 LINK https://doi.org/10.1016/j.scitotenv.2022.155619 [Google Scholar]
  76. L. Zhang, Y. Tao, Environ. Sci.: Processes Impacts, 2022, 24, (11), 2100 LINK https://doi.org/10.1039/d2em00309k [Google Scholar]
  77. J. Wang, X. Qin, J. Guo, W. Jia, Q. Wang, M. Zhang, Y. Huang, Water Res., 2020, 183, 116113 LINK https://doi.org/10.1016/j.watres.2020.116113 [Google Scholar]
  78. M. Zocchi, R. Sommaruga, Sci. Total Environ., 2019, 697, 134194 LINK https://doi.org/10.1016/j.scitotenv.2019.134194 [Google Scholar]
  79. T. V Prokof’eva, S. A. Shoba, L. V Lysak, A. E. Ivanova, A. M. Glushakova, V. A. Shishkov, E. V. Lapygina, P. D. Shilaika, A. A. Glebova, Eurasian Soil Sci., 2021, 54, (10), 1532 LINK https://doi.org/10.1134/s1064229321100094 [Google Scholar]
  80. D. E. Ortega, D. Cortés-Arriagada, Environ. Pollut., 2023, 318, 120860 LINK https://doi.org/10.1016/j.envpol.2022.120860 [Google Scholar]
  81. R. Mao, M. Lang, X. Yu, R. Wu, X. Yang, X. Guo, J. Hazard. Mater., 2020, 393, 122515 LINK https://doi.org/10.1016/j.jhazmat.2020.122515 [Google Scholar]
  82. F. Gao, J. Li, C. Sun, L. Zhang, F. Jiang, W. Cao, L. Zheng, Mar. Pollut. Bull., 2019, 144, 61 LINK https://doi.org/10.1016/j.marpolbul.2019.04.039 [Google Scholar]
  83. Q. Liu, J. Schauer, Aerosol Air Qual. Res., 2021, 21, (1), 200439 LINK https://doi.org/10.4209/aaqr.2020.07.0439 [Google Scholar]
  84. Y. Wang, X. Wang, Y. Li, J. Li, Y. Liu, S. Xia, J. Zhao, Chem. Eng. J., 2021, 404, 126412 LINK https://doi.org/10.1016/j.cej.2020.126412 [Google Scholar]
  85. J. Cui, C. Chen, Q. Gan, T. Wang, W. Li, W. Zeng, X. Xu, G. Chen, L. Wang, Z. Lu, J. Li, B. Jin, Sci. Total Environ., 2022, 852, 158233 LINK https://doi.org/10.1016/j.scitotenv.2022.158233 [Google Scholar]
  86. H. Li, F. Wang, J. Li, S. Deng, S. Zhang, Chemosphere, 2021, 264, (2), 128556 LINK https://doi.org/10.1016/j.chemosphere.2020.128556 [Google Scholar]
  87. J. Li, X. Huang, Z. Hou, T. Ding, Chemosphere, 2022, 290, 133311 LINK https://doi.org/10.1016/j.chemosphere.2021.133311 [Google Scholar]
  88. M. Hu, N. Hou, Y. Li, Y. Liu, H. Zhang, D. Zeng, H. Tan, J. Hazard. Mater., 2021, 418, 126176 LINK https://doi.org/10.1016/j.jhazmat.2021.126176 [Google Scholar]
  89. W. Gong, M. Jiang, P. Han, G. Liang, T. Zhang, G. Liu, Environ. Pollut., 2019, 254, (A), 112927 LINK https://doi.org/10.1016/j.envpol.2019.07.095 [Google Scholar]
  90. A. Vianello, R. L. Jensen, L. Liu, J. Vollertsen, Sci. Rep., 2019, 9, 8670 LINK https://doi.org/10.1038/s41598-019-45054-w [Google Scholar]
  91. H. Yang, Y. He, Y. Yan, M. Junaid, J. Wang, Nanomaterials, 2021, 11, (10), 2747 LINK https://doi.org/10.3390/nano11102747 [Google Scholar]
  92. Y. Geng, Z. Zhang, W. Zhou, X. Shao, Z. Li, Y. Zhou, Environ. Sci. Technol. Lett., 2023, 10, (6), 464 LINK https://doi.org/10.1021/acs.estlett.3c00147 [Google Scholar]
  93. J. Zhang, L. Wang, K. Kannan, Environ. Int., 2020, 134, 105314 LINK https://doi.org/10.1016/j.envint.2019.105314 [Google Scholar]
  94. M. Fang, Z. Liao, X. Ji, X. Zhu, Z. Wang, C. Lu, C. Shi, Z. Chen, L. Ge, M. Zhang, R. A. Dahlgren, X. Shang, J. Hazard. Mater., 2022, 432, 128674 LINK https://doi.org/10.1016/j.jhazmat.2022.128674 [Google Scholar]
  95. S. Abbasi, A. Turner, J. Hazard. Mater., 2021, 403, 123799 LINK https://doi.org/10.1016/j.jhazmat.2020.123799 [Google Scholar]
  96. F. Akhatova, I. Ishmukhametov, G. Fakhrullina, R. Fakhrullin, Int. J. Mol. Sci., 2022, 23, (2), 806 LINK https://doi.org/10.3390/ijms23020806 [Google Scholar]
  97. Y. K. Song, S. H. Hong, M. Jang, G. M. Han, S. W. Jung, W. J. Shim, Environ. Sci. Technol., 2017, 51, (8), 4368 LINK https://doi.org/10.1021/acs.est.6b06155 [Google Scholar]
  98. Y. Jiang, J. Han, J. Na, J. Fang, C. Qi, J. Lu, X. Liu, C. Zhou, J. Feng, W. Zhu, L. Liu, H. Jiang, Z. Hua, G. Pan, L. Yan, W. Sun, Z. Yang, Chemosphere, 2022, 307, (3), 136067 LINK https://doi.org/10.1016/j.chemosphere.2022.136067 [Google Scholar]
  99. L. F. Amato-Lourenço, R. Carvalho-Oliveira, G. R. Júnior, L. dos Santos Galvão, R. A. Ando, T. Mauad, J. Hazard. Mater., 2021, 416, 126124 LINK https://doi.org/10.1016/j.jhazmat.2021.126124 [Google Scholar]
  100. H. A. Leslie, M. J. M. van Velzen, S. H. Brandsma, A. D. Vethaak, J. J. Garcia-Vallejo, M. H. Lamoree, Environ. Int., 2022, 163, 107199 LINK https://doi.org/10.1016/j.envint.2022.107199 [Google Scholar]
  101. S. B. Fournier, J. N. D’Errico, D. S. Adler, S. Kollontzi, M. J. Goedken, L. Fabris, E. J. Yurkow, P. A. Stapleton, Part. Fibre Toxicol., 2020, 17, 55 LINK https://doi.org/10.1186/s12989-020-00385-9 [Google Scholar]
  102. T. Vasiljevic, T. Harner, Sci. Total Environ., 2021, 789, 148013 LINK https://doi.org/10.1016/j.scitotenv.2021.148013 [Google Scholar]
  103. L. C. Jenner, J. M. Rotchell, R. T. Bennett, M. Cowen, V. Tentzeris, L. R. Sadofsky, Sci. Total Environ., 2022, 831, 154907 LINK https://doi.org/10.1016/j.scitotenv.2022.154907 [Google Scholar]
  104. N. Zhang, Y. B. Li, H. R. He, J. F. Zhang, G. S. Ma, Sci. Total Environ., 2021, 767, 144345 LINK https://doi.org/10.1016/j.scitotenv.2020.144345 [Google Scholar]
  105. L. Zhu, J. Zhu, R. Zuo, Q. Xu, Y. Qian, L. AN, Sci. Total Environ., 2023, 856, (1), 159060 LINK https://doi.org/10.1016/j.scitotenv.2022.159060 [Google Scholar]
  106. J. Huang, G. Dong, M. Liang, X. Wu, M. Xian, Y. An, J. Zhan, L. Xu, J. Xu, W. Sun, S. Chen, C. Chen, T. Liu, Chemosphere, 2022, 307, (4), 136093 LINK https://doi.org/10.1016/j.chemosphere.2022.136093 [Google Scholar]
  107. T. Liu, B. Hou, Z. Wang, Y. Yang, Ecotoxicol. Environ. Saf., 2022, 237, 113520 LINK https://doi.org/10.1016/j.ecoenv.2022.113520 [Google Scholar]
  108. S. Yang, Y. Cheng, Z. Chen, T. Liu, L. Yin, Y. Pu, G. Liang, Ecotoxicol. Environ. Saf., 2021, 226, 112837 LINK https://doi.org/10.1016/j.ecoenv.2021.112837 [Google Scholar]
  109. R. Gautam, J. Jo, M. Acharya, A. Maharjan, D. Lee, P. B. K. C. C. Kim, K. Kim, H. Kim, Y. Heo, Sci. Total Environ., 2022, 838, (2), 156089 LINK https://doi.org/10.1016/j.scitotenv.2022.156089 [Google Scholar]
  110. S. Lee, K.-K. Kang, S.-E. Sung, J.-H. Choi, M. Sung, K.-Y. Seong, S. Lee, S. Y. Yang, M.-S. Seo, K. Kim, Polymers, 2022, 14, (3), 402 LINK https://doi.org/10.3390/polym14030402 [Google Scholar]
  111. R. Bengalli, A. Zerboni, P. Bonfanti, M. Saibene, D. Mehn, C. Cella, J. Ponti, R. La Spina, P. Mantecca, J. Appl. Toxicol., 2022, 42, (12), 2030 LINK https://doi.org/10.1002/jat.4372 [Google Scholar]
  112. H. Zhang, S. Zhang, Z. Duan, L. Wang, Environ. Int., 2022, 162, 107177 LINK https://doi.org/10.1016/j.envint.2022.107177 [Google Scholar]
  113. L. Li, Y. Xu, S. Li, X. Zhang, H. Feng, Y. Dai, J. Zhao, T. Yue, J. Hazard. Mater., 2022, 427, 127872 LINK https://doi.org/10.1016/j.jhazmat.2021.127872 [Google Scholar]
  114. V. Tolardo, D. Magrì, F. Fumagalli, D. Cassano, A. Athanassiou, D. Fragouli, S. Gioria, Nanomaterials, 2022, 12, (12), 1947 LINK https://doi.org/10.3390/nano12121947 [Google Scholar]
  115. K. Zhu, H. Jia, Y. Sun, Y. Dai, C. Zhang, X. Guo, T. Wang, L. Zhu, Environ. Int., 2020, 145, 106137 LINK https://doi.org/10.1016/j.envint.2020.106137 [Google Scholar]
  116. R. Lehner, C. Weder, A. Petri-Fink, B. Rothen-Rutishauser, Environ. Sci. Technol., 2019, 53, (4), 1748 LINK https://doi.org/10.1021/acs.est.8b05512 [Google Scholar]
  117. Y. Li, T. Shi, X. Li, H. Sun, X. Xia, X. Ji, J. Zhang, M. Liu, Y. Lin, R. Zhang, Y. Zheng, J. Tang, Environ. Int., 2022, 164, 107257 LINK https://doi.org/10.1016/j.envint.2022.107257 [Google Scholar]
/content/journals/10.1595/205651324X16964141254874
Loading
/content/journals/10.1595/205651324X16964141254874
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test