Skip to content
Volume 68 Number 2
  • ISSN: 2056-5135


Oxy-combustion is a promising concept to achieve an extremely clean combustion, independently of the fuel type, because, on the one hand, it is a NOx-free combustion and, on the other hand, the CO produced during combustion can be easily captured once the water vapour is removed from the exhaust gases stream, consequently allowing also carbon neutral operation. An existing zero-dimensional (0D), mixing-controlled combustion model, developed for a standard diesel combustion scenario, has been adapted to the oxy-fuel combustion scenario. Initially, the model over-predicted the heat release at the end of the combustion process. The main model adaptation was to modify the relationship between the average Y and the effective Y (i.e. the one of the charge actually entrained by the spray), to be consistent with the significant increase in compression ratio needed in the oxy-fuel context. As a result, a model able to correctly predict the combustion behaviour at any operating condition has been obtained, which finally represents a very suitable tool to assist in the concept development.


Article metrics loading...

Loading full text...

Full text loading...



  1. Rahimi M. Sustainability, 2020, 12, (20), 8369 LINK [Google Scholar]
  2. Hill N., Amaral S., Morgan Price S., Nokes T., Bates J., Helms H., Fehrenbach H., Biemann K., Biemann K., Abdalla N., Jöhrens J., Cotton E., German L., Harris A., Ziem-Milojevic S., Haye S., Sim C., and Bauen A. “Determining the Environmental Impacts of Conventional and Alternative Fuelled Vehicles through LCA”, Final Report ED11344, Issue 3, European Commission, Brussels, Belgium, 13th July, 2020, 456 pp LINK [Google Scholar]
  3. ‘Amendment of Regulation (EU) 2015/757 in Order to Take Appropriate Account of the Global Data Collection System for Ship Fuel Oil Consumption Data’, COM(2019) 38, EU Monitor, Brussels, Belgium, 4th February, 2019 LINK [Google Scholar]
  4. Wu H., Xu M., Li Y., Wu J., Shen J., and Liao H. Appl. Energy, 2020, 259, 114123 LINK [Google Scholar]
  5. Van Blarigan A., Kozarac D., Seiser R., Chen J. Y., Cattolica R., and Dibble R. Appl. Energy, 2014, 118, 22 LINK [Google Scholar]
  6. Liu C. Y., Chen G., Sipöcz N., Assadi M., and Bai X. S. Appl. Energy, 2012, 89, (1), 387 LINK [Google Scholar]
  7. Kanniche M., Gros-Bonnivard R., Jaud P., Valle-Marcos J., Amann J.-M., and Bouallou C. Appl. Therm. Eng., 2010, 30, (1), 53 LINK [Google Scholar]
  8. Chen Z., Zhang X., Luo W., Guo J., Tai Z., Li P., and Liu Z. Energy Fuels, 2020, 34, (2), 2260 LINK [Google Scholar]
  9. Hanak D. P., Powell D., and Manovic V. Appl. Energy, 2017, 191, 193 LINK [Google Scholar]
  10. Wei X., Manovic V., and Hanak D. P. Energy Convers. Manag., 2020, 221, 113143 LINK [Google Scholar]
  11. Wimmer K., and Sanz W. Int. J. Greenh. Gas Control, 2020, 99, 103055 LINK [Google Scholar]
  12. Guo J., Liu Z., Huang X., Zhang T., Luo W., Hu F., Li P., and Zheng C. Fuel, 2017, 187, 315 LINK [Google Scholar]
  13. Hu F., Li P., Li W., Ding C., Guo J., and Liu Z. Fuel, 2021, 304, 121403 LINK [Google Scholar]
  14. Carrasco-Maldonado F., Spörl R., Fleiger K., Hoenig V., Maier J., and Scheffknecht G. Int. J. Greenh. Gas Control, 2016, 45, 189 LINK [Google Scholar]
  15. Escudero A. I., Espatolero S., and Romeo L. M. Int. J. Greenh. Gas Control, 2016, 45, 118 LINK [Google Scholar]
  16. Al-Sheikh F., Elkamel A., and Anderson W. Int. J. Chem. Mol. Eng., 2017, 11, (12), 10008233 LINK [Google Scholar]
  17. Li X., Peng Z., Pei Y., Ajmal T., Rana K.-J., Aitouche A., and Mobasheri R. Int. J. Energy Res., 2022, 46, (2), 505 LINK [Google Scholar]
  18. Osman A. SAE Technical Paper 2009-01-2808, SAE International, Warrendale, USA, 2nd November, 2009 LINK [Google Scholar]
  19. Van Blarigan A., Kozarac D., Seiser R., Cattolica R., Chen J.-Y., and Dibble R. J. Energy Resour. Technol., 2013, 136, (1), 012203 LINK [Google Scholar]
  20. Wu H.-W., Wang R.-H., Chen Y.-C., Ou D.-J., and Chen T.-Y. Energy, 2014, 64, 259 LINK [Google Scholar]
  21. Kang Z., Chen S., Wu Z., Deng J., Hu Z., and Li L. SAE Int. J. Engines, 2018, 11, (6), 935 LINK [Google Scholar]
  22. Kang Z., Wu Z., Zhang Z., Deng J., Hu Z., and Li L. SAE Int. J. Engines, 2017, 10, (3), 908 LINK [Google Scholar]
  23. Li X., Pei Y., Peng Z., Ajmal T., Rana K.-J., Aitouche A., and Mobasheri R. Int. J. Engine Res., 2021, 23, (9), 1602 LINK [Google Scholar]
  24. Serrano J. R., Martín J., Gomez-Soriano J., and Raggi R. Energy Convers. Manag., 2021, 244, 114498 LINK [Google Scholar]
  25. Mobasheri R., Aitouche A., Peng Z., and Li X. Int. J. Engine Res., 2021, 23, (4), 649 LINK [Google Scholar]
  26. Serrano J. R., Arnau F. J., García-Cuevas L. M., and Farias V. H. Energy Convers. Manag., 2021, 247, 114732 LINK [Google Scholar]
  27. Fu L., Wu Z., Li L., and Yu X. SAE Technical Paper 2014-01-2600, SAE International, Warrendale, USA, 13th October, 2014 LINK [Google Scholar]
  28. Shaw R., and Oman H. ‘Non-Air Working Fluids for Closed-Cycle Diesel Engines’, 18th Inter-Society Energy Conversion Engineering Conference, Orlando, USA, 21st August, 1983, Vol. 2, The Boeing Company, Seattle, USA, 1983 LINK [Google Scholar]
  29. Arrègle J., López J. J., Garcýìa J. M., and Fenollosa C. Appl. Therm. Eng., 2003, 23, (11), 1301 LINK [Google Scholar]
  30. Arrègle J., López J. J., García J. M, and Fenollosa C. Appl. Therm. Eng., 2003, 23, (11), 1319 LINK [Google Scholar]
  31. Arrègle J., López J. J., Martín J., and Mocholí E. M. ‘Development of a Mixing, Combustion Zero-Dimensional Model for Diesel Engines’, SAE Technical Paper 2006-01-1382, SAE International, Warrendale, USA, 3rd April, 2006 LINK [Google Scholar]
  32. Martin J., Arnau F., Piqueras P., and Auñon A. ‘Development of an Integrated Virtual Engine Model to Simulate New Standard Testing Cycles’, SAE Technical Paper 2018-01-1413, SAE International, Warrendale, USA, 3rd April, 2018 LINK [Google Scholar]
  33. Benajes J., Olmeda P., Martín J., and Carreño R. Appl. Therm. Eng., 2014, 71, (1), 389 LINK [Google Scholar]
  34. ‘OpenFOAM’, The OpenFOAM Foundation Ltd, London, UK: (Accessed on 10th May 2022) [Google Scholar]
  35. Montenegro G., Onorati A., Piscaglia F., and D’Errico G. ‘Integrated 1D-MultiD Fluid Dynamic Models for the Simulation of I.C.E. Intake, Exhaust Systems’, SAE Technical Paper 2007-01-0495, SAE International, Warrendale, USA, 2007 LINK [Google Scholar]
  36. Serrano J. R., Bracho G., Gomez-Soriano J., and Fernandes C. Appl. Sci., 2022, 12, (14), 7104 LINK [Google Scholar]
  37. Desantes J. M., Arregle J., Lopez J. J., and Cronhjort A. Atomiz. Spr., 2006, 16, (4), 443 LINK [Google Scholar]
  38. Arnau F. J., Bracho G., García-Cuevas L. M., and Farias V. H. Appl. Therm. Eng., 2023, 226, 120268 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error