Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135

Abstract

Membrane separation is an energy-efficient separation process. Two-dimensional (2D) materials have shown potential as a new generation of membrane materials due to their unique structures and physicochemical properties. The separation performance of 2D material membranes crucially depends on how 2D nanosheets are assembled in membranes, such as interlayer spacing between stacked nanosheets, chemical properties of nanosheet surfaces, alignment of nanosheets and thickness of membranes, which are closely related to their fabrication methods. This short review concisely overviews commonly used membrane fabrication methods for different types of 2D materials, including graphene-based materials, 2D covalent organic frameworks, 2D metal-organic frameworks, MXenes and other 2D materials. The representative 2D material membranes resulting from their essential fabrication methods are discussed. The advantages and shortcomings of different fabrication methods are compared. The critical challenges to realising large-scale production of 2D material membranes for practical applications are highlighted.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16981367461019
2023-10-24
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Chen_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16981367461019&mimeType=html&fmt=ahah

References

  1. Sui X., Yuan Z., Yu Y., Goh K., and Chen Y. Small, 2020, 16, (50), 2003400 LINK https://doi.org/10.1002/smll.202003400 [Google Scholar]
  2. Sholl D. S., and Lively R. P. Nature, 2016, 532, (7600), 435 LINK https://doi.org/10.1038/532435a [Google Scholar]
  3. Mauter M. S., Zucker I., Perreault F., Werber J. R., Kim J.-H., and Elimelech M. Nat. Sustain., 2018, 1, (4), 166 LINK https://doi.org/10.1038/s41893-018-0046-8 [Google Scholar]
  4. Nair R. R., Wu H. A., Jayaram P. N., Grigorieva I. V., and Geim A. K. Science, 2012, 335, (6067), 442 LINK https://doi.org/10.1126/science.1211694 [Google Scholar]
  5. Liu J., Liang J., Xue J., and Liang K. Small, 2021, 17, (32), 2100300 LINK https://doi.org/10.1002/smll.202100300 [Google Scholar]
  6. Jiang X., Kuklin A. V, Baev A., Ge Y., Ågren H., Zhang H., and Prasad P. N. Phys. Rep., 2020, 848, 58 LINK https://doi.org/10.1016/j.physrep.2019.12.006 [Google Scholar]
  7. Dreyer D. R., Park S., Bielawski C. W., and Ruoff R. S. Chem. Soc. Rev., 2010, 39, (1), 228 LINK https://doi.org/10.1039/b917103g [Google Scholar]
  8. Wang H., Zeng Z., Xu P., Li L., Zeng G., Xiao R., Tang Z., Huang D., Tang L., Lai C., Jiang D., Liu Y., Yi H., Qin L., Ye S., Ren X., and Tang W. Chem. Soc. Rev., 2019, 48, (2), 488 LINK https://doi.org/10.1039/c8cs00376a [Google Scholar]
  9. Zhang Y., Wu Z., Wang S., Li N., Silva S. R. P., Shao G., and Zhang P. InfoMat, 2022, 4, (7), e 12294 LINK https://doi.org/10.1002/inf2.12294 [Google Scholar]
  10. Ma K., Li J., Ma H., Yang Y., Yang H., Lu J., Li Y., Dou J., Wang S., and Liu S. Chin. Chem. Lett., 2023, 34, (11), 108227 LINK https://doi.org/10.1016/j.cclet.2023.108227 [Google Scholar]
  11. Ganguly S., Ghosh S., Das P., Das T. K., Ghosh S. K., and Das N. C. Polym. Bull., 2020, 77, (6), 2923 LINK https://doi.org/10.1007/s00289-019-02892-y [Google Scholar]
  12. Sapkota B., Liang W., VahidMohammadi A., Karnik R., Noy A., and Wanunu M. Nat. Commun., 2020, 11, 2747 LINK https://doi.org/10.1038/s41467-020-16577-y [Google Scholar]
  13. Kidambi P. R., Chaturvedi P., and Moehring N. K. Science, 2021, 374, (6568), eabd 7687 LINK https://doi.org/10.1126/science.abd7687 [Google Scholar]
  14. Baig N. Compos. Part A: Appl. Sci. Manuf., 2023, 165, 107362 LINK https://doi.org/10.1016/j.compositesa.2022.107362 [Google Scholar]
  15. Xin W., Jiang L., and Wen L. Acc. Chem. Res., 2021, 54, (22), 4154 LINK https://doi.org/10.1021/acs.accounts.1c00431 [Google Scholar]
  16. Liu G., Jin W., and Xu N. Angew. Chem. Int. Ed., 2016, 55, (43), 13384 LINK https://doi.org/10.1002/anie.201600438 [Google Scholar]
  17. Remanan S., Padmavathy N., Rabiya R., Ghosh S., Das T. K., Bose S., Sen R., and Das N. C. Ind. Eng. Chem. Res., 2020, 59, (45), 20141 LINK https://doi.org/10.1021/acs.iecr.0c03069 [Google Scholar]
  18. Zhang H., He Q., Luo J., Wan Y., and Darling S. B. ACS Appl. Mater. Interfaces, 2020, 12, (36), 39948 LINK https://doi.org/10.1021/acsami.0c11136 [Google Scholar]
  19. Zhang Y., Xu X., Yue C., Song L., Lv Y., Liu F., and Li A. Chem. Eng. J., 2021, 404, 126546 LINK https://doi.org/10.1016/j.cej.2020.126546 [Google Scholar]
  20. Liu G., Ye H., Li A., Zhu C., Jiang H., Liu Y., Han K., and Zhou Y. Carbon, 2016, 110, 56 LINK https://doi.org/10.1016/j.carbon.2016.09.005 [Google Scholar]
  21. Li P., He B., Li X., Lin Y., and Tang S. Small, 2023, 19, (35), 230206 LINK https://doi.org/10.1002/smll.202302060 [Google Scholar]
  22. Peng Y., Li Y., Ban Y., Jin H., Jiao W., Liu X., and Yang W. Science, 2014, 346, (6215), 1356 LINK https://doi.org/10.1126/science.1254227 [Google Scholar]
  23. Long Y., Tao Y., Shang T., Yang H., Sun Z., Chen W., and Yang Q.-H. Adv. Sci., 2022, 9, (12), e2200296 LINK https://doi.org/10.1002/advs.202200296 [Google Scholar]
  24. Eum K., Kim D. W., Choi Y., Duan X., Hillmyer M. A., and Tsapatsis M. ACS Appl. Polym. Mater., 2020, 2, (9), 3859 LINK https://doi.org/10.1021/acsapm.0c00558 [Google Scholar]
  25. Lou Y., Liu G., Liu S., Shen J., and Jin W. Appl. Surf. Sci., 2014, 307, 631 LINK https://doi.org/10.1016/j.apsusc.2014.04.088 [Google Scholar]
  26. Hao S., Jiang L., Li Y., Jia Z., and Van der Bruggen B. Chem. Commun., 2020, 56, (3), 419 LINK https://doi.org/10.1039/c9cc08331f [Google Scholar]
  27. Chen J., Yuan Z., Wu X., Wang J., Yang Y., Li W., and Jiang Z. Chem. Eng. J., 2022, 440, 135828 LINK https://doi.org/10.1016/j.cej.2022.135828 [Google Scholar]
  28. Choi Y., Kim S.-S., Kim J. H., Kang J., Choi E., Choi S. E., Kim J. P., Kwon O., and Kim D. W. ACS Nano, 2020, 14, (9), 12195 LINK https://doi.org/10.1021/acsnano.0c05902 [Google Scholar]
  29. Liu Z., Ma Z., Qian B., Chan A. Y. H., Wang X., Liu Y., and Xin J. H. ACS Nano, 2021, 15, (9), 15294 LINK https://doi.org/10.1021/acsnano.1c06155 [Google Scholar]
  30. Kuang B., Su J., Tang H., and Li W. Mater. Today Chem., 2022, 26, 101177 LINK https://doi.org/10.1016/j.mtchem.2022.101177 [Google Scholar]
  31. Kim J. H., Choi Y., Kang J., Choi E., Choi S. E., Kwon O., and Kim D. W. J. Memb. Sci., 2020, 612, 118454 LINK https://doi.org/10.1016/j.memsci.2020.118454 [Google Scholar]
  32. Kim J. H., Park G. S., Kim Y.-J., Choi E., Kang J., Kwon O., Kim S. J., Cho J. H., and Kim D. W. ACS Nano, 2021, 15, (5), 8860 LINK https://doi.org/10.1021/acsnano.1c01448 [Google Scholar]
  33. Chen L., Shi G., Shen J., Peng B., Zhang B., Wang Y., Bian F., Wang J., Li D., Qian Z., Xu G., Liu G., Zeng J., Zhang L., Yang Y., Zhou G., Wu M., Jin W., Li J., and Fang H. Nature, 2017, 550, (7676), 380 LINK https://doi.org/10.1038/nature24044 [Google Scholar]
  34. Halakoo E., and Feng X. Chem. Eng. Sci., 2020, 216, 115488 LINK https://doi.org/10.1016/j.ces.2020.115488 [Google Scholar]
  35. Ikigaki K., Okada K., Tokudome Y., Toyao T., Falcaro P., Doonan C. J., and Takahashi M. Angew. Chem. Int. Ed., 2019, 58, (21), 6886 LINK https://doi.org/10.1002/anie.201901707 [Google Scholar]
  36. Gu Y.-H., Yan X., Chen Y., Guo X.-J., and Lang W.-Z. J. Memb. Sci., 2022, 658, 120738 LINK https://doi.org/10.1016/j.memsci.2022.120738 [Google Scholar]
  37. Xiao Y., Zhang W., Jiao Y., Xu Y., and Lin H. J. Memb. Sci., 2021, 624, 119101 LINK https://doi.org/10.1016/j.memsci.2021.119101 [Google Scholar]
  38. Ying Y., Tong M., Ning S., Ravi S. K., Peh S. B., Tan S. C., Pennycook S. J., and Zhao D. J. Am. Chem. Soc., 2020, 142, (9), 4472 LINK https://doi.org/10.1021/jacs.9b13825 [Google Scholar]
  39. Hu M., and Mi B. Environ. Sci. Technol., 2013, 47, (8), 3715 LINK https://doi.org/10.1021/es400571g [Google Scholar]
  40. Kang H., Shi J., Liu L., Shan M., Xu Z., Li N., Li J., Lv H., Qian X., and Zhao L. Appl. Surf. Sci., 2018, 428, 990 LINK https://doi.org/10.1016/j.apsusc.2017.09.212 [Google Scholar]
  41. Kang J., Choi Y., Kim J. H., Choi E., Choi S. E., Kwon O., and Kim D. W. J. Memb. Sci., 2021, 618, 118635 LINK https://doi.org/10.1016/j.memsci.2020.118635 [Google Scholar]
  42. Joshi R. K., Carbone P., Wang F. C., Kravets V. G., Su Y., Grigorieva I. V, Wu H. A., Geim A. K., and Nair R. R. Science, 2014, 343, (6172), 752 LINK https://doi.org/10.1126/science.1245711 [Google Scholar]
  43. Nie L., Goh K., Wang Y., Lee J., Huang Y., Karahan H. E., Zhou K., Guiver M. D., and Bae T.-H. Sci. Adv., 2020, 6, (17), eaaz9184 LINK https://doi.org/10.1126/sciadv.aaz9184 [Google Scholar]
  44. Xu W. L., Fang C., Zhou F., Song Z., Liu Q., Qiao R., and Yu M. Nano Lett., 2017, 17, (5), 2928 LINK https://doi.org/10.1021/acs.nanolett.7b00148 [Google Scholar]
  45. Zhang W.-H., Yin M.-J., Zhao Q., Jin C.-G., Wang N., Ji S., Ritt C. L., Elimelech M., and An Q.-F. Nat. Nanotechnol., 2021, 16, (3), 337 LINK https://doi.org/10.1038/s41565-020-00833-9 [Google Scholar]
  46. Chen T., Li B., Huang W., Lin C., Li G., Ren H., Wu Y., Chen S., Zhang W., and Ma H. Sep. Purif. Technol., 2021, 256, 117787 LINK https://doi.org/10.1016/j.seppur.2020.117787 [Google Scholar]
  47. Matsumoto M., Valentino L., Stiehl G. M., Balch H. B., Corcos A. R., Wang F., Ralph D. C., Mariñas B. J., and Dichtel W. R. Chem, 2018, 4, (2), 308 LINK https://doi.org/10.1016/j.chempr.2017.12.011 [Google Scholar]
  48. Zhou S., Wei Y., Li L., Duan Y., Hou Q., Zhang L., Ding L.-X., Xue J., Wang H., and Caro J. Sci. Adv., 2018, 4, (10), eaau 1393 LINK https://doi.org/10.1126/sciadv.aau1393 [Google Scholar]
  49. Zhou S., Shekhah O., Jia J., Czaban-Jóźwiak J., Bhatt P. M., Ramírez A., Gascon J., and Eddaoudi M. Nat. Energy, 2021, 6, (9), 882 LINK https://doi.org/10.1038/s41560-021-00881-y [Google Scholar]
  50. Cai J., Song S., Zhu L., Lu Q., Lu Z., Wei Y., and Wang H. Nano Res., 2023, 16, (5), 6290 LINK https://doi.org/10.1007/s12274-023-5447-y [Google Scholar]
  51. Liu Y., Ng Z., Khan E. A., Jeong H.-K., Ching C., and Lai Z. Micro. Meso. Mater., 2009, 118, (1–3), 296 LINK https://doi.org/10.1016/j.micromeso.2008.08.054 [Google Scholar]
  52. Basu S., Cano-Odena A., and Vankelecom I. F. J. J. Memb. Sci., 2010, 362, (1–2), 478 LINK https://doi.org/10.1016/j.memsci.2010.07.005 [Google Scholar]
  53. Nan J., Dong X., Wang W., Jin W., and Xu N. Langmuir, 2011, 27, (8), 4309 LINK https://doi.org/10.1021/la200103w [Google Scholar]
  54. Wang M., Zhang P., Liang X., Zhao J., Liu Y., Cao Y., Wang H., Chen Y., Zhang Z., Pan F., Zhang Z., and Jiang Z. Nat. Sustain., 2022, 5, (6), 518 LINK https://doi.org/10.1038/s41893-022-00870-3 [Google Scholar]
  55. Liu W., Li Y., Li R., Xu H., Lu X., Dong W., Zhang Z., and Wang Y. Nano Res., 2023, 16, (7), 8505 LINK https://doi.org/10.1007/s12274-023-5524-2 [Google Scholar]
  56. Sankar S. N., Fernandes J., dos Santos M. B., Espiña B., Alpuim P., Díez A. G., Lanceros-Mendez S., Saini L., Kaushik S., Kalon G., and Capasso A. Adv. Funct. Mater., 2023, 33, (23), 2214889 LINK https://doi.org/10.1002/adfm.202214889 [Google Scholar]
  57. Austria H. F. M., Widakdo J., Setiawan O., Subrahmanya T. M., Hung W.-S., Wang C.-F., Hu C.-C., Lee K.-R., and Lai J.-Y. J. Clean. Prod., 2023, 395, 136280 LINK https://doi.org/10.1016/j.jclepro.2023.136280 [Google Scholar]
  58. Lecaros R. L. G., Matira A. R., Tayo L. L., Hung W.-S., Hu C.-C., Tsai H.-A., Lee K.-R., and Lai J.-Y. Sep. Purif. Technol., 2022, 283, 120166 LINK https://doi.org/10.1016/j.seppur.2021.120166 [Google Scholar]
  59. Tsou C.-H., An Q.-F., Lo S.-C., De Guzman M., Hung W.-S., Hu C.-C., Lee K.-R., and Lai J.-Y. J. Memb. Sci., 2015, 477, 93 LINK https://doi.org/10.1016/j.memsci.2014.12.039 [Google Scholar]
  60. Zhou K., Guo C., Gan F., Xin J. H., and Yu H. J. Coll. Interface Sci., 2023, 640, 261 LINK https://doi.org/10.1016/j.jcis.2023.02.107 [Google Scholar]
  61. Yaghi O. M., Li G., and Li H. Nature, 1995, 378, (6558), 703 LINK https://doi.org/10.1038/378703a0 [Google Scholar]
  62. Luo R., Fu H., Li Y., Xing Q., Liang G., Bai P., Guo X., Lyu J., and Tsapatsis M. Adv. Funct. Mater., 2023, 33, (18), 2213221 LINK https://doi.org/10.1002/adfm.202213221 [Google Scholar]
  63. Li Z., Yang P., Yan S., Fang Q., Xue M., and Qiu S. ACS Appl. Mater. Interfaces, 2019, 11, (17), 15748 LINK https://doi.org/10.1021/acsami.9b01051 [Google Scholar]
  64. Yan T., Yang J., Lu J., Zhou L., Zhang Y., and He G. ACS Appl. Mater. Interfaces, 2023, 15, (16), 20571 LINK https://doi.org/10.1021/acsami.3c02414 [Google Scholar]
  65. Liang X., Wu H., Huang H., Wang X., Wang M., Dou H., He G., Ren Y., Liu Y., Wu Y., Wang S., Ge H., Zhong C., Chen Y., and Jiang Z. J. Mater. Chem. A, 2022, 10, (10), 5420 LINK https://doi.org/10.1039/d1ta10516g [Google Scholar]
  66. Wang H., Zhao J., Li Y., Cao Y., Zhu Z., Wang M., Zhang R., Pan F., and Jiang Z. Nano-Micro Lett., 2022, 14, (1), 216 LINK https://doi.org/10.1007/s40820-022-00968-5 [Google Scholar]
  67. Wang Z., Si Z., Cai D., Li G. L. S., and Qin P. J. Memb. Sci., 2020, 615, 118466 LINK https://doi.org/10.1016/j.memsci.2020.118466 [Google Scholar]
  68. Zhang Y., Guo J., Han G., Bai Y., Ge Q., Ma J., Lau C. H., and Shao L. Sci. Adv., 2021, 7, (13), eabe 8706 LINK https://doi.org/10.1126/sciadv.abe8706 [Google Scholar]
  69. Liu Y., Wu H., Wu S., Song S., Guo Z., Ren Y., Zhao R., Yang L., Wu Y., and Jiang Z. J. Memb. Sci., 2021, 618, 118693 LINK https://doi.org/10.1016/j.memsci.2020.118693 [Google Scholar]
  70. Yang H., Yang L., Wang H., Xu Z., Zhao Y., Luo Y., Nasir N., Song Y., Wu H., Pan F., and Jiang Z. Nat. Commun., 2019, 10, 2101 LINK https://doi.org/10.1038/s41467-019-10157-5 [Google Scholar]
  71. Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., and Barsoum M. W. Adv. Mater., 2011, 23, (37), 4248 LINK https://doi.org/10.1002/adma.201102306 [Google Scholar]
  72. Ren C. E., Hatzell K. B., Alhabeb M., Ling Z., Mahmoud K. A., and Gogotsi Y. J. Phys. Chem. Lett., 2015, 6, (20), 4026 LINK https://doi.org/10.1021/acs.jpclett.5b01895 [Google Scholar]
  73. Ding L., Wei Y., Li L., Zhang T., Wang H., Xue J., Ding L.-X., Wang S., Caro J., and Gogotsi Y. Nat. Commun., 2018, 9, 155 LINK https://doi.org/10.1038/s41467-017-02529-6 [Google Scholar]
  74. Feng C., Ou K., Zhang Z., Liu Y., Huang Y., Wang Z., Lv Y., Miao Y.-E., Wang Y., Lan Q., and Liu T. J. Memb. Sci., 2022, 658, 120761 LINK https://doi.org/10.1016/j.memsci.2022.120761 [Google Scholar]
  75. Wu X., Ding M., Xu H., Yang W., Zhang K., Tian H., Wang H., and Xie Z. ACS Nano, 2020, 14, (7), 9125 LINK https://doi.org/10.1021/acsnano.0c04471 [Google Scholar]
  76. Radisavljevic B., Radenovic A., Brivio J., Giacometti V., and Kis A. Nat. Nanotechnol., 2011, 6, (3), 147 LINK https://doi.org/10.1038/nnano.2010.279 [Google Scholar]
  77. Wang Z., Tu Q., Zheng S., Urban J. J., Li S., and Mi B. Nano Lett., 2017, 17, (12), 7289 LINK https://doi.org/10.1021/acs.nanolett.7b02804 [Google Scholar]
  78. Hirunpinyopas W., Prestat E., Worrall S. D., Haigh S. J., Dryfe R. A. W., and Bissett M. A. ACS Nano, 2017, 11, (11), 11082 LINK https://doi.org/10.1021/acsnano.7b05124 [Google Scholar]
  79. Yang S., and Zhang K. J. Membr. Sci., 2020, 595, 117526 LINK https://doi.org/10.1016/j.memsci.2019.117526 [Google Scholar]
  80. Chu C., Fu C.-F., Zhang P., Pan T., Ai X., Wu Y., Cui P., Huang Q., and Ran J. J. Membr. Sci., 2020, 615, 118520 LINK https://doi.org/10.1016/j.memsci.2020.118520 [Google Scholar]
  81. Ren J., Stagi L., and Innocenzi P. J. Mater. Sci., 2021, 56, (6), 4053 LINK https://doi.org/10.1007/s10853-020-05513-6 [Google Scholar]
  82. Zhang G., Zhan Y., He S., Zhang L., Zeng G., and Chiao Y.-H. Polym. Adv. Technol., 2020, 31, (5), 1007 LINK https://doi.org/10.1002/pat.4835 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651324X16981367461019
Loading
/content/journals/10.1595/205651324X16981367461019
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error