Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135

Abstract

Membrane separation is an energy-efficient separation process. Two-dimensional (2D) materials have shown potential as a new generation of membrane materials due to their unique structures and physicochemical properties. The separation performance of 2D material membranes crucially depends on how 2D nanosheets are assembled in membranes, such as interlayer spacing between stacked nanosheets, chemical properties of nanosheet surfaces, alignment of nanosheets and thickness of membranes, which are closely related to their fabrication methods. This short review concisely overviews commonly used membrane fabrication methods for different types of 2D materials, including graphene-based materials, 2D covalent organic frameworks, 2D metal-organic frameworks, MXenes and other 2D materials. The representative 2D material membranes resulting from their essential fabrication methods are discussed. The advantages and shortcomings of different fabrication methods are compared. The critical challenges to realising large-scale production of 2D material membranes for practical applications are highlighted.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16981367461019
2023-10-24
2024-11-02
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Chen_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16981367461019&mimeType=html&fmt=ahah

References

  1. X. Sui, Z. Yuan, Y. Yu, K. Goh, Y. Chen, Small, 2020, 16, (50), 2003400 LINK https://doi.org/10.1002/smll.202003400 [Google Scholar]
  2. D. S. Sholl, R. P. Lively, Nature, 2016, 532, (7600), 435 LINK https://doi.org/10.1038/532435a [Google Scholar]
  3. M. S. Mauter, I. Zucker, F. Perreault, J. R. Werber, J.-H. Kim, M. Elimelech, Nat. Sustain., 2018, 1, (4), 166 LINK https://doi.org/10.1038/s41893-018-0046-8 [Google Scholar]
  4. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, A. K. Geim, Science, 2012, 335, (6067), 442 LINK https://doi.org/10.1126/science.1211694 [Google Scholar]
  5. J. Liu, J. Liang, J. Xue, K. Liang, Small, 2021, 17, (32), 2100300 LINK https://doi.org/10.1002/smll.202100300 [Google Scholar]
  6. X. Jiang, A. V Kuklin, A. Baev, Y. Ge, H. Ågren, H. Zhang, P. N. Prasad, Phys. Rep., 2020, 848, 58 LINK https://doi.org/10.1016/j.physrep.2019.12.006 [Google Scholar]
  7. D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev., 2010, 39, (1), 228 LINK https://doi.org/10.1039/b917103g [Google Scholar]
  8. H. Wang, Z. Zeng, P. Xu, L. Li, G. Zeng, R. Xiao, Z. Tang, D. Huang, L. Tang, C. Lai, D. Jiang, Y. Liu, H. Yi, L. Qin, S. Ye, X. Ren, W. Tang, Chem. Soc. Rev., 2019, 48, (2), 488 LINK https://doi.org/10.1039/c8cs00376a [Google Scholar]
  9. Y. Zhang, Z. Wu, S. Wang, N. Li, S. R. P. Silva, G. Shao, P. Zhang, InfoMat, 2022, 4, (7), e 12294 LINK https://doi.org/10.1002/inf2.12294 [Google Scholar]
  10. K. Ma, J. Li, H. Ma, Y. Yang, H. Yang, J. Lu, Y. Li, J. Dou, S. Wang, S. Liu, Chin. Chem. Lett., 2023, 34, (11), 108227 LINK https://doi.org/10.1016/j.cclet.2023.108227 [Google Scholar]
  11. S. Ganguly, S. Ghosh, P. Das, T. K. Das, S. K. Ghosh, N. C. Das, Polym. Bull., 2020, 77, (6), 2923 LINK https://doi.org/10.1007/s00289-019-02892-y [Google Scholar]
  12. B. Sapkota, W. Liang, A. VahidMohammadi, R. Karnik, A. Noy, M. Wanunu, Nat. Commun., 2020, 11, 2747 LINK https://doi.org/10.1038/s41467-020-16577-y [Google Scholar]
  13. P. R. Kidambi, P. Chaturvedi, N. K. Moehring, Science, 2021, 374, (6568), eabd 7687 LINK https://doi.org/10.1126/science.abd7687 [Google Scholar]
  14. N. Baig, Compos. Part A: Appl. Sci. Manuf., 2023, 165, 107362 LINK https://doi.org/10.1016/j.compositesa.2022.107362 [Google Scholar]
  15. W. Xin, L. Jiang, L. Wen, Acc. Chem. Res., 2021, 54, (22), 4154 LINK https://doi.org/10.1021/acs.accounts.1c00431 [Google Scholar]
  16. G. Liu, W. Jin, N. Xu, Angew. Chem. Int. Ed., 2016, 55, (43), 13384 LINK https://doi.org/10.1002/anie.201600438 [Google Scholar]
  17. S. Remanan, N. Padmavathy, R. Rabiya, S. Ghosh, T. K. Das, S. Bose, R. Sen, N. C. Das, Ind. Eng. Chem. Res., 2020, 59, (45), 20141 LINK https://doi.org/10.1021/acs.iecr.0c03069 [Google Scholar]
  18. H. Zhang, Q. He, J. Luo, Y. Wan, S. B. Darling, ACS Appl. Mater. Interfaces, 2020, 12, (36), 39948 LINK https://doi.org/10.1021/acsami.0c11136 [Google Scholar]
  19. Y. Zhang, X. Xu, C. Yue, L. Song, Y. Lv, F. Liu, A. Li, Chem. Eng. J., 2021, 404, 126546 LINK https://doi.org/10.1016/j.cej.2020.126546 [Google Scholar]
  20. G. Liu, H. Ye, A. Li, C. Zhu, H. Jiang, Y. Liu, K. Han, Y. Zhou, Carbon, 2016, 110, 56 LINK https://doi.org/10.1016/j.carbon.2016.09.005 [Google Scholar]
  21. P. Li, B. He, X. Li, Y. Lin, S. Tang, Small, 2023, 19, (35), 230206 LINK https://doi.org/10.1002/smll.202302060 [Google Scholar]
  22. Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science, 2014, 346, (6215), 1356 LINK https://doi.org/10.1126/science.1254227 [Google Scholar]
  23. Y. Long, Y. Tao, T. Shang, H. Yang, Z. Sun, W. Chen, Q.-H. Yang, Adv. Sci., 2022, 9, (12), e2200296 LINK https://doi.org/10.1002/advs.202200296 [Google Scholar]
  24. K. Eum, D. W. Kim, Y. Choi, X. Duan, M. A. Hillmyer, M. Tsapatsis, ACS Appl. Polym. Mater., 2020, 2, (9), 3859 LINK https://doi.org/10.1021/acsapm.0c00558 [Google Scholar]
  25. Y. Lou, G. Liu, S. Liu, J. Shen, W. Jin, Appl. Surf. Sci., 2014, 307, 631 LINK https://doi.org/10.1016/j.apsusc.2014.04.088 [Google Scholar]
  26. S. Hao, L. Jiang, Y. Li, Z. Jia, B. Van der Bruggen, Chem. Commun., 2020, 56, (3), 419 LINK https://doi.org/10.1039/c9cc08331f [Google Scholar]
  27. J. Chen, Z. Yuan, X. Wu, J. Wang, Y. Yang, W. Li, Z. Jiang, Chem. Eng. J., 2022, 440, 135828 LINK https://doi.org/10.1016/j.cej.2022.135828 [Google Scholar]
  28. Y. Choi, S.-S. Kim, J. H. Kim, J. Kang, E. Choi, S. E. Choi, J. P. Kim, O. Kwon, D. W. Kim, ACS Nano, 2020, 14, (9), 12195 LINK https://doi.org/10.1021/acsnano.0c05902 [Google Scholar]
  29. Z. Liu, Z. Ma, B. Qian, A. Y. H. Chan, X. Wang, Y. Liu, J. H. Xin, ACS Nano, 2021, 15, (9), 15294 LINK https://doi.org/10.1021/acsnano.1c06155 [Google Scholar]
  30. B. Kuang, J. Su, H. Tang, W. Li, Mater. Today Chem., 2022, 26, 101177 LINK https://doi.org/10.1016/j.mtchem.2022.101177 [Google Scholar]
  31. J. H. Kim, Y. Choi, J. Kang, E. Choi, S. E. Choi, O. Kwon, D. W. Kim, J. Memb. Sci., 2020, 612, 118454 LINK https://doi.org/10.1016/j.memsci.2020.118454 [Google Scholar]
  32. J. H. Kim, G. S. Park, Y.-J. Kim, E. Choi, J. Kang, O. Kwon, S. J. Kim, J. H. Cho, D. W. Kim, ACS Nano, 2021, 15, (5), 8860 LINK https://doi.org/10.1021/acsnano.1c01448 [Google Scholar]
  33. L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Nature, 2017, 550, (7676), 380 LINK https://doi.org/10.1038/nature24044 [Google Scholar]
  34. E. Halakoo, X. Feng, Chem. Eng. Sci., 2020, 216, 115488 LINK https://doi.org/10.1016/j.ces.2020.115488 [Google Scholar]
  35. K. Ikigaki, K. Okada, Y. Tokudome, T. Toyao, P. Falcaro, C. J. Doonan, M. Takahashi, Angew. Chem. Int. Ed., 2019, 58, (21), 6886 LINK https://doi.org/10.1002/anie.201901707 [Google Scholar]
  36. Y.-H. Gu, X. Yan, Y. Chen, X.-J. Guo, W.-Z. Lang, J. Memb. Sci., 2022, 658, 120738 LINK https://doi.org/10.1016/j.memsci.2022.120738 [Google Scholar]
  37. Y. Xiao, W. Zhang, Y. Jiao, Y. Xu, H. Lin, J. Memb. Sci., 2021, 624, 119101 LINK https://doi.org/10.1016/j.memsci.2021.119101 [Google Scholar]
  38. Y. Ying, M. Tong, S. Ning, S. K. Ravi, S. B. Peh, S. C. Tan, S. J. Pennycook, D. Zhao, J. Am. Chem. Soc., 2020, 142, (9), 4472 LINK https://doi.org/10.1021/jacs.9b13825 [Google Scholar]
  39. M. Hu, B. Mi, Environ. Sci. Technol., 2013, 47, (8), 3715 LINK https://doi.org/10.1021/es400571g [Google Scholar]
  40. H. Kang, J. Shi, L. Liu, M. Shan, Z. Xu, N. Li, J. Li, H. Lv, X. Qian, L. Zhao, Appl. Surf. Sci., 2018, 428, 990 LINK https://doi.org/10.1016/j.apsusc.2017.09.212 [Google Scholar]
  41. J. Kang, Y. Choi, J. H. Kim, E. Choi, S. E. Choi, O. Kwon, D. W. Kim, J. Memb. Sci., 2021, 618, 118635 LINK https://doi.org/10.1016/j.memsci.2020.118635 [Google Scholar]
  42. R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V Grigorieva, H. A. Wu, A. K. Geim, R. R. Nair, Science, 2014, 343, (6172), 752 LINK https://doi.org/10.1126/science.1245711 [Google Scholar]
  43. L. Nie, K. Goh, Y. Wang, J. Lee, Y. Huang, H. E. Karahan, K. Zhou, M. D. Guiver, T.-H. Bae, Sci. Adv., 2020, 6, (17), eaaz9184 LINK https://doi.org/10.1126/sciadv.aaz9184 [Google Scholar]
  44. W. L. Xu, C. Fang, F. Zhou, Z. Song, Q. Liu, R. Qiao, M. Yu, Nano Lett., 2017, 17, (5), 2928 LINK https://doi.org/10.1021/acs.nanolett.7b00148 [Google Scholar]
  45. W.-H. Zhang, M.-J. Yin, Q. Zhao, C.-G. Jin, N. Wang, S. Ji, C. L. Ritt, M. Elimelech, Q.-F. An, Nat. Nanotechnol., 2021, 16, (3), 337 LINK https://doi.org/10.1038/s41565-020-00833-9 [Google Scholar]
  46. T. Chen, B. Li, W. Huang, C. Lin, G. Li, H. Ren, Y. Wu, S. Chen, W. Zhang, H. Ma, Sep. Purif. Technol., 2021, 256, 117787 LINK https://doi.org/10.1016/j.seppur.2020.117787 [Google Scholar]
  47. M. Matsumoto, L. Valentino, G. M. Stiehl, H. B. Balch, A. R. Corcos, F. Wang, D. C. Ralph, B. J. Mariñas, W. R. Dichtel, Chem, 2018, 4, (2), 308 LINK https://doi.org/10.1016/j.chempr.2017.12.011 [Google Scholar]
  48. S. Zhou, Y. Wei, L. Li, Y. Duan, Q. Hou, L. Zhang, L.-X. Ding, J. Xue, H. Wang, J. Caro, Sci. Adv., 2018, 4, (10), eaau 1393 LINK https://doi.org/10.1126/sciadv.aau1393 [Google Scholar]
  49. S. Zhou, O. Shekhah, J. Jia, J. Czaban-Jóźwiak, P. M. Bhatt, A. Ramírez, J. Gascon, M. Eddaoudi, Nat. Energy, 2021, 6, (9), 882 LINK https://doi.org/10.1038/s41560-021-00881-y [Google Scholar]
  50. J. Cai, S. Song, L. Zhu, Q. Lu, Z. Lu, Y. Wei, H. Wang, Nano Res., 2023, 16, (5), 6290 LINK https://doi.org/10.1007/s12274-023-5447-y [Google Scholar]
  51. Y. Liu, Z. Ng, E. A. Khan, H.-K. Jeong, C. Ching, Z. Lai, Micro. Meso. Mater., 2009, 118, (1–3), 296 LINK https://doi.org/10.1016/j.micromeso.2008.08.054 [Google Scholar]
  52. S. Basu, A. Cano-Odena, I. F. J. Vankelecom, J. Memb. Sci., 2010, 362, (1–2), 478 LINK https://doi.org/10.1016/j.memsci.2010.07.005 [Google Scholar]
  53. J. Nan, X. Dong, W. Wang, W. Jin, N. Xu, Langmuir, 2011, 27, (8), 4309 LINK https://doi.org/10.1021/la200103w [Google Scholar]
  54. M. Wang, P. Zhang, X. Liang, J. Zhao, Y. Liu, Y. Cao, H. Wang, Y. Chen, Z. Zhang, F. Pan, Z. Zhang, Z. Jiang, Nat. Sustain., 2022, 5, (6), 518 LINK https://doi.org/10.1038/s41893-022-00870-3 [Google Scholar]
  55. W. Liu, Y. Li, R. Li, H. Xu, X. Lu, W. Dong, Z. Zhang, Y. Wang, Nano Res., 2023, 16, (7), 8505 LINK https://doi.org/10.1007/s12274-023-5524-2 [Google Scholar]
  56. S. N. Sankar, J. Fernandes, M. B. dos Santos, B. Espiña, P. Alpuim, A. G. Díez, S. Lanceros-Mendez, L. Saini, S. Kaushik, G. Kalon, A. Capasso, Adv. Funct. Mater., 2023, 33, (23), 2214889 LINK https://doi.org/10.1002/adfm.202214889 [Google Scholar]
  57. H. F. M. Austria, J. Widakdo, O. Setiawan, T. M. Subrahmanya, W.-S. Hung, C.-F. Wang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, J. Clean. Prod., 2023, 395, 136280 LINK https://doi.org/10.1016/j.jclepro.2023.136280 [Google Scholar]
  58. R. L. G. Lecaros, A. R. Matira, L. L. Tayo, W.-S. Hung, C.-C. Hu, H.-A. Tsai, K.-R. Lee, J.-Y. Lai, Sep. Purif. Technol., 2022, 283, 120166 LINK https://doi.org/10.1016/j.seppur.2021.120166 [Google Scholar]
  59. C.-H. Tsou, Q.-F. An, S.-C. Lo, M. De Guzman, W.-S. Hung, C.-C. Hu, K.-R. Lee, J.-Y. Lai, J. Memb. Sci., 2015, 477, 93 LINK https://doi.org/10.1016/j.memsci.2014.12.039 [Google Scholar]
  60. K. Zhou, C. Guo, F. Gan, J. H. Xin, H. Yu, J. Coll. Interface Sci., 2023, 640, 261 LINK https://doi.org/10.1016/j.jcis.2023.02.107 [Google Scholar]
  61. O. M. Yaghi, G. Li, H. Li, Nature, 1995, 378, (6558), 703 LINK https://doi.org/10.1038/378703a0 [Google Scholar]
  62. R. Luo, H. Fu, Y. Li, Q. Xing, G. Liang, P. Bai, X. Guo, J. Lyu, M. Tsapatsis, Adv. Funct. Mater., 2023, 33, (18), 2213221 LINK https://doi.org/10.1002/adfm.202213221 [Google Scholar]
  63. Z. Li, P. Yang, S. Yan, Q. Fang, M. Xue, S. Qiu, ACS Appl. Mater. Interfaces, 2019, 11, (17), 15748 LINK https://doi.org/10.1021/acsami.9b01051 [Google Scholar]
  64. T. Yan, J. Yang, J. Lu, L. Zhou, Y. Zhang, G. He, ACS Appl. Mater. Interfaces, 2023, 15, (16), 20571 LINK https://doi.org/10.1021/acsami.3c02414 [Google Scholar]
  65. X. Liang, H. Wu, H. Huang, X. Wang, M. Wang, H. Dou, G. He, Y. Ren, Y. Liu, Y. Wu, S. Wang, H. Ge, C. Zhong, Y. Chen, Z. Jiang, J. Mater. Chem. A, 2022, 10, (10), 5420 LINK https://doi.org/10.1039/d1ta10516g [Google Scholar]
  66. H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu, M. Wang, R. Zhang, F. Pan, Z. Jiang, Nano-Micro Lett., 2022, 14, (1), 216 LINK https://doi.org/10.1007/s40820-022-00968-5 [Google Scholar]
  67. Z. Wang, Z. Si, D. Cai, G. L. S. Li, P. Qin, J. Memb. Sci., 2020, 615, 118466 LINK https://doi.org/10.1016/j.memsci.2020.118466 [Google Scholar]
  68. Y. Zhang, J. Guo, G. Han, Y. Bai, Q. Ge, J. Ma, C. H. Lau, L. Shao, Sci. Adv., 2021, 7, (13), eabe 8706 LINK https://doi.org/10.1126/sciadv.abe8706 [Google Scholar]
  69. Y. Liu, H. Wu, S. Wu, S. Song, Z. Guo, Y. Ren, R. Zhao, L. Yang, Y. Wu, Z. Jiang, J. Memb. Sci., 2021, 618, 118693 LINK https://doi.org/10.1016/j.memsci.2020.118693 [Google Scholar]
  70. H. Yang, L. Yang, H. Wang, Z. Xu, Y. Zhao, Y. Luo, N. Nasir, Y. Song, H. Wu, F. Pan, Z. Jiang, Nat. Commun., 2019, 10, 2101 LINK https://doi.org/10.1038/s41467-019-10157-5 [Google Scholar]
  71. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater., 2011, 23, (37), 4248 LINK https://doi.org/10.1002/adma.201102306 [Google Scholar]
  72. C. E. Ren, K. B. Hatzell, M. Alhabeb, Z. Ling, K. A. Mahmoud, Y. Gogotsi, J. Phys. Chem. Lett., 2015, 6, (20), 4026 LINK https://doi.org/10.1021/acs.jpclett.5b01895 [Google Scholar]
  73. L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.-X. Ding, S. Wang, J. Caro, Y. Gogotsi, Nat. Commun., 2018, 9, 155 LINK https://doi.org/10.1038/s41467-017-02529-6 [Google Scholar]
  74. C. Feng, K. Ou, Z. Zhang, Y. Liu, Y. Huang, Z. Wang, Y. Lv, Y.-E. Miao, Y. Wang, Q. Lan, T. Liu, J. Memb. Sci., 2022, 658, 120761 LINK https://doi.org/10.1016/j.memsci.2022.120761 [Google Scholar]
  75. X. Wu, M. Ding, H. Xu, W. Yang, K. Zhang, H. Tian, H. Wang, Z. Xie, ACS Nano, 2020, 14, (7), 9125 LINK https://doi.org/10.1021/acsnano.0c04471 [Google Scholar]
  76. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol., 2011, 6, (3), 147 LINK https://doi.org/10.1038/nnano.2010.279 [Google Scholar]
  77. Z. Wang, Q. Tu, S. Zheng, J. J. Urban, S. Li, B. Mi, Nano Lett., 2017, 17, (12), 7289 LINK https://doi.org/10.1021/acs.nanolett.7b02804 [Google Scholar]
  78. W. Hirunpinyopas, E. Prestat, S. D. Worrall, S. J. Haigh, R. A. W. Dryfe, M. A. Bissett, ACS Nano, 2017, 11, (11), 11082 LINK https://doi.org/10.1021/acsnano.7b05124 [Google Scholar]
  79. S. Yang, K. Zhang, J. Membr. Sci., 2020, 595, 117526 LINK https://doi.org/10.1016/j.memsci.2019.117526 [Google Scholar]
  80. C. Chu, C.-F. Fu, P. Zhang, T. Pan, X. Ai, Y. Wu, P. Cui, Q. Huang, J. Ran, J. Membr. Sci., 2020, 615, 118520 LINK https://doi.org/10.1016/j.memsci.2020.118520 [Google Scholar]
  81. J. Ren, L. Stagi, P. Innocenzi, J. Mater. Sci., 2021, 56, (6), 4053 LINK https://doi.org/10.1007/s10853-020-05513-6 [Google Scholar]
  82. G. Zhang, Y. Zhan, S. He, L. Zhang, G. Zeng, Y.-H. Chiao, Polym. Adv. Technol., 2020, 31, (5), 1007 LINK https://doi.org/10.1002/pat.4835 [Google Scholar]
/content/journals/10.1595/205651324X16981367461019
Loading
/content/journals/10.1595/205651324X16981367461019
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test