Skip to content
Volume 68 Number 2
  • ISSN: 2056-5135


Membrane separation is an energy-efficient separation process. Two-dimensional (2D) materials have shown potential as a new generation of membrane materials due to their unique structures and physicochemical properties. The separation performance of 2D material membranes crucially depends on how 2D nanosheets are assembled in membranes, such as interlayer spacing between stacked nanosheets, chemical properties of nanosheet surfaces, alignment of nanosheets and thickness of membranes, which are closely related to their fabrication methods. This short review concisely overviews commonly used membrane fabrication methods for different types of 2D materials, including graphene-based materials, 2D covalent organic frameworks, 2D metal-organic frameworks, MXenes and other 2D materials. The representative 2D material membranes resulting from their essential fabrication methods are discussed. The advantages and shortcomings of different fabrication methods are compared. The critical challenges to realising large-scale production of 2D material membranes for practical applications are highlighted.


Article metrics loading...

Loading full text...

Full text loading...



  1. Sui X., Yuan Z., Yu Y., Goh K., and Chen Y. Small, 2020, 16, (50), 2003400 LINK [Google Scholar]
  2. Sholl D. S., and Lively R. P. Nature, 2016, 532, (7600), 435 LINK [Google Scholar]
  3. Mauter M. S., Zucker I., Perreault F., Werber J. R., Kim J.-H., and Elimelech M. Nat. Sustain., 2018, 1, (4), 166 LINK [Google Scholar]
  4. Nair R. R., Wu H. A., Jayaram P. N., Grigorieva I. V., and Geim A. K. Science, 2012, 335, (6067), 442 LINK [Google Scholar]
  5. Liu J., Liang J., Xue J., and Liang K. Small, 2021, 17, (32), 2100300 LINK [Google Scholar]
  6. Jiang X., Kuklin A. V, Baev A., Ge Y., Ågren H., Zhang H., and Prasad P. N. Phys. Rep., 2020, 848, 58 LINK [Google Scholar]
  7. Dreyer D. R., Park S., Bielawski C. W., and Ruoff R. S. Chem. Soc. Rev., 2010, 39, (1), 228 LINK [Google Scholar]
  8. Wang H., Zeng Z., Xu P., Li L., Zeng G., Xiao R., Tang Z., Huang D., Tang L., Lai C., Jiang D., Liu Y., Yi H., Qin L., Ye S., Ren X., and Tang W. Chem. Soc. Rev., 2019, 48, (2), 488 LINK [Google Scholar]
  9. Zhang Y., Wu Z., Wang S., Li N., Silva S. R. P., Shao G., and Zhang P. InfoMat, 2022, 4, (7), e 12294 LINK [Google Scholar]
  10. Ma K., Li J., Ma H., Yang Y., Yang H., Lu J., Li Y., Dou J., Wang S., and Liu S. Chin. Chem. Lett., 2023, 34, (11), 108227 LINK [Google Scholar]
  11. Ganguly S., Ghosh S., Das P., Das T. K., Ghosh S. K., and Das N. C. Polym. Bull., 2020, 77, (6), 2923 LINK [Google Scholar]
  12. Sapkota B., Liang W., VahidMohammadi A., Karnik R., Noy A., and Wanunu M. Nat. Commun., 2020, 11, 2747 LINK [Google Scholar]
  13. Kidambi P. R., Chaturvedi P., and Moehring N. K. Science, 2021, 374, (6568), eabd 7687 LINK [Google Scholar]
  14. Baig N. Compos. Part A: Appl. Sci. Manuf., 2023, 165, 107362 LINK [Google Scholar]
  15. Xin W., Jiang L., and Wen L. Acc. Chem. Res., 2021, 54, (22), 4154 LINK [Google Scholar]
  16. Liu G., Jin W., and Xu N. Angew. Chem. Int. Ed., 2016, 55, (43), 13384 LINK [Google Scholar]
  17. Remanan S., Padmavathy N., Rabiya R., Ghosh S., Das T. K., Bose S., Sen R., and Das N. C. Ind. Eng. Chem. Res., 2020, 59, (45), 20141 LINK [Google Scholar]
  18. Zhang H., He Q., Luo J., Wan Y., and Darling S. B. ACS Appl. Mater. Interfaces, 2020, 12, (36), 39948 LINK [Google Scholar]
  19. Zhang Y., Xu X., Yue C., Song L., Lv Y., Liu F., and Li A. Chem. Eng. J., 2021, 404, 126546 LINK [Google Scholar]
  20. Liu G., Ye H., Li A., Zhu C., Jiang H., Liu Y., Han K., and Zhou Y. Carbon, 2016, 110, 56 LINK [Google Scholar]
  21. Li P., He B., Li X., Lin Y., and Tang S. Small, 2023, 19, (35), 230206 LINK [Google Scholar]
  22. Peng Y., Li Y., Ban Y., Jin H., Jiao W., Liu X., and Yang W. Science, 2014, 346, (6215), 1356 LINK [Google Scholar]
  23. Long Y., Tao Y., Shang T., Yang H., Sun Z., Chen W., and Yang Q.-H. Adv. Sci., 2022, 9, (12), e2200296 LINK [Google Scholar]
  24. Eum K., Kim D. W., Choi Y., Duan X., Hillmyer M. A., and Tsapatsis M. ACS Appl. Polym. Mater., 2020, 2, (9), 3859 LINK [Google Scholar]
  25. Lou Y., Liu G., Liu S., Shen J., and Jin W. Appl. Surf. Sci., 2014, 307, 631 LINK [Google Scholar]
  26. Hao S., Jiang L., Li Y., Jia Z., and Van der Bruggen B. Chem. Commun., 2020, 56, (3), 419 LINK [Google Scholar]
  27. Chen J., Yuan Z., Wu X., Wang J., Yang Y., Li W., and Jiang Z. Chem. Eng. J., 2022, 440, 135828 LINK [Google Scholar]
  28. Choi Y., Kim S.-S., Kim J. H., Kang J., Choi E., Choi S. E., Kim J. P., Kwon O., and Kim D. W. ACS Nano, 2020, 14, (9), 12195 LINK [Google Scholar]
  29. Liu Z., Ma Z., Qian B., Chan A. Y. H., Wang X., Liu Y., and Xin J. H. ACS Nano, 2021, 15, (9), 15294 LINK [Google Scholar]
  30. Kuang B., Su J., Tang H., and Li W. Mater. Today Chem., 2022, 26, 101177 LINK [Google Scholar]
  31. Kim J. H., Choi Y., Kang J., Choi E., Choi S. E., Kwon O., and Kim D. W. J. Memb. Sci., 2020, 612, 118454 LINK [Google Scholar]
  32. Kim J. H., Park G. S., Kim Y.-J., Choi E., Kang J., Kwon O., Kim S. J., Cho J. H., and Kim D. W. ACS Nano, 2021, 15, (5), 8860 LINK [Google Scholar]
  33. Chen L., Shi G., Shen J., Peng B., Zhang B., Wang Y., Bian F., Wang J., Li D., Qian Z., Xu G., Liu G., Zeng J., Zhang L., Yang Y., Zhou G., Wu M., Jin W., Li J., and Fang H. Nature, 2017, 550, (7676), 380 LINK [Google Scholar]
  34. Halakoo E., and Feng X. Chem. Eng. Sci., 2020, 216, 115488 LINK [Google Scholar]
  35. Ikigaki K., Okada K., Tokudome Y., Toyao T., Falcaro P., Doonan C. J., and Takahashi M. Angew. Chem. Int. Ed., 2019, 58, (21), 6886 LINK [Google Scholar]
  36. Gu Y.-H., Yan X., Chen Y., Guo X.-J., and Lang W.-Z. J. Memb. Sci., 2022, 658, 120738 LINK [Google Scholar]
  37. Xiao Y., Zhang W., Jiao Y., Xu Y., and Lin H. J. Memb. Sci., 2021, 624, 119101 LINK [Google Scholar]
  38. Ying Y., Tong M., Ning S., Ravi S. K., Peh S. B., Tan S. C., Pennycook S. J., and Zhao D. J. Am. Chem. Soc., 2020, 142, (9), 4472 LINK [Google Scholar]
  39. Hu M., and Mi B. Environ. Sci. Technol., 2013, 47, (8), 3715 LINK [Google Scholar]
  40. Kang H., Shi J., Liu L., Shan M., Xu Z., Li N., Li J., Lv H., Qian X., and Zhao L. Appl. Surf. Sci., 2018, 428, 990 LINK [Google Scholar]
  41. Kang J., Choi Y., Kim J. H., Choi E., Choi S. E., Kwon O., and Kim D. W. J. Memb. Sci., 2021, 618, 118635 LINK [Google Scholar]
  42. Joshi R. K., Carbone P., Wang F. C., Kravets V. G., Su Y., Grigorieva I. V, Wu H. A., Geim A. K., and Nair R. R. Science, 2014, 343, (6172), 752 LINK [Google Scholar]
  43. Nie L., Goh K., Wang Y., Lee J., Huang Y., Karahan H. E., Zhou K., Guiver M. D., and Bae T.-H. Sci. Adv., 2020, 6, (17), eaaz9184 LINK [Google Scholar]
  44. Xu W. L., Fang C., Zhou F., Song Z., Liu Q., Qiao R., and Yu M. Nano Lett., 2017, 17, (5), 2928 LINK [Google Scholar]
  45. Zhang W.-H., Yin M.-J., Zhao Q., Jin C.-G., Wang N., Ji S., Ritt C. L., Elimelech M., and An Q.-F. Nat. Nanotechnol., 2021, 16, (3), 337 LINK [Google Scholar]
  46. Chen T., Li B., Huang W., Lin C., Li G., Ren H., Wu Y., Chen S., Zhang W., and Ma H. Sep. Purif. Technol., 2021, 256, 117787 LINK [Google Scholar]
  47. Matsumoto M., Valentino L., Stiehl G. M., Balch H. B., Corcos A. R., Wang F., Ralph D. C., Mariñas B. J., and Dichtel W. R. Chem, 2018, 4, (2), 308 LINK [Google Scholar]
  48. Zhou S., Wei Y., Li L., Duan Y., Hou Q., Zhang L., Ding L.-X., Xue J., Wang H., and Caro J. Sci. Adv., 2018, 4, (10), eaau 1393 LINK [Google Scholar]
  49. Zhou S., Shekhah O., Jia J., Czaban-Jóźwiak J., Bhatt P. M., Ramírez A., Gascon J., and Eddaoudi M. Nat. Energy, 2021, 6, (9), 882 LINK [Google Scholar]
  50. Cai J., Song S., Zhu L., Lu Q., Lu Z., Wei Y., and Wang H. Nano Res., 2023, 16, (5), 6290 LINK [Google Scholar]
  51. Liu Y., Ng Z., Khan E. A., Jeong H.-K., Ching C., and Lai Z. Micro. Meso. Mater., 2009, 118, (1–3), 296 LINK [Google Scholar]
  52. Basu S., Cano-Odena A., and Vankelecom I. F. J. J. Memb. Sci., 2010, 362, (1–2), 478 LINK [Google Scholar]
  53. Nan J., Dong X., Wang W., Jin W., and Xu N. Langmuir, 2011, 27, (8), 4309 LINK [Google Scholar]
  54. Wang M., Zhang P., Liang X., Zhao J., Liu Y., Cao Y., Wang H., Chen Y., Zhang Z., Pan F., Zhang Z., and Jiang Z. Nat. Sustain., 2022, 5, (6), 518 LINK [Google Scholar]
  55. Liu W., Li Y., Li R., Xu H., Lu X., Dong W., Zhang Z., and Wang Y. Nano Res., 2023, 16, (7), 8505 LINK [Google Scholar]
  56. Sankar S. N., Fernandes J., dos Santos M. B., Espiña B., Alpuim P., Díez A. G., Lanceros-Mendez S., Saini L., Kaushik S., Kalon G., and Capasso A. Adv. Funct. Mater., 2023, 33, (23), 2214889 LINK [Google Scholar]
  57. Austria H. F. M., Widakdo J., Setiawan O., Subrahmanya T. M., Hung W.-S., Wang C.-F., Hu C.-C., Lee K.-R., and Lai J.-Y. J. Clean. Prod., 2023, 395, 136280 LINK [Google Scholar]
  58. Lecaros R. L. G., Matira A. R., Tayo L. L., Hung W.-S., Hu C.-C., Tsai H.-A., Lee K.-R., and Lai J.-Y. Sep. Purif. Technol., 2022, 283, 120166 LINK [Google Scholar]
  59. Tsou C.-H., An Q.-F., Lo S.-C., De Guzman M., Hung W.-S., Hu C.-C., Lee K.-R., and Lai J.-Y. J. Memb. Sci., 2015, 477, 93 LINK [Google Scholar]
  60. Zhou K., Guo C., Gan F., Xin J. H., and Yu H. J. Coll. Interface Sci., 2023, 640, 261 LINK [Google Scholar]
  61. Yaghi O. M., Li G., and Li H. Nature, 1995, 378, (6558), 703 LINK [Google Scholar]
  62. Luo R., Fu H., Li Y., Xing Q., Liang G., Bai P., Guo X., Lyu J., and Tsapatsis M. Adv. Funct. Mater., 2023, 33, (18), 2213221 LINK [Google Scholar]
  63. Li Z., Yang P., Yan S., Fang Q., Xue M., and Qiu S. ACS Appl. Mater. Interfaces, 2019, 11, (17), 15748 LINK [Google Scholar]
  64. Yan T., Yang J., Lu J., Zhou L., Zhang Y., and He G. ACS Appl. Mater. Interfaces, 2023, 15, (16), 20571 LINK [Google Scholar]
  65. Liang X., Wu H., Huang H., Wang X., Wang M., Dou H., He G., Ren Y., Liu Y., Wu Y., Wang S., Ge H., Zhong C., Chen Y., and Jiang Z. J. Mater. Chem. A, 2022, 10, (10), 5420 LINK [Google Scholar]
  66. Wang H., Zhao J., Li Y., Cao Y., Zhu Z., Wang M., Zhang R., Pan F., and Jiang Z. Nano-Micro Lett., 2022, 14, (1), 216 LINK [Google Scholar]
  67. Wang Z., Si Z., Cai D., Li G. L. S., and Qin P. J. Memb. Sci., 2020, 615, 118466 LINK [Google Scholar]
  68. Zhang Y., Guo J., Han G., Bai Y., Ge Q., Ma J., Lau C. H., and Shao L. Sci. Adv., 2021, 7, (13), eabe 8706 LINK [Google Scholar]
  69. Liu Y., Wu H., Wu S., Song S., Guo Z., Ren Y., Zhao R., Yang L., Wu Y., and Jiang Z. J. Memb. Sci., 2021, 618, 118693 LINK [Google Scholar]
  70. Yang H., Yang L., Wang H., Xu Z., Zhao Y., Luo Y., Nasir N., Song Y., Wu H., Pan F., and Jiang Z. Nat. Commun., 2019, 10, 2101 LINK [Google Scholar]
  71. Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., and Barsoum M. W. Adv. Mater., 2011, 23, (37), 4248 LINK [Google Scholar]
  72. Ren C. E., Hatzell K. B., Alhabeb M., Ling Z., Mahmoud K. A., and Gogotsi Y. J. Phys. Chem. Lett., 2015, 6, (20), 4026 LINK [Google Scholar]
  73. Ding L., Wei Y., Li L., Zhang T., Wang H., Xue J., Ding L.-X., Wang S., Caro J., and Gogotsi Y. Nat. Commun., 2018, 9, 155 LINK [Google Scholar]
  74. Feng C., Ou K., Zhang Z., Liu Y., Huang Y., Wang Z., Lv Y., Miao Y.-E., Wang Y., Lan Q., and Liu T. J. Memb. Sci., 2022, 658, 120761 LINK [Google Scholar]
  75. Wu X., Ding M., Xu H., Yang W., Zhang K., Tian H., Wang H., and Xie Z. ACS Nano, 2020, 14, (7), 9125 LINK [Google Scholar]
  76. Radisavljevic B., Radenovic A., Brivio J., Giacometti V., and Kis A. Nat. Nanotechnol., 2011, 6, (3), 147 LINK [Google Scholar]
  77. Wang Z., Tu Q., Zheng S., Urban J. J., Li S., and Mi B. Nano Lett., 2017, 17, (12), 7289 LINK [Google Scholar]
  78. Hirunpinyopas W., Prestat E., Worrall S. D., Haigh S. J., Dryfe R. A. W., and Bissett M. A. ACS Nano, 2017, 11, (11), 11082 LINK [Google Scholar]
  79. Yang S., and Zhang K. J. Membr. Sci., 2020, 595, 117526 LINK [Google Scholar]
  80. Chu C., Fu C.-F., Zhang P., Pan T., Ai X., Wu Y., Cui P., Huang Q., and Ran J. J. Membr. Sci., 2020, 615, 118520 LINK [Google Scholar]
  81. Ren J., Stagi L., and Innocenzi P. J. Mater. Sci., 2021, 56, (6), 4053 LINK [Google Scholar]
  82. Zhang G., Zhan Y., He S., Zhang L., Zeng G., and Chiao Y.-H. Polym. Adv. Technol., 2020, 31, (5), 1007 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error