Skip to content
Volume 68, Issue 3
  • ISSN: 2056-5135


Removal of sulfur compounds from transportation fuels is a requirement in the worldwide effort to reduce emissions from transportation fuels. Refineries use the hydrodesulfurisation (HDS) process to reduce sulfur compounds in fuels. However, the HDS process requires high hydrogen pressure and temperature, making it costly. An alternative to the HDS process is oxidative desulfurisation solvent extraction, which requires low-temperature operating conditions. In this regard, deep eutectic solvents (DESs) are attractive for researchers to desulfurise transportation fuels solvent extraction due to their low-cost. In our study, DESs were synthesised using phenylacetic acid (PAA) and salicylic acid (SAA) as hydrogen bond acceptors (HBAs) and tetraethylene glycol (TTEG) as hydrogen bond donor (HBD) in the mole ratio of 1:2. DESs were characterised by using Fourier transform infrared (FTIR) spectroscopy. Physicochemical properties of DESs, such as density, viscosity and refractive index, were also measured. The synthesised DESs were used to extract organosulfur compounds from model fuel and actual diesel. An oxidation study was carried out for model fuel and diesel, followed by solvent extraction using these synthesised DESs. The extraction efficiency for PAA/TTEG(1:2) and SAA/TTEG(1:2) was achieved as 50.16% and 38.89% for model fuel at a temperature of 30°C using a solvent to feed ratio of 1.0 while for diesel, it was 38% and 37%. However, it increased to 77%, 68% and 54%, 73%, respectively, for PAA/TTEG(1:2) and SAA/TTEG(1:2) when the feedstocks were oxidised. These results showed better extraction performance of DES PAA/TTEG(1:2) than that of SAA/TTEG(1:2) at low temperature 30°C using combined extractive catalytic oxidative desulfurisation. Hence, the DES synthesised using SAA and TTEG in the molar ratio of 1:2 works better as an extraction solvent for removing organic sulfur compounds from fuels at low temperatures.


Article metrics loading...

Loading full text...

Full text loading...



  1. Lima F., Branco L. C., Silvestre A. J. D., and Marrucho I. M. Fuel, 2021, 293, 120297 LINK [Google Scholar]
  2. Javadli R., and de Klerk A. Appl. Petrochem. Res., 2012, 1, (1–4), 3 LINK [Google Scholar]
  3. Sikarwar P., Gosu V., and Subbaramaiah V. Rev. Chem. Eng., 2019, 35, (6), 669 LINK [Google Scholar]
  4. Rodríguez-Cabo B., Rodríguez H., Rodil E., Arce A., and Soto A. Fuel, 2014, 117, 882 LINK [Google Scholar]
  5. Kumar S., Nanoti S. M., Garg M. O., Nautiyal B. R., Ghosh P., Yadav P., and Nisha ‘Integrated Process for Simultaneous Removal and Value Addition to the Sulfur and Aromatics Compounds of Gas Oil’, Council of Scientific and Industrial Research, New Delhi, India, US Patent, 10,190,064, 2019 [Google Scholar]
  6. Nisha, Nautiyal B. R., Yadav P., and Singh S. K. Indian J. Chem. Technol., 2019, 26, 458 [Google Scholar]
  7. Kumar S., Srivastava V. C., Raghuvanshi R., Nanoti S. M., and Sudhir N. Energy Fuels, 2015, 29, (7), 4634 LINK [Google Scholar]
  8. Mohammed M. Y., Al-Bayati T. M., and Ali A. M. AIP Conf. Proc., 2022, 2443, (1), 030026 LINK [Google Scholar]
  9. Kadhum A. T., and Albayati T. M. AIP Conf. Proc., 2022, 2443, (1), 030039 LINK [Google Scholar]
  10. Boshagh F., Rahmani M., Rostami K., and Yousefifar M. Energy Fuels, 2021, 36, (1), 98 LINK [Google Scholar]
  11. Ahmed S. T., Muhammad C., Muhammad A. B., Danmallam I. M., Zauro S. A., and Rafi B. A. Petrol. Sci. Eng., 2023, 7, (1), 7 LINK [Google Scholar]
  12. Saini N., Yadav P., Kumar K., and Ghosh P. Mater. Today Proc., 2023, 73, (1), 189 LINK [Google Scholar]
  13. Mohammed M. Y., Ali A. M., and Albayati T. M. Chem. Eng. Res. Design, 2022, 182, 659 LINK [Google Scholar]
  14. Mohammed M. Y., Albayati T. M., and Ali A. M. Chem. Africa, 2022, 5, (5), 1715 LINK [Google Scholar]
  15. Al-Khodor Y. A. A., and Albayati T. M. Chem. Africa, 2022, 6, (2), 747 LINK [Google Scholar]
  16. Florindo C., Lima F., Ribeiro B. D., and Marrucho I. M. Curr. Opin. Green Sustain. Chem., 2019, 18, 31 LINK [Google Scholar]
  17. Abbott A. P., Barron J. C., Ryder K. S., and Wilson D. Chem. Eur. J., 2007, 13, (22), 6495 LINK [Google Scholar]
  18. Abbott A. P., Boothby D., Capper G., Davies D. L., and Rasheed R. K. J. Am. Chem. Soc., 2004, 126, (29), 9142 LINK [Google Scholar]
  19. Abbott A. P. Curr. Opin. Green Sustain. Chem., 2022, 36, 100649 LINK [Google Scholar]
  20. Puttaswamy R., Mondal C., Mondal D., and Ghosh D. Sust. Mater. Technol., 2022, 33, e00477 LINK [Google Scholar]
  21. Gupta R., Vats B., Pandey A. K., Sharma M. K., Sahu P., Yadav A. K., Ali Sk. M., and Kannan S. J. Phys. Chem. B, 2019, 124, (1), 181 LINK [Google Scholar]
  22. Saini N., Kumar K., ‘Deep Eutectic Solvents in CO2 Capture’, in ‘CO2-Philic Polymers, Nanocomposites and Chemical Solvents’, Ch. 8, eds. Nadda A. Kumar, Sharma S., and Kalia S. Elsevier Inc, Amsterdam, The Netherlands, 2023 LINK [Google Scholar]
  23. Wazeer I., Hadj-Kali M. K., and Al-Nashef I. M. Molecules, 2020, 26, (1), 75 LINK [Google Scholar]
  24. Shukla S. K., and Mikkola J.-P. Phys. Chem. Chem. Phys., 2018, 20, (38), 24591 LINK [Google Scholar]
  25. Leung D. Y. C., Caramanna G., and Maroto-Valer M. M. Renew. Sustain. Energy Rev., 2014, 39, 426 LINK [Google Scholar]
  26. Deng D., Jiang Y., Liu X., Zhang Z., and Ai N. J. Chem. Thermodyn., 2016, 103, 212 LINK [Google Scholar]
  27. Sun L., Zhu Z., Su T., Liao W., Hao D., Chen Y., Zhao Y., Ren W., Ge H., and H. Appl. Catal. B: Environ., 2019, 255, 117747 LINK [Google Scholar]
  28. Warrag S. E. E., Peters C. J., and Kroon M. C. Curr. Opin. Green Sustain. Chem., 2017, 5, 55 LINK [Google Scholar]
  29. Farooq M. Q., Odugbesi G. A., Abbasi N. M., and Anderson J. L. Sustain. Chem. Eng., 2020, 8, (49), 18286 LINK [Google Scholar]
  30. Chandran D., Khalid M., Walvekar R., Mubarak N. M., Dharaskar S., Wong W. Y., and Gupta T. C. S. M. J. Mol. Liq., 2019, 275, 312 LINK [Google Scholar]
  31. Mohammed M. Y., Ali A. M., and Albayati T. M. Chem. Africa, 2022, 6, (3), 1595 LINK [Google Scholar]
  32. Abbasi A., and Feyzi F. Pet. Sci. Technol., 2021, 40, (6), 751 LINK [Google Scholar]
  33. Liu W., Jiang W., Zhu W., Zhu W., Li H., Guo T., Zhu W., and Li H. J. Mol. Catal. A: Chem., 2016, 424, 261 LINK [Google Scholar]
  34. Xu L., Luo Y., Liu H., Yin J., Li H., Jiang W., Zhu W., Li H., and Ji H. J. Mol. Liq., 2021, 338, 116620 LINK [Google Scholar]
  35. Majid Mohd. F., Mohd Zaid H. F., Fai Kait C., Jumbri K., Lim J. W., Masri A. N., Mat Ghani S. M., Yamagishi H., Yamamoto Y., and Yuliarto B. Processes, 2020, 8, (7), 848 LINK [Google Scholar]
  36. Liu W., Li T., Yu G., Wang J., Zhou Z., and Ren Z. Fuel, 2020, 265, 116967 LINK [Google Scholar]
  37. Ye W., and Wang T. Energy Fuels, 2023, 37, (7), 4973 LINK [Google Scholar]
  38. Lee H., Kang S., Jin Y., Jung D., Park K., Li K., and Lee J. Fuel, 2020, 264, 116848 LINK [Google Scholar]
  39. Wang Q., Zhang T., Zhang S., Fan Y., and Chen B. Sep. Purif. Technol., 2020, 231, 115923 LINK [Google Scholar]
  40. Sudhir N., Yadav P., Nautiyal B. R., Singh R., Rastogi H., and Chauhan H. Sep. Sci. Technol., 2019, 55, (3), 554 LINK [Google Scholar]
  41. Saini N., Nautiyal B. R., and Singh R. Pet. Sci. Technol., 2022, 40, (14), 1772 LINK [Google Scholar]
  42. Shahbaz K., Baroutian S., Mjalli F. S., Hashim M. A., and Al Nashef I. M. Thermochim. Acta, 2012, 527, 59 LINK [Google Scholar]
  43. Rodriguez N. R., Guell J. Ferre, and Kroon M. C. J. Chem. Eng. Data, 2016, 61, (2), 865 LINK [Google Scholar]
  44. Ciocirlan O., and Iulian O. J. Serb. Chem. Soc., 2009, 74, (3), 317 LINK [Google Scholar]
  45. Rodriguez N. R., Gerlach T., Scheepers D., Kroon M. C., and Smirnova I. J. Chem. Thermodyn., 2017, 104, 128 LINK [Google Scholar]
  46. Gajardo-Parra N. F., Cotroneo-Figueroa V. P., Aravena P., Vesovic V., and Canales R. I. J. Chem. Eng. Data, 2020, 65, (11), 5581 LINK [Google Scholar]
  47. Gautam R., Kumar N., and Lynam J. G. J. Mol. Struct., 2020, 1222, 128849 LINK [Google Scholar]
  48. Ibrahim R. K., Hayyan M., Alsaadi M. A., Ibrahim S., Hayyan A., and Hashim M. A. Stud. Univ. Babes-Bolyai Chem., 2017, 62, 433 [Google Scholar]
  49. AlOmar M. K., Hayyan M., Alsaadi M. A., Akib S., Hayyan A., and Hashim M. A. J. Mol. Liq., 2016, 215, 98 LINK [Google Scholar]
  50. Shu C., and Sun T. Sep. Sci. Technol., 2016, 51, (8), 1336 LINK [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error