Skip to content
1887
Volume 68, Issue 3
  • ISSN: 2056-5135

Abstract

Removal of sulfur compounds from transportation fuels is a requirement in the worldwide effort to reduce emissions from transportation fuels. Refineries use the hydrodesulfurisation (HDS) process to reduce sulfur compounds in fuels. However, the HDS process requires high hydrogen pressure and temperature, making it costly. An alternative to the HDS process is oxidative desulfurisation solvent extraction, which requires low-temperature operating conditions. In this regard, deep eutectic solvents (DESs) are attractive for researchers to desulfurise transportation fuels solvent extraction due to their low-cost. In our study, DESs were synthesised using phenylacetic acid (PAA) and salicylic acid (SAA) as hydrogen bond acceptors (HBAs) and tetraethylene glycol (TTEG) as hydrogen bond donor (HBD) in the mole ratio of 1:2. DESs were characterised by using Fourier transform infrared (FTIR) spectroscopy. Physicochemical properties of DESs, such as density, viscosity and refractive index, were also measured. The synthesised DESs were used to extract organosulfur compounds from model fuel and actual diesel. An oxidation study was carried out for model fuel and diesel, followed by solvent extraction using these synthesised DESs. The extraction efficiency for PAA/TTEG(1:2) and SAA/TTEG(1:2) was achieved as 50.16% and 38.89% for model fuel at a temperature of 30°C using a solvent to feed ratio of 1.0 while for diesel, it was 38% and 37%. However, it increased to 77%, 68% and 54%, 73%, respectively, for PAA/TTEG(1:2) and SAA/TTEG(1:2) when the feedstocks were oxidised. These results showed better extraction performance of DES PAA/TTEG(1:2) than that of SAA/TTEG(1:2) at low temperature 30°C using combined extractive catalytic oxidative desulfurisation. Hence, the DES synthesised using SAA and TTEG in the molar ratio of 1:2 works better as an extraction solvent for removing organic sulfur compounds from fuels at low temperatures.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16964075320630
2023-10-04
2024-06-30
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/3/Nisha2_16b_Imp.html?itemId=/content/journals/10.1595/205651324X16964075320630&mimeType=html&fmt=ahah

References

  1. Lima F., Branco L. C., Silvestre A. J. D., and Marrucho I. M. Fuel, 2021, 293, 120297 LINK https://doi.org/10.1016/j.fuel.2021.120297 [Google Scholar]
  2. Javadli R., and de Klerk A. Appl. Petrochem. Res., 2012, 1, (1–4), 3 LINK https://doi.org/10.1007/s13203-012-0006-6 [Google Scholar]
  3. Sikarwar P., Gosu V., and Subbaramaiah V. Rev. Chem. Eng., 2019, 35, (6), 669 LINK https://doi.org/10.1515/revce-2017-0082 [Google Scholar]
  4. Rodríguez-Cabo B., Rodríguez H., Rodil E., Arce A., and Soto A. Fuel, 2014, 117, 882 LINK https://doi.org/10.1016/j.fuel.2013.10.012 [Google Scholar]
  5. Kumar S., Nanoti S. M., Garg M. O., Nautiyal B. R., Ghosh P., Yadav P., and Nisha ‘Integrated Process for Simultaneous Removal and Value Addition to the Sulfur and Aromatics Compounds of Gas Oil’, Council of Scientific and Industrial Research, New Delhi, India, US Patent, 10,190,064, 2019 [Google Scholar]
  6. Nisha, Nautiyal B. R., Yadav P., and Singh S. K. Indian J. Chem. Technol., 2019, 26, 458 [Google Scholar]
  7. Kumar S., Srivastava V. C., Raghuvanshi R., Nanoti S. M., and Sudhir N. Energy Fuels, 2015, 29, (7), 4634 LINK https://doi.org/10.1021/acs.energyfuels.5b00834 [Google Scholar]
  8. Mohammed M. Y., Al-Bayati T. M., and Ali A. M. AIP Conf. Proc., 2022, 2443, (1), 030026 LINK https://doi.org/10.1063/5.0091945 [Google Scholar]
  9. Kadhum A. T., and Albayati T. M. AIP Conf. Proc., 2022, 2443, (1), 030039 LINK https://doi.org/10.1063/5.0092049 [Google Scholar]
  10. Boshagh F., Rahmani M., Rostami K., and Yousefifar M. Energy Fuels, 2021, 36, (1), 98 LINK https://doi.org/10.1021/acs.energyfuels.1c03396 [Google Scholar]
  11. Ahmed S. T., Muhammad C., Muhammad A. B., Danmallam I. M., Zauro S. A., and Rafi B. A. Petrol. Sci. Eng., 2023, 7, (1), 7 LINK https://doi.org/10.11648/j.pse.20230701.12 [Google Scholar]
  12. Saini N., Yadav P., Kumar K., and Ghosh P. Mater. Today Proc., 2023, 73, (1), 189 LINK https://doi.org/10.1016/j.matpr.2022.10.009 [Google Scholar]
  13. Mohammed M. Y., Ali A. M., and Albayati T. M. Chem. Eng. Res. Design, 2022, 182, 659 LINK https://doi.org/10.1016/j.cherd.2022.03.047 [Google Scholar]
  14. Mohammed M. Y., Albayati T. M., and Ali A. M. Chem. Africa, 2022, 5, (5), 1715 LINK https://doi.org/10.1007/s42250-022-00447-9 [Google Scholar]
  15. Al-Khodor Y. A. A., and Albayati T. M. Chem. Africa, 2022, 6, (2), 747 LINK https://doi.org/10.1007/s42250-022-00482-6 [Google Scholar]
  16. Florindo C., Lima F., Ribeiro B. D., and Marrucho I. M. Curr. Opin. Green Sustain. Chem., 2019, 18, 31 LINK https://doi.org/10.1016/j.cogsc.2018.12.003 [Google Scholar]
  17. Abbott A. P., Barron J. C., Ryder K. S., and Wilson D. Chem. Eur. J., 2007, 13, (22), 6495 LINK https://doi.org/10.1002/chem.200601738 [Google Scholar]
  18. Abbott A. P., Boothby D., Capper G., Davies D. L., and Rasheed R. K. J. Am. Chem. Soc., 2004, 126, (29), 9142 LINK https://doi.org/10.1021/ja048266j [Google Scholar]
  19. Abbott A. P. Curr. Opin. Green Sustain. Chem., 2022, 36, 100649 LINK https://doi.org/10.1016/j.cogsc.2022.100649 [Google Scholar]
  20. Puttaswamy R., Mondal C., Mondal D., and Ghosh D. Sust. Mater. Technol., 2022, 33, e00477 LINK https://doi.org/10.1016/j.susmat.2022.e00477 [Google Scholar]
  21. Gupta R., Vats B., Pandey A. K., Sharma M. K., Sahu P., Yadav A. K., Ali Sk. M., and Kannan S. J. Phys. Chem. B, 2019, 124, (1), 181 LINK https://doi.org/10.1021/acs.jpcb.9b08197 [Google Scholar]
  22. Saini N., Kumar K., ‘Deep Eutectic Solvents in CO2 Capture’, in ‘CO2-Philic Polymers, Nanocomposites and Chemical Solvents’, Ch. 8, eds. Nadda A. Kumar, Sharma S., and Kalia S. Elsevier Inc, Amsterdam, The Netherlands, 2023 LINK https://doi.org/10.1016/B978-0-323-85777-2.00012-3 [Google Scholar]
  23. Wazeer I., Hadj-Kali M. K., and Al-Nashef I. M. Molecules, 2020, 26, (1), 75 LINK https://doi.org/10.3390/molecules26010075 [Google Scholar]
  24. Shukla S. K., and Mikkola J.-P. Phys. Chem. Chem. Phys., 2018, 20, (38), 24591 LINK https://doi.org/10.1039/c8cp03724h [Google Scholar]
  25. Leung D. Y. C., Caramanna G., and Maroto-Valer M. M. Renew. Sustain. Energy Rev., 2014, 39, 426 LINK https://doi.org/10.1016/j.rser.2014.07.093 [Google Scholar]
  26. Deng D., Jiang Y., Liu X., Zhang Z., and Ai N. J. Chem. Thermodyn., 2016, 103, 212 LINK https://doi.org/10.1016/j.jct.2016.08.015 [Google Scholar]
  27. Sun L., Zhu Z., Su T., Liao W., Hao D., Chen Y., Zhao Y., Ren W., Ge H., and H. Appl. Catal. B: Environ., 2019, 255, 117747 LINK https://doi.org/10.1016/j.apcatb.2019.117747 [Google Scholar]
  28. Warrag S. E. E., Peters C. J., and Kroon M. C. Curr. Opin. Green Sustain. Chem., 2017, 5, 55 LINK https://doi.org/10.1016/j.cogsc.2017.03.013 [Google Scholar]
  29. Farooq M. Q., Odugbesi G. A., Abbasi N. M., and Anderson J. L. Sustain. Chem. Eng., 2020, 8, (49), 18286 LINK https://doi.org/10.1021/acssuschemeng.0c06926 [Google Scholar]
  30. Chandran D., Khalid M., Walvekar R., Mubarak N. M., Dharaskar S., Wong W. Y., and Gupta T. C. S. M. J. Mol. Liq., 2019, 275, 312 LINK https://doi.org/10.1016/j.molliq.2018.11.051 [Google Scholar]
  31. Mohammed M. Y., Ali A. M., and Albayati T. M. Chem. Africa, 2022, 6, (3), 1595 LINK https://doi.org/10.1007/s42250-022-00568-1 [Google Scholar]
  32. Abbasi A., and Feyzi F. Pet. Sci. Technol., 2021, 40, (6), 751 LINK https://doi.org/10.1080/10916466.2021.2007123 [Google Scholar]
  33. Liu W., Jiang W., Zhu W., Zhu W., Li H., Guo T., Zhu W., and Li H. J. Mol. Catal. A: Chem., 2016, 424, 261 LINK https://doi.org/10.1016/j.molcata.2016.08.030 [Google Scholar]
  34. Xu L., Luo Y., Liu H., Yin J., Li H., Jiang W., Zhu W., Li H., and Ji H. J. Mol. Liq., 2021, 338, 116620 LINK https://doi.org/10.1016/j.molliq.2021.116620 [Google Scholar]
  35. Majid Mohd. F., Mohd Zaid H. F., Fai Kait C., Jumbri K., Lim J. W., Masri A. N., Mat Ghani S. M., Yamagishi H., Yamamoto Y., and Yuliarto B. Processes, 2020, 8, (7), 848 LINK https://doi.org/10.3390/pr8070848 [Google Scholar]
  36. Liu W., Li T., Yu G., Wang J., Zhou Z., and Ren Z. Fuel, 2020, 265, 116967 LINK https://doi.org/10.1016/j.fuel.2019.116967 [Google Scholar]
  37. Ye W., and Wang T. Energy Fuels, 2023, 37, (7), 4973 LINK https://doi.org/10.1021/acs.energyfuels.2c04072 [Google Scholar]
  38. Lee H., Kang S., Jin Y., Jung D., Park K., Li K., and Lee J. Fuel, 2020, 264, 116848 LINK https://doi.org/10.1016/j.fuel.2019.116848 [Google Scholar]
  39. Wang Q., Zhang T., Zhang S., Fan Y., and Chen B. Sep. Purif. Technol., 2020, 231, 115923 LINK https://doi.org/10.1016/j.seppur.2019.115923 [Google Scholar]
  40. Sudhir N., Yadav P., Nautiyal B. R., Singh R., Rastogi H., and Chauhan H. Sep. Sci. Technol., 2019, 55, (3), 554 LINK https://doi.org/10.1080/01496395.2019.1569061 [Google Scholar]
  41. Saini N., Nautiyal B. R., and Singh R. Pet. Sci. Technol., 2022, 40, (14), 1772 LINK https://doi.org/10.1080/10916466.2022.2030356 [Google Scholar]
  42. Shahbaz K., Baroutian S., Mjalli F. S., Hashim M. A., and Al Nashef I. M. Thermochim. Acta, 2012, 527, 59 LINK https://doi.org/10.1016/j.tca.2011.10.010 [Google Scholar]
  43. Rodriguez N. R., Guell J. Ferre, and Kroon M. C. J. Chem. Eng. Data, 2016, 61, (2), 865 LINK https://doi.org/10.1021/acs.jced.5b00717 [Google Scholar]
  44. Ciocirlan O., and Iulian O. J. Serb. Chem. Soc., 2009, 74, (3), 317 LINK https://doi.org/10.2298/jsc0903317c [Google Scholar]
  45. Rodriguez N. R., Gerlach T., Scheepers D., Kroon M. C., and Smirnova I. J. Chem. Thermodyn., 2017, 104, 128 LINK https://doi.org/10.1016/j.jct.2016.09.021 [Google Scholar]
  46. Gajardo-Parra N. F., Cotroneo-Figueroa V. P., Aravena P., Vesovic V., and Canales R. I. J. Chem. Eng. Data, 2020, 65, (11), 5581 LINK https://doi.org/10.1021/acs.jced.0c00715 [Google Scholar]
  47. Gautam R., Kumar N., and Lynam J. G. J. Mol. Struct., 2020, 1222, 128849 LINK https://doi.org/10.1016/j.molstruc.2020.128849 [Google Scholar]
  48. Ibrahim R. K., Hayyan M., Alsaadi M. A., Ibrahim S., Hayyan A., and Hashim M. A. Stud. Univ. Babes-Bolyai Chem., 2017, 62, 433https://doi.org/10.24193/subbchem.2017.4.37 [Google Scholar]
  49. AlOmar M. K., Hayyan M., Alsaadi M. A., Akib S., Hayyan A., and Hashim M. A. J. Mol. Liq., 2016, 215, 98 LINK https://doi.org/10.1016/j.molliq.2015.11.032 [Google Scholar]
  50. Shu C., and Sun T. Sep. Sci. Technol., 2016, 51, (8), 1336 LINK https://doi.org/10.1080/01496395.2016.1155602 [Google Scholar]
/content/journals/10.1595/205651324X16964075320630
Loading
/content/journals/10.1595/205651324X16964075320630
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error