Skip to content
1887
Volume 68, Issue 3
  • ISSN: 2056-5135

Abstract

Activated carbon (AC) is an effective material for various environmental and industrial applications. The characteristics and performance of AC is a result of interaction between source and method of preparation. In the current work, AC has been prepared from date seed waste using microwave heating under nitrogen using basic medium such as potassium hydroxide and acidic medium such as sulfuric acid as chemical activating agents. The AC was characterised using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) with differential scanning calorimetry (DSC). XRD patterns of the AC in both cases exhibited three peaks corresponding to the crystalline graphite form of carbon. Scanning electron microscopy (SEM) images of the freshly prepared carbons showed that the samples contained particles of various sizes including both nanoparticles as well as millimetre-range particles. DSC analysis showed that the samples exhibited endothermic reaction in low temperature ranges until 300°C and exothermic reaction above this temperature. SEM analysis of the AC, separated into three different size ranges, showed significant etching of the surface of the carbon to yield porous structures. The AC produced using sulfuric acid showed better adsorption capacity (9.2 g g−1) when compared to that produced using potassium hydroxide (7.7 g g–1). We conclude that the AC prepared from date seeds can find potential application in water purification and oil spill clean-up.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X17000531781388
2023-11-15
2024-07-14
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/3/Alsalmi2_16b_Imp.html?itemId=/content/journals/10.1595/205651324X17000531781388&mimeType=html&fmt=ahah

References

  1. Lehmann J., Gaunt J., and Rondon M. Mitig. Adapt. Strateg. Glob. Chang., 2006, 11, (2), 403 LINK https://doi.org/10.1007/s11027-005-9006-5 [Google Scholar]
  2. Zubair M., Mu’azu N. D., Jarrah N., Blaisi N. I., Aziz H. A., and Al-Harthi M. A. Water Air Soil Pollut., 2020, 231, 240 LINK https://doi.org/10.1007/s11270-020-04595-x [Google Scholar]
  3. Lehmann J., Gaunt J., and Rondon M. Mitig. Adapt. Strat. Glob. Change., 2006, 11, (2), 403 LINK https://doi.org/10.1007/s11027-005-9006-5 [Google Scholar]
  4. Mallick A. K., Jha A., Pokharel B. P., Rajbhandari R., and Shrestha R. M. J. Inst. Eng., 2019, 15, (2), 165 LINK https://doi.org/10.3126/jie.v15i2.27663 [Google Scholar]
  5. Nazifa T. H., Uddin A. S. M. S., Islam R., Hadibarata T., Salmiati, and Aris A. ‘Oil Spill Remediation by Adsorption Using Two Forms of Activated Carbon in Marine Environment’,International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 16th–17th, August 2018, Institution of Electrical and Electronics Engineers, New York, USA, 2018, pp. 162–167 LINK https://doi.org/10.1109/iccecome.2018.8659202 [Google Scholar]
  6. Abel U. A., Habor G. R., and Oseribho O. I. Am. J. Chem. Eng., 2020, 8, (2), 36 LINK https://doi.org/10.11648/j.ajche.20200802.11 [Google Scholar]
  7. Hussain O. A., Hathout A. S., Abdel-Mobdy Y. E., Rashed M. M., Abdel Rahim E. A., and Fouzy A. S. M. Toxicol. Rep., 2023, 10, 146 LINK https://doi.org/10.1016/j.toxrep.2023.01.011 [Google Scholar]
  8. Shokry H., Elkady M., and Salama E. Sci. Rep., 2020, 10, 10265 LINK https://doi.org/10.1038/s41598-020-67231-y [Google Scholar]
  9. Olga V. R., Darina V. I., Alexandr A. I., and Alexandra A. O. Procedia Chem., 2014, 10, 145 LINK https://doi.org/10.1016/j.proche.2014.10.025 [Google Scholar]
  10. Tabbakh H., and Barhoum R. Mat. Sci.: Ind. J., 2018, 16, (1), 127 LINK https://www.tsijournals.com/abstract/cleanup-oil-spills-by-activated-carbons-prepared-from-agricultural-wastes-13688.html [Google Scholar]
  11. Toamah W. O., and Fadhil A. K. Egypt. J. Chem., 2021, 64, (10), 5879 LINK https://doi.org/10.21608/ejchem.2021.79030.3868 [Google Scholar]
  12. Hussein M., Amer A. A., and Sawsan I. I. J. Anal. Appl. Pyrolysis, 2008, 82, (2), 205 LINK https://doi.org/10.1016/j.jaap.2008.03.010 [Google Scholar]
  13. Raj K. G., and Joy P. A. J. Environ. Chem. Eng., 2015, 3, (3), 2068 LINK https://doi.org/10.1016/j.jece.2015.04.028 [Google Scholar]
  14. Giwa A., and Taher H. J. Environ. Chem. Eng., 2020, 8, (4), 103950 LINK https://doi.org/10.1016/j.jece.2020.103950 [Google Scholar]
  15. ben Hammouda S., Chen Z., An C., Lee K., and Zaker A. Clean. Chem. Eng., 2022, 2, 100028 LINK https://doi.org/10.1016/j.clce.2022.100028 [Google Scholar]
  16. Din H., Kiran M., Haq F., Osman A. I., Khan I. A., Aziz T., Khan A., and Jilani S. Chem. Eng. Res. Design, 2024, 204, 212 LINK https://doi.org/10.1016/j.cherd.2024.02.040 [Google Scholar]
  17. Ahmad T., Danish M., Rafatullah M., Ghazali A., Sulaiman O., Hashim R., and Ibrahim M. N. M. Environ. Sci. Pollut. Res., 2012, 19, (5), 1464 LINK https://doi.org/10.1007/s11356-011-0709-8 [Google Scholar]
  18. Izanzar I., Dahbi M., Kiso M., Doubaji S., Komaba S., and Saadoune I. Carbon, 2018, 137, 165 LINK https://doi.org/10.1016/j.carbon.2018.05.032 [Google Scholar]
  19. Margot J., Kienle C., Magnet A., Weil M., Rossi L., de Alencastro L. F., Abegglen C., Thonney D., Chèvre N., Schärer M., and Barry D. A. Sci. Total Environ., 2013, 461462, 480 LINK https://doi.org/10.1016/j.scitotenv.2013.05.034 [Google Scholar]
  20. Karri R. R., Jayakumar N. S., and Sahu J. N. J. Mol. Liquids, 2017, 231, 249 LINK https://doi.org/10.1016/j.molliq.2017.02.003 [Google Scholar]
  21. Bouchelta C., Medjram M. S., Bertrand O., and Bellat J.-P. J. Anal. Appl. Pyrolysis, 2008, 82, (1), 70 LINK https://doi.org/10.1016/j.jaap.2007.12.009 [Google Scholar]
  22. Minh T. D., Ncibi M. C., Srivastava V., Doshi B., and Sillanpää M. Chemosphere, 2021, 271, 129516 LINK https://doi.org/10.1016/j.chemosphere.2020.129516 [Google Scholar]
  23. Abd El-Hady E. S., Al-Hassan A. A., Gadallah M. G. E., and Abd El-Razik M. J. Food Agric. Environ., 2017, 15, (2), 27 LINK https://www.wflpublisher.com/Abstract/1111 [Google Scholar]
  24. Hai A., Bharath G., Babu K. R., Taher H., Naushad Mu., and Banat F. Proc. Safety Environ. Prot., 2019, 129, 103 LINK https://doi.org/10.1016/j.psep.2019.06.024 [Google Scholar]
  25. Abel U. A., Habor G. R., and Oseribho O. I. Am. J. Chem. Eng., 2020, 8, (2), 36 LINK https://doi.org/10.11648/j.ajche.20200802.11 [Google Scholar]
  26. Ibrahim M. D., Shuaibu R., Abdulsalam S., and Giwa S. O. J. Bioremediat. Biodegrad., 2016, 7, (5), 365 LINK https://doi.org/10.4172/2155-6199.1000365 [Google Scholar]
  27. ‘Standard Test Method for Sorbent Performance of Adsorbents’, ASTM F726-99, ASTM, West Conshohocken, USA, 1999, 6 pp LINK https://doi.org/10.1520/F0726-99 [Google Scholar]
  28. Bouchelta Ch., Medjram M. H., Bertrand O., and Bellat J. P. J. Anal. Appl. Pyrolysis, 2008, 82, 70 [Google Scholar]
  29. Zhao H., Kwak J. H., Wang Y., Franz J. A., White J. M., and Holladay J. E. Carbohydr. Polym., 2007, 67, (1), 97 LINK https://doi.org/10.1016/j.carbpol.2006.04.019 [Google Scholar]
  30. Tanuma S., and Palnichenko A. J. Mater. Res., 1995, 10, (5), 1120 LINK https://doi.org/10.1557/jmr.1995.1120 [Google Scholar]
  31. Ali N. S., Jabbar N. M., Alardhi S. M., Majdi H. Sh., and Albayati T. M. Heliyon, 2022, 8, (8), e10276 LINK https://doi.org/10.1016/j.heliyon.2022.e10276 [Google Scholar]
/content/journals/10.1595/205651324X17000531781388
Loading
/content/journals/10.1595/205651324X17000531781388
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error