Skip to content
1887
Volume 68, Issue 3
  • ISSN: 2056-5135

Abstract

Activated carbon (AC) is an effective material for various environmental and industrial applications. The characteristics and performance of AC is a result of interaction between source and method of preparation. In the current work, AC has been prepared from date seed waste using microwave heating under nitrogen using basic medium such as potassium hydroxide and acidic medium such as sulfuric acid as chemical activating agents. The AC was characterised using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) with differential scanning calorimetry (DSC). XRD patterns of the AC in both cases exhibited three peaks corresponding to the crystalline graphite form of carbon. Scanning electron microscopy (SEM) images of the freshly prepared carbons showed that the samples contained particles of various sizes including both nanoparticles as well as millimetre-range particles. DSC analysis showed that the samples exhibited endothermic reaction in low temperature ranges until 300°C and exothermic reaction above this temperature. SEM analysis of the AC, separated into three different size ranges, showed significant etching of the surface of the carbon to yield porous structures. The AC produced using sulfuric acid showed better adsorption capacity (9.2 g g−1) when compared to that produced using potassium hydroxide (7.7 g g–1). We conclude that the AC prepared from date seeds can find potential application in water purification and oil spill clean-up.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X17000531781388
2023-11-15
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/3/Alsalmi2_16b_Imp.html?itemId=/content/journals/10.1595/205651324X17000531781388&mimeType=html&fmt=ahah

References

  1. J. Lehmann, J. Gaunt, M. Rondon, Mitig. Adapt. Strateg. Glob. Chang., 2006, 11, (2), 403 LINK https://doi.org/10.1007/s11027-005-9006-5 [Google Scholar]
  2. M. Zubair, N. D. Mu’azu, N. Jarrah, N. I. Blaisi, H. A. Aziz, M. A. Al-Harthi, Water Air Soil Pollut., 2020, 231, 240 LINK https://doi.org/10.1007/s11270-020-04595-x [Google Scholar]
  3. J. Lehmann, J. Gaunt, M. Rondon, Mitig. Adapt. Strat. Glob. Change., 2006, 11, (2), 403 LINK https://doi.org/10.1007/s11027-005-9006-5 [Google Scholar]
  4. A. K. Mallick, A. Jha, B. P. Pokharel, R. Rajbhandari, R. M. Shrestha, J. Inst. Eng., 2019, 15, (2), 165 LINK https://doi.org/10.3126/jie.v15i2.27663 [Google Scholar]
  5. T. H. Nazifa, A. S. M. S. Uddin, R. Islam, T. Hadibarata, Salmiati, A. Aris, ‘Oil Spill Remediation by Adsorption Using Two Forms of Activated Carbon in Marine Environment’,International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 16th–17th, August 2018, Institution of Electrical and Electronics Engineers, New York, USA, 2018, pp. 162–167 LINK https://doi.org/10.1109/iccecome.2018.8659202 [Google Scholar]
  6. U. A. Abel, G. R. Habor, O. I. Oseribho, Am. J. Chem. Eng., 2020, 8, (2), 36 LINK https://doi.org/10.11648/j.ajche.20200802.11 [Google Scholar]
  7. O. A. Hussain, A. S. Hathout, Y. E. Abdel-Mobdy, M. M. Rashed, E. A. Abdel Rahim, A. S. M. Fouzy, Toxicol. Rep., 2023, 10, 146 LINK https://doi.org/10.1016/j.toxrep.2023.01.011 [Google Scholar]
  8. H. Shokry, M. Elkady, E. Salama, Sci. Rep., 2020, 10, 10265 LINK https://doi.org/10.1038/s41598-020-67231-y [Google Scholar]
  9. V. R. Olga, V. I. Darina, A. I. Alexandr, A. O. Alexandra, Procedia Chem., 2014, 10, 145 LINK https://doi.org/10.1016/j.proche.2014.10.025 [Google Scholar]
  10. H. Tabbakh, R. Barhoum, Mat. Sci.: Ind. J., 2018, 16, (1), 127 LINK https://www.tsijournals.com/abstract/cleanup-oil-spills-by-activated-carbons-prepared-from-agricultural-wastes-13688.html [Google Scholar]
  11. W. O. Toamah, A. K. Fadhil, Egypt. J. Chem., 2021, 64, (10), 5879 LINK https://doi.org/10.21608/ejchem.2021.79030.3868 [Google Scholar]
  12. M. Hussein, A. A. Amer, I. I. Sawsan, J. Anal. Appl. Pyrolysis, 2008, 82, (2), 205 LINK https://doi.org/10.1016/j.jaap.2008.03.010 [Google Scholar]
  13. K. G. Raj, P. A. Joy, J. Environ. Chem. Eng., 2015, 3, (3), 2068 LINK https://doi.org/10.1016/j.jece.2015.04.028 [Google Scholar]
  14. A. Giwa, H. Taher, J. Environ. Chem. Eng., 2020, 8, (4), 103950 LINK https://doi.org/10.1016/j.jece.2020.103950 [Google Scholar]
  15. S. ben Hammouda, Z. Chen, C. An, K. Lee, A. Zaker, Clean. Chem. Eng., 2022, 2, 100028 LINK https://doi.org/10.1016/j.clce.2022.100028 [Google Scholar]
  16. H. Din, M. Kiran, F. Haq, A. I. Osman, I. A. Khan, T. Aziz, A. Khan, S. Jilani, Chem. Eng. Res. Design, 2024, 204, 212 LINK https://doi.org/10.1016/j.cherd.2024.02.040 [Google Scholar]
  17. T. Ahmad, M. Danish, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, M. N. M. Ibrahim, Environ. Sci. Pollut. Res., 2012, 19, (5), 1464 LINK https://doi.org/10.1007/s11356-011-0709-8 [Google Scholar]
  18. I. Izanzar, M. Dahbi, M. Kiso, S. Doubaji, S. Komaba, I. Saadoune, Carbon, 2018, 137, 165 LINK https://doi.org/10.1016/j.carbon.2018.05.032 [Google Scholar]
  19. J. Margot, C. Kienle, A. Magnet, M. Weil, L. Rossi, L. F. de Alencastro, C. Abegglen, D. Thonney, N. Chèvre, M. Schärer, D. A. Barry, Sci. Total Environ., 2013, 461462, 480 LINK https://doi.org/10.1016/j.scitotenv.2013.05.034 [Google Scholar]
  20. R. R. Karri, N. S. Jayakumar, J. N. Sahu, J. Mol. Liquids, 2017, 231, 249 LINK https://doi.org/10.1016/j.molliq.2017.02.003 [Google Scholar]
  21. C. Bouchelta, M. S. Medjram, O. Bertrand, J.-P. Bellat, J. Anal. Appl. Pyrolysis, 2008, 82, (1), 70 LINK https://doi.org/10.1016/j.jaap.2007.12.009 [Google Scholar]
  22. T. D. Minh, M. C. Ncibi, V. Srivastava, B. Doshi, M. Sillanpää, Chemosphere, 2021, 271, 129516 LINK https://doi.org/10.1016/j.chemosphere.2020.129516 [Google Scholar]
  23. E. S. Abd El-Hady, A. A. Al-Hassan, M. G. E. Gadallah, M. Abd El-Razik, J. Food Agric. Environ., 2017, 15, (2), 27 LINK https://www.wflpublisher.com/Abstract/1111 [Google Scholar]
  24. A. Hai, G. Bharath, K. R. Babu, H. Taher, Mu. Naushad, F. Banat, Proc. Safety Environ. Prot., 2019, 129, 103 LINK https://doi.org/10.1016/j.psep.2019.06.024 [Google Scholar]
  25. U. A. Abel, G. R. Habor, O. I. Oseribho, Am. J. Chem. Eng., 2020, 8, (2), 36 LINK https://doi.org/10.11648/j.ajche.20200802.11 [Google Scholar]
  26. M. D. Ibrahim, R. Shuaibu, S. Abdulsalam, S. O. Giwa, J. Bioremediat. Biodegrad., 2016, 7, (5), 365 LINK https://doi.org/10.4172/2155-6199.1000365 [Google Scholar]
  27. ‘Standard Test Method for Sorbent Performance of Adsorbents’, ASTM F726-99, ASTM, West Conshohocken, USA, 1999, 6 pp LINK https://doi.org/10.1520/F0726-99 [Google Scholar]
  28. Ch. Bouchelta, M. H. Medjram, O. Bertrand, J. P. Bellat, J. Anal. Appl. Pyrolysis, 2008, 82, 70 [Google Scholar]
  29. H. Zhao, J. H. Kwak, Y. Wang, J. A. Franz, J. M. White, J. E. Holladay, Carbohydr. Polym., 2007, 67, (1), 97 LINK https://doi.org/10.1016/j.carbpol.2006.04.019 [Google Scholar]
  30. S. Tanuma, A. Palnichenko, J. Mater. Res., 1995, 10, (5), 1120 LINK https://doi.org/10.1557/jmr.1995.1120 [Google Scholar]
  31. N. S. Ali, N. M. Jabbar, S. M. Alardhi, H. Sh. Majdi, T. M. Albayati, Heliyon, 2022, 8, (8), e10276 LINK https://doi.org/10.1016/j.heliyon.2022.e10276 [Google Scholar]
/content/journals/10.1595/205651324X17000531781388
Loading
/content/journals/10.1595/205651324X17000531781388
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test