Skip to content
1887
Volume 68, Issue 3
  • ISSN: 2056-5135
  • oa Inelastic Neutron Scattering Studies of Propene and 1-Octene Oligomerisation in H-ZSM-5

    Increasing alkene yields more selective zeolite catalysis

  • Authors: Alexander P. Hawkins1, Andrea Zachariou2, Paul Collier3, Russell F. Howe4, David Lennon5 and Stewart F. Parker6
  • Affiliations: 1 Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, OX11 0QX, UK 2 Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK 3 Johnson Matthey, Blounts Court, Sonning Common, Reading, RG4 9NH, UK 4 Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK 5 School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ, UK 6 ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, Oxon, OX11 0QX, UK
    *Email: [email protected]
  • Source: Johnson Matthey Technology Review, Volume 68, Issue 3, Jul 2024, p. 307 - 321
  • DOI: https://doi.org/10.1595/205651324X16964134291592
    • Received: 07 Sep 2023
    • Accepted: 04 Oct 2023
    • Published online: 04 Oct 2023

Abstract

Neutron scattering methods such as quasielastic neutron scattering (QENS) and inelastic neutron scattering (INS) have been used to study the reactivity of propene and 1-octene over the acid zeolite catalyst H-ZSM-5. The high activity of the catalyst causes the alkenes to form linear oligomers below room temperature. INS has shown that the reaction proceeds through a hydrogen-bonded intermediate. Studies using propane as an inert analogue for propene have found that the adsorbed C3 molecules spend much of their time undergoing short jumps within the pore channels of the zeolite. Hydrothermal dealumination plays an important role in determining the activity of zeolite catalysts. Dealumination was found to delay the onset of catalytic activity for oligomerisation to higher temperatures and increase the mobility of hydrocarbons within the zeolite, both due to reduced acid-hydrocarbon interactions.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16964134291592
2023-10-04
2024-12-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/3/Parker_16b_Imp.html?itemId=/content/journals/10.1595/205651324X16964134291592&mimeType=html&fmt=ahah

References

  1. R. J. Argauer, M. G. R. Landolt, Mobil Oil Corp, ‘Crystalline Zeolite ZSM-5 and Method of Preparing the Same’, US Patent 3,702,886; 1972 [Google Scholar]
  2. ‘Database of Zeolite Structures’, International Zeolite Association, 2017 LINK http://www.iza-structure.org/databases/ [Google Scholar]
  3. A. Corma, Chem. Rev., 1995, 95, (3), 559 LINK https://doi.org/10.1021/cr00035a006 [Google Scholar]
  4. A. P. Hawkins, A. J. O’Malley, A. Zachariou, P. Collier, R. A. Ewings, I. P. Silverwood, R. F. Howe, S. F. Parker, D. Lennon, J. Phys. Chem. C, 2018, 123, (1), 417 LINK https://doi.org/10.1021/acs.jpcc.8b08420 [Google Scholar]
  5. A. P. Hawkins, A. Zachariou, P. Collier, R. A. Ewings, R. F. Howe, S. F. Parker, D. Lennon, RSC Adv., 2019, 9, (33), 18785 LINK https://doi.org/10.1039/c9ra03568k [Google Scholar]
  6. A. P. Hawkins, A. Zachariou, S. F. Parker, P. Collier, I. P. Silverwood, R. F. Howe, D. Lennon, ACS Omega, 2020, 5, (14), 7762 LINK https://doi.org/10.1021/acsomega.9b03503 [Google Scholar]
  7. A. P. Hawkins, A. Zachariou, S. F. Parker, P. Collier, N. Barrow, I. P. Silverwood, R. F. Howe, D. Lennon, RSC Adv., 2020, 10, (39), 23136 LINK https://doi.org/10.1039/d0ra03871g [Google Scholar]
  8. A. P. Hawkins, A. Zachariou, S. F. Parker, P. Collier, R. F. Howe, D. Lennon, Catal. Sci. Technol., 2021, 11, (8), 2924 LINK https://doi.org/10.1039/d1cy00048a [Google Scholar]
  9. A. T. Boothroyd, “Principles of Neutron Scattering from Condensed Matter”, Oxford University Press, Oxford, UK, 2020 LINK https://doi.org/10.1093/oso/9780198862314.001.0001 [Google Scholar]
  10. M. T. F. Telling, “A Practical Guide to Quasi-elastic Neutron Scattering”,Royal Society of Chemistry, Cambridge, UK, 2020, 152 pp LINK https://doi.org/10.1039/9781839169090 [Google Scholar]
  11. P. C. H. Mitchell, S. F. Parker, A. J. Ramirez-Cuesta, J. Tomkinson, “Vibrational Spectroscopy with Neutrons: With Applications in Chemistry, Biology, Materials Science and Catalysis”, Series on Neutron Techniques and Applications, Vol. 3, World Scientific Publishing Co Pte Ltd, Singapore, 2005 LINK https://doi.org/10.1142/5628 [Google Scholar]
  12. S. F. Parker, P. Collier, Johnson Matthey Technol. Rev., 2016, 60, (2), 132 LINK https://doi.org/10.1595/205651316x691230 [Google Scholar]
  13. F. Polo-Garzon, S. Luo, Y. Cheng, K. L. Page, A. J. Ramirez-Cuesta, P. F. Britt, Z. Wu, ChemSusChem, 2018, 12, (1), 93 LINK https://doi.org/10.1002/cssc.201801890 [Google Scholar]
  14. X. Yu, Y. Cheng, Y. Li, F. Polo-Garzon, J. Liu, E. Mamontov, M. Li, D. Lennon, S. F. Parker, A. J. Ramirez-Cuesta, Z. Wu, Chem. Rev., 2023, 123, (13), 8638 LINK https://doi.org/10.1021/acs.chemrev.3c00101 [Google Scholar]
  15. A. Zachariou, A. P. Hawkins, R. F. Howe, J. M. S. Skakle, N. Barrow, P. Collier, D. W. Nye, R. I. Smith, G. B. G. Stenning, S. F. Parker, D. Lennon, ACS Phys. Chem. Au, 2023, 3, (1), 74 LINK https://doi.org/10.1021/acsphyschemau.2c00040 [Google Scholar]
  16. A. Zachariou, A. P. Hawkins, P. Collier, R. F. Howe, S. F. Parker, D. Lennon, Catal. Sci. Technol., 2023, 13, (7), 1976 LINK https://doi.org/10.1039/d2cy02154d [Google Scholar]
  17. J. R. Anderson, Y.-F. Chang, R. J. Western, Appl. Catal., 1991, 75, (1), 87 LINK https://doi.org/10.1016/s0166-9834(00)83125-5 [Google Scholar]
  18. ‘ISIS Neutron and Muon Source’, Science and Technology Facilities Council, Swindon, UK: https://www.isis.stfc.ac.uk/Pages/About.aspx (Accessed on 1st March 2024) [Google Scholar]
  19. S. F. Parker, D. Lennon, P. W. Albers, Appl. Spectrosc., 2011, 65, (12), 1325 LINK https://doi.org/10.1366/11-06456 [Google Scholar]
  20. G. Spoto, S. Bordiga, G. Ricchiardi, D. Scarano, A. Zecchina, E. Borello, J. Chem. Soc., Faraday Trans., 1994, 90, (18), 2827 LINK https://doi.org/10.1039/ft9949002827 [Google Scholar]
  21. J. Tomkinson, S. F. Parker, D. A. Braden, B. S. Hudson, Phys. Chem. Chem. Phys., 2002, 4, (5), 716 LINK https://doi.org/10.1039/b110091b [Google Scholar]
  22. A. G. Stepanov, M. V. Luzgin, V. N. Romannikov, K. I. Zamaraev, Catal. Lett., 1994, 24, (3–4), 271 LINK https://doi.org/10.1007/bf00811800 [Google Scholar]
  23. U. Olsbye, S. Svelle, K. P. Lillerud, Z. H. Wei, Y. Y. Chen, J. F. Li, J. G. Wang, W. B. Fan, Chem. Soc. Rev., 2015, 44, (20), 7155 LINK https://doi.org/10.1039/c5cs00304k [Google Scholar]
  24. A. P. Hawkins, ‘The Application of Neutron Scattering to Investigate Hydrocarbon Conversion over Zeolite Catalysts’, PhD Thesis, School of Chemistry, College of Science and Engineering, University of Glasgow, UK, June, 2021, 355 pp LINK https://doi.org/10.5525/gla.thesis.82272 [Google Scholar]
  25. D. Lennon, S. Matam, R. Howe, I. Hitchcock, S. Parker, A. York, P. Collier, A. Hawkins, A. Zachariou, ‘Studies of Propene Formation by gasoline Cracking in Steamed ZSM-5 by INS’, Experiment No. RB1620408, ISIS Neutron and Muon Source Data, Science and Technology Facilities Council, Swindon, UK, 2016 LINK https://doi.org/10.5286/isis.e.rb1620408 [Google Scholar]
  26. D. Lennon, P. Collier, A. Hawkins, S. Parker, A. Zachariou, ‘INS studies of the interaction of propene with ZSM-5’, Experiment No. RB1720047, ISIS Neutron and Muon Source Data, Science and Technology Facilities Council, Swindon, UK, 2017 LINK https://doi.org/10.5286/isis.e.rb1720047 [Google Scholar]
  27. D. Lennon, P. Collier, A. Hawkins, S. Parker, A. Zachariou, ‘Studies of the Effect of Steaming on Catalyst-Substrate Interactions in ZSM-5 Cracking Catalysts’, Experiment No. RB1810123, ISIS Neutron and Muon Source Data, Science and Technology Facilities Council, Swindon, UK, 2017 LINK https://doi.org/10.5286/isis.e.rb1810123 [Google Scholar]
  28. D. Lennon, A. Hawkins, P. Collier, S. Parker, I. Silverwood, A. Zachariou, ‘QENS Studies of the Interaction of Propene with ZSM-5’, ISIS Experiment No. RB1720048, ISIS Neutron and Muon Source Data, Science and Technology Facilities, Council, Swindon, UK, 2018 LINK https://doi.org/10.5286/isis.e.rb1720048 [Google Scholar]
  29. D. Lennon, A. Zachariou, P. Collier, A. Hawkins, S. Parker, ‘Studies of Catalyst-Substrate Interactions in an Industrial ZSM-5 Cracking Catalyst’, ISIS Experiment No. RB1820118, ISIS Neutron and Muon Source Data, Science and Technology Facilities Council, Swindon, UK, 2018 LINK https://doi.org/10.5286/isis.e.rb1820118 [Google Scholar]
  30. D. Lennon, A. Zachariou, P. Collier, I. P. Silverwood, A. Hawkins, S. Parker, ‘Diffusion of Model Hydrocarbon Species in a Steady-State Industrial Zeolite Cracking Catalyst’, ISIS Experiment No RB1820119, ISIS Neutron and Muon Source Data, Science and Technology Facilities Council, Swindon, UK, 2018 LINK https://doi.org/10.5286/isis.e.rb1820119 [Google Scholar]
  31. R. Howe, Y. Li, S. Huang, I. Hitchcock, D. Lennon, S. Parker, A. Hawkins, A. Zachariou, ‘INS Studies of Olefin Reactivity in HZSM-5 Zeolite Catalysts’, ISIS Experiment No RB1910203, ISIS Neutron and Muon Source Data, Science and Technology Facilities Council, Swindon, UK, 2019 LINK https://doi.org/10.5286/isis.e.rb1910203 [Google Scholar]
/content/journals/10.1595/205651324X16964134291592
Loading
/content/journals/10.1595/205651324X16964134291592
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test