Skip to content
1887
Volume 68, Issue 3
  • ISSN: 2056-5135

Abstract

End-of-life plastics present a significant challenge to achieving a sustainable economy. It is crucial to develop environmentally friendly technologies to process the waste streams beyond landfilling. This review provides a detailed overview of end-of-life plastics management, covering mechanical recycling, pyrolysis and hydrocracking methods. Mechanical recycling is the predominant technique employed on a large scale in recycling end-of-life plastics, and this review discusses the technoeconomic assessment and life cycle assessment (LCA) of mechanical recycling. This review also summarises key studies concentrating on chemical recycling techniques for handling end-of-life plastics. Among these, pyrolysis and hydrocracking are discussed in depth. Recent advancements and fundamentals of these two techniques are covered, highlighting their significance in tackling the plastic waste challenge. The prospects of scaling up pyrolysis and hydrocracking technologies are interpreted in terms of technical and economic feasibility. The discussion concludes with recommendations for future research to commercialise chemical recycling of end-of-life plastics.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X17001378211164
2023-11-16
2024-06-30
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/3/Wang_16b_Imp.html?itemId=/content/journals/10.1595/205651324X17001378211164&mimeType=html&fmt=ahah

References

  1. ‘Advancing Sustainable Materials Management: 2018 Tables and Figures’, US Environmental Protection Agency, Washington, DC, USA, December, 2020 LINK https://www.epa.gov/sites/default/files/2021-01/documents/2018_tables_and_figures_dec_2020_fnl_508.pdf [Google Scholar]
  2. Wakefield F. ‘Top 25 Recycling Facts and Statistics for 2022’, World Economic Forum, Geneva, Switzerland, 22nd June, 2022 LINK https://www.weforum.org/agenda/2022/06/recycling-global-statistics-facts-plastic-paper/ [Google Scholar]
  3. Manzoor J., Sharma M., Sofi I. R., Dar A. A., ‘Plastic Waste Environmental and Human Health Impacts’, in “Handbook of Research on Environmental and Human Health Impacts of Plastic Pollution”, eds. Wani K. A., Ariana L., and Zuber S. M. IGI Global, Hershey, PA, USA, 2020, pp. 2937 LINK https://doi.org/10.4018/978-1-5225-9452-9.ch002 [Google Scholar]
  4. Verma R., Vinoda K. S., Papireddy M., and Gowda A. N. S. Proc. Environ. Sci., 2016, 35, 701 LINK https://doi.org/10.1016/j.proenv.2016.07.069 [Google Scholar]
  5. Sridharan S., Kumar M., Singh L., Bolan N. S., and Saha M. J. Hazard. Mater., 2021, 418, 126245 LINK https://doi.org/10.1016/j.jhazmat.2021.126245 [Google Scholar]
  6. Chu J., Liu H., and Salvo A. Nat. Hum. Behav., 2021, 5, (2), 212 LINK https://doi.org/10.1038/s41562-020-00961-1 [Google Scholar]
  7. Rigamonti L., Grosso M., Møller J., Martinez Sanchez V., Magnani S., and Christensen T. H. Resour. Conserv. Recycl., 2014, 85, 42 LINK https://doi.org/10.1016/j.resconrec.2013.12.012 [Google Scholar]
  8. Li L., Zuo J., Duan X., Wang S., Hu K., and Chang R. Environ. Impact. Assess. Rev., 2021, 90, 106642 LINK https://doi.org/10.1016/j.eiar.2021.106642 [Google Scholar]
  9. El-Saadony M. T., Saad A. M., El-Wafai N. A., Abou-Aly H. E., Salem H. M., Soliman S. M., Abd El-Mageed T. A., Elrys A. S., Selim S., Abd El-Hack M. E., Kappachery S., El-Tarabily K. A., and AbuQamar S. F. Environ. Technol. Innov., 2023, 31, 103150 LINK https://doi.org/10.1016/j.eti.2023.103150 [Google Scholar]
  10. Jagaba A. H., Kutty S. R. M., Lawal I. M., Abubakar S., Hassan I., Zubairu I., Umaru I., Abdurrasheed A. S., Adam A. A., Ghaleb A. A. S., Almahbashi N. M. Y., Al-dhawi B. N. S., and Noor A. J. Environ. Manage., 2021, 282, 111946 LINK https://doi.org/10.1016/j.jenvman.2021.111946 [Google Scholar]
  11. Luo H., Zeng Y., Cheng Y., He D., and Pan X. Sci. Total Environ., 2020, 703, 135468 LINK https://doi.org/10.1016/j.scitotenv.2019.135468 [Google Scholar]
  12. Law K. L., Starr N., Siegler T. R., Jambeck J. R., Mallos N. J., and Leonard G. H. Sci. Adv., 2020, 6, (44), eabd0288 LINK https://doi.org/10.1126/sciadv.abd0288 [Google Scholar]
  13. Campanale C., Massarelli C., Savino I., Locaputo V., and Uricchio V. F. Int. J. Environ. Res. Public Health, 2020, 17, (4), 1212 LINK https://doi.org/10.3390/ijerph17041212 [Google Scholar]
  14. Jamieson A. J., Brooks L. S. R., Reid W. D. K., Piertney S. B., Narayanaswamy B. E., and Linley T. D. R. Soc. Open Sci., 2019, 6, (2), 180667 LINK https://doi.org/10.1098/rsos.180667 [Google Scholar]
  15. Hopewell J., Dvorak R., and Kosior E. Philos. Trans. R. Soc. B: Biol. Sci., 2009, 364, (1526), 2115 LINK https://doi.org/10.1098/rstb.2008.0311 [Google Scholar]
  16. Oladele I. O., Okoro C. J., Taiwo A. S., Onuh L. N., Agbeboh N. I., Balogun O. P., Olubambi P. A., and Lephuthing S. S. J. Comp. Sci., 2023, 7, (5), 198 LINK https://doi.org/10.3390/jcs7050198 [Google Scholar]
  17. Schyns Z. O. G., and Shaver M. P. Macromol. Rapid Commun., 2021, 42, (3), 2000415 LINK https://doi.org/10.1002/marc.202000415 [Google Scholar]
  18. Jahirul M. I., Faisal F., Rasul M. G., Schaller D., Khan M. M. K., and Dexter R. B. Energy Rep., 2022, 8, (16), 730 LINK https://doi.org/10.1016/j.egyr.2022.10.218 [Google Scholar]
  19. Amen R., Hameed J., Albashar G., Kamran H. W., Hassan Shah M. U., Zaman M. K. U., Mukhtar A., Saqib S., Ch S. I., Ibrahim M., Ullah S., Al-Sehemi A. G., Ahmad S. R., Klemeš J. J., Bokhari A., and Asif S. J. Clean. Prod., 2021, 287, 125575 LINK https://doi.org/10.1016/j.jclepro.2020.125575 [Google Scholar]
  20. Tait P. W., Brew J., Che A., Costanzo A., Danyluk A., Davis M., Khalaf A., McMahon K., Watson A., Rowcliff K., and Bowles D. Aust. N. Z. J. Public Health, 2020, 44, (1), 40 LINK https://doi.org/10.1111/1753-6405.12939 [Google Scholar]
  21. “Solid Waste Engineering and Management”, eds. Wang L. K., Wang M.-H. S., and Hung Y.-T. Springer Nature, Switzerland, 2021 LINK https://doi.org/10.1007/978-3-030-84180-5 [Google Scholar]
  22. Burgess M., Holmes H., Sharmina M., and Shaver M. P. Resour. Conserv. Recycl., 2021, 164, 105191 LINK https://doi.org/10.1016/j.resconrec.2020.105191 [Google Scholar]
  23. Smith R. L., Takkellapati S., and Riegerix R. C. ACS Sustain. Chem. Eng., 2022, 10, (6), 2084 LINK https://doi.org/10.1021/acssuschemeng.1c06845 [Google Scholar]
  24. Olafasakin O., Ma J., Bradshaw S. L., Aguirre-Villegas H. A., Huber C., Benson G. W., Zavala V. M., and Mba-Wright M. Waste Manag., 2023, 166, 368 LINK https://doi.org/10.1016/j.wasman.2023.05.011 [Google Scholar]
  25. Fitzgerald G. C., Krones J. S., and Themelis N. J. Resour. Conserv. Recycl., 2012, 69, 50 LINK https://doi.org/10.1016/j.resconrec.2012.08.006 [Google Scholar]
  26. Tonjes D. J., Aphale O., Clark L., and Thyberg K. L. Resour. Conserv. Recycl., 2018, 138, 151 LINK https://doi.org/10.1016/j.resconrec.2018.07.020 [Google Scholar]
  27. Bashir M. J. K., Chong S.-T., Chin Y.-T., Yusoff M. S., Aziz H. A., ‘Single Waste Stream Processing and Material Recovery Facility (MRF)’, in “Solid Waste Engineering and Management”, eds. Wang L. K., Wang M.-H. S., and Hung Y.-T. Springer Nature, Switzerland, 2022, pp. 71164 LINK https://doi.org/10.1007/978-3-030-89336-1_2 [Google Scholar]
  28. Hahladakis J. N., Velis C. A., Weber R., Iacovidou E., and Purnell P. J. Hazard. Mater., 2018, 344, 179 LINK https://doi.org/10.1016/j.jhazmat.2017.10.014 [Google Scholar]
  29. ‘Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2010’, US Environmental Protection Agency, Washington, DC, USA, 2010 LINK https://archive.epa.gov/epawaste/nonhaz/municipal/web/pdf/msw_2010_factsheet.pdf [Google Scholar]
  30. Chaudhari U. S., Lin Y., Thompson V. S., Handler R. M., Pearce J. M., Caneba G., Muhuri P., Watkins D., and Shonnard D. R. ACS Sustain. Chem. Eng., 2021, 9, (22), 7403 LINK https://doi.org/10.1021/acssuschemeng.0c08622 [Google Scholar]
  31. Volk R., Stallkamp C., Steins J. J., Yogish S. P., Müller R. C., Stapf D., and Schultmann F. J. Ind. Ecol., 2021, 25, (5), 1318 LINK https://doi.org/10.1111/jiec.13145 [Google Scholar]
  32. Zhao X., Korey M., Li K., Copenhaver K., Tekinalp H., Celik S., Kalaitzidou K., Ruan R., Ragauskas A. J., and Ozcan S. Chem. Eng. J., 2022, 428, 131928 LINK https://doi.org/10.1016/j.cej.2021.131928 [Google Scholar]
  33. Sohn Y. J., Kim H. T., Baritugo K., Jo S. Y., Song H. M., Park S. Y., Park S. K., Pyo J., Cha H. G., Kim H., Na J., Park C., Choi J., Joo J. C., and Park S. J. Biotechnol. J., 2020, 15, (6), 1900489 LINK https://doi.org/10.1002/biot.201900489 [Google Scholar]
  34. Chen X., Wang Y., and Zhang L. ChemSusChem, 2021, 14, (19), 4137 LINK https://doi.org/10.1002/cssc.202100868 [Google Scholar]
  35. Jehanno C., Alty J. W., Roosen M., De Meester S., Dove A. P., Chen E. Y.-X., Leibfarth F. A., and Sardon H. Nature, 2022, 603, (7903), 803 LINK https://doi.org/10.1038/s41586-021-04350-0 [Google Scholar]
  36. Huang P., Zhou W., Jin K., Wang Y., Qian J., Liu L., Peng H., Wu J., Hu J., Wang M., Wang W., Luo T., and Fan L. ACS Sustain. Chem. Eng., 2023, 11, (2), 696 LINK https://doi.org/10.1021/acssuschemeng.2c05804 [Google Scholar]
  37. Zhang Y., Duan D., Lei H., Villota E., and Ruan R. Appl. Energy, 2019, 251, 113337 LINK https://doi.org/10.1016/j.apenergy.2019.113337 [Google Scholar]
  38. Jia C., Xie S., Zhang W., Intan N. N., Sampath J., Pfaendtner J., and Lin H. Chem. Catal., 2021, 1, (2), 437 LINK https://doi.org/10.1016/j.checat.2021.04.002 [Google Scholar]
  39. Maity A., Chaudhari S., Titman J. J., and Polshettiwar V. Nat. Commun., 2020, 11, (1), 3828 LINK https://doi.org/10.1038/s41467-020-17711-6 [Google Scholar]
  40. Rorrer J. E., Beckham G. T., and Roman-Leshkov Y. JACS Au, 2021, 1, (1), 8 LINK https://doi.org/10.1021/jacsau.0c00041 [Google Scholar]
  41. Zhang Y., Chen X., Cheng L., Gu J., and Xu Y. Int. J. Environ. Res. Public Health, 2023, 20, (5), 4048 LINK https://doi.org/10.3390/ijerph20054048 [Google Scholar]
  42. Zhang W., Kim S., Wahl L., Khare R., Hale L., Hu J., Camaioni D. M., Gutiérrez O. Y., Liu Y., and Lercher J. A. Science, 2023, 379, (6634), 807 LINK https://doi.org/10.1126/science.ade7485 [Google Scholar]
  43. Zhang F., Zeng M., Yappert R. D., Sun J., Lee Y.-H., LaPointe A. M., Peters B., Abu-Omar M. M., and Scott S. L. Science, 2020, 370, (6515), 437 LINK https://doi.org/10.1126/science.abc5441 [Google Scholar]
  44. Sun K., Huang Q., Ali M., Chi Y., and Yan J. Energy Fuels, 2018, 32, (4), 5471 LINK https://doi.org/10.1021/acs.energyfuels.7b03710 [Google Scholar]
  45. Xu Z., Pan F., Sun M., Xu J., Munyaneza N. E., Croft Z. L., Cai G. G., and Liu G. Proc. Natl. Acad. Sci., 2022, 119, (34), e2203346119 LINK https://doi.org/10.1073/pnas.2203346119 [Google Scholar]
  46. Amjad U.-S., Tajjamal A., Ul-Hamid A., Faisal A., Zaidi S. A. H., Sherin L., Mir A., Mustafa M., Ahmad N., Hussain M., and Park Y.-K. Waste Manag., 2022, 141, 240 LINK https://doi.org/10.1016/j.wasman.2022.02.002 [Google Scholar]
  47. Yan Y., Zhou H., Xu S.-M., Yang J., Hao P., Cai X., Ren Y., Xu M., Kong X., Shao M., Li Z., and Duan H. J. Am. Chem. Soc., 2023, 145, (11), 6144 LINK https://doi.org/10.1021/jacs.2c11861 [Google Scholar]
  48. Lee K., Jing Y., Wang Y., and Yan N. Nat. Rev. Chem., 2022, 6, (9), 635 LINK https://doi.org/10.1038/s41570-022-00411-8 [Google Scholar]
  49. Kwan C. S., Takada H., ‘Release of Additives and Monomers from Plastic Wastes’, in “Hazardous Chemicals Associated with Plastics in the Marine Environment”, eds. Takada H., and Karapanagioti H. K. Springer International Publishing, Cham, Switzerland, 2019, pp. 5170 LINK https://doi.org/10.1007/698_2016_122 [Google Scholar]
  50. Akin O., Varghese R. J., Eschenbacher A., Oenema J., Abbas-Abadi M. S., Stefanidis G. D., and Van Geem K. M. J. Anal. Appl. Pyrol., 2023, 172, 106036 LINK https://doi.org/10.1016/j.jaap.2023.106036 [Google Scholar]
  51. Hayes G., Laurel M., MacKinnon D., Zhao T., Houck H. A., and Becer C. R. Chem. Rev., 2023, 123, (5), 2609 LINK https://doi.org/10.1021/acs.chemrev.2c00354 [Google Scholar]
  52. Choi J., Yang I., Kim S.-S., Cho S. Y., and Lee S. Macromol. Rapid. Commun., 2022, 43, (1), 2100467 LINK https://doi.org/10.1002/marc.202100467 [Google Scholar]
  53. Robertson M., Güillen Obando A., Emery J., and Qiang Z. ACS Omega, 2022, 7, (14), 12278 LINK https://doi.org/10.1021/acsomega.2c00711 [Google Scholar]
  54. Estahbanati M. R. K., Kong X. Y., Eslami A., and Soo H. S. ChemSusChem, 2021, 14, (19), 4152 LINK https://doi.org/10.1002/cssc.202100874 [Google Scholar]
  55. ‘Used Oil Management and Beneficial Reuse Options to Address Section 1: Energy Savings from Lubricating Oil Public Law 115-345’, US Department of Energy, Washington, DC, USA, December, 2020 LINK https://www.energy.gov/fecm/articles/used-oil-management-and-beneficial-reuse-report-congress [Google Scholar]
  56. ‘Weekly Retail Gasoline and Diesel Prices’, US Department of Energy, Washington, DC, USA: https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htm (Accessed on 30th June 2023) [Google Scholar]
  57. ‘U.S. Airlines’ January 2023 Fuel Cost per Gallon Up 4.3% from December 2022; Aviation Fuel Consumption Down 0.7% from Pre-Pandemic January 2019’, US Department of Transportation, Washington, DC, USA, 3rd March, 2019 LINK https://www.bts.gov/newsroom/us-airlines-january-2023-fuel-cost-gallon-43-december-2022-aviation-fuel-consumption-down [Google Scholar]
  58. ‘Price of Naphtha Worldwide from 2017 to 2022’, Statista Inc, New York, NY, USA, March, 2023 LINK https://www.statista.com/statistics/1171139/price-naphtha-forecast-globally/#:~:text=In%202022%2C%20the%20global%20price,U.S.%20dollars%20per%20metric%20ton. [Google Scholar]
  59. ‘Price of Benzene Worldwide from 2017 to 2022’, Statista Inc, New York, NY, USA, September, 2023 LINK https://www.statista.com/statistics/1171072/price-benzene-forecast-globally/. [Google Scholar]
  60. Li J., Zhang Y., Yang Y., Zhang X., Zheng Y., Qian Q., Tian Y., and Xie K. Res. Policy, 2022, 77, 102629 LINK https://doi.org/10.1016/j.resourpol.2022.102629 [Google Scholar]
  61. Zhao Z., Jiang J., and Wang F. J. Energy Chem., 2021, 56, 193 LINK https://doi.org/10.1016/j.jechem.2020.04.021 [Google Scholar]
  62. Yilmaz N., and Atmanli A. Energy, 2017, 140, (2), 1378 LINK https://doi.org/10.1016/j.energy.2017.07.077 [Google Scholar]
  63. Dahal K., Brynolf S., Xisto C., Hansson J., Grahn M., Grönstedt T., and Lehtveer M. Renew. Sust. Energy Rev., 2021, 151, 111564 LINK https://doi.org/10.1016/j.rser.2021.111564 [Google Scholar]
  64. Hou Q., Zhen M., Qian H., Nie Y., Bai X., Xia T., Ur Rehman M. L., Li Q., and Ju M. Cell Rep. Phys. Sci., 2021, 2, (8), 100514 LINK https://doi.org/10.1016/j.xcrp.2021.100514 [Google Scholar]
  65. Bora R. R., Wang R., and You F. ACS Sust. Chem. Eng., 2020, 8, (43), 16350 LINK https://doi.org/10.1021/acssuschemeng.0c06311 [Google Scholar]
  66. Gracida-Alvarez U. R., Winjobi O., Sacramento-Rivero J. C., and Shonnard D. R. ACS Sustain. Chem. Eng., 2019, 7, (22), 18254 LINK https://doi.org/10.1021/acssuschemeng.9b04763 [Google Scholar]
  67. Fivga A., and Dimitriou I. Energy, 2018, 149, 865 LINK https://doi.org/10.1016/j.energy.2018.02.094 [Google Scholar]
  68. Nat. Catal., 2019, 2, (11), 945 LINK https://doi.org/10.1038/s41929-019-0391-7 [Google Scholar]
  69. Chen H., Wan K., Zhang Y., and Wang Y. ChemSusChem, 2021, 14, (19), 4123 LINK https://doi.org/10.1002/cssc.202100652 [Google Scholar]
  70. Kim P. J., Fontecha H. D., Kim K., and Pol V. G. ACS Appl. Mater. Interfaces, 2018, 10, (17), 14827 LINK https://doi.org/10.1021/acsami.8b03959 [Google Scholar]
  71. Villagómez-Salas S., Manikandan P., Acuña Guzmán S. F., and Pol V. G. ACS Omega, 2018, 3, (12), 17520 LINK https://doi.org/10.1021/acsomega.8b02290 [Google Scholar]
  72. Feng J., Gong J., Wen X., Tian N., Chen X., Mijowska E., and Tang T. RSC Adv, 2014, 4, (51), 26817 LINK https://doi.org/10.1039/c4ra02459a [Google Scholar]
  73. Liu X., Ma C., Wen Y., Chen X., Zhao X., Tang T., Holze R., and Mijowska E. Carbon, 2021, 171, 819 LINK https://doi.org/10.1016/j.carbon.2020.09.057 [Google Scholar]
  74. Sun J., Lee Y.-H., Yappert R. D., LaPointe A. M., Coates G. W., Peters B., Abu-Omar M. M., and Scott S. L. Chem, 2023, 9, (8), 2318 LINK https://doi.org/10.1016/j.chempr.2023.05.017 [Google Scholar]
  75. Celik G., Kennedy R. M., Hackler R. A., Ferrandon M., Tennakoon A., Patnaik S., LaPointe A. M., Ammal S. C., Heyden A., Perras F. A., Pruski M., Scott S. L., Poeppelmeier K. R., Sadow A. D., and Delferro M. ACS Cent. Sci., 2019, 5, (11), 1795 LINK https://doi.org/10.1021/acscentsci.9b00722 [Google Scholar]
  76. Bäckström E., Odelius K., and Hakkarainen M. ACS Sustain. Chem. Eng., 2019, 7, (12), 11004 LINK https://doi.org/10.1021/acssuschemeng.9b02092 [Google Scholar]
  77. Bäckström E., Odelius K., and Hakkarainen M. Ind. Eng. Chem. Res., 2017, 56, (50), 14814 LINK https://doi.org/10.1021/acs.iecr.7b04091 [Google Scholar]
  78. Jiao X., Zheng K., Chen Q., Li X., Li Y., Shao W., Xu J., Zhu J., Pan Y., Sun Y., and Xie Y. Angew. Chem. Int. Ed., 2020, 59, (36), 15497 LINK https://doi.org/10.1002/anie.201915766 [Google Scholar]
  79. Barbarias I., Lopez G., Alvarez J., Artetxe M., Arregi A., Bilbao J., and Olazar M. Chem. Eng. J., 2016, 296, 191 LINK https://doi.org/10.1016/j.cej.2016.03.091 [Google Scholar]
  80. Kots P. A., Liu S., Vance B. C., Wang C., Sheehan J. D., and Vlachos D. G. ACS Catal., 2021, 11, (13), 8104 LINK https://doi.org/10.1021/acscatal.1c00874 [Google Scholar]
  81. Wang C., Xie T., Kots P. A., Vance B. C., Yu K., Kumar P., Fu J., Liu S., Tsilomelekis G., Stach E. A., Zheng W., and Vlachos D. G. JACS Au, 2021, 1, (9), 1422 LINK https://doi.org/10.1021/jacsau.1c00200 [Google Scholar]
  82. Nakaji Y., Tamura M., Miyaoka S., Kumagai S., Tanji M., Nakagawa Y., Yoshioka T., and Tomishige K. Appl. Catal. B: Environ., 2021, 285, 119805 LINK https://doi.org/10.1016/j.apcatb.2020.119805 [Google Scholar]
  83. Liu S., Kots P. A., Vance B. C., Danielson A., and Vlachos D. G. Sci. Adv., 2021, 7, (17), eabf8283 LINK https://doi.org/10.1126/sciadv.abf8283 [Google Scholar]
  84. Qiu Z., Lin S., Chen Z., Chen A., Zhou Y., Cao X., Wang Y., and Lin B.-L. Sci. Adv., 2023, 9, (25), eadg5332 LINK https://doi.org/10.1126/sciadv.adg5332 [Google Scholar]
  85. Bunescu A., Lee S., Li Q., and Hartwig J. F. ACS Cent. Sci., 2017, 3, (8), 895 LINK https://doi.org/10.1021/acscentsci.7b00255 [Google Scholar]
  86. Rorrer J. E., Ebrahim A. M., Questell-Santiago Y., Zhu J., Troyano-Valls C., Asundi A. S., Brenner A. E., Bare S. R., Tassone C. J., Beckham G. T., and Román-Leshkov Y. ACS Catal., 2022, 12, (22), 13969 LINK https://doi.org/10.1021/acscatal.2c03596 [Google Scholar]
  87. Rorrer J. E., Troyano-Valls C., Beckham G. T., and Román-Leshkov Y. ACS Sustain. Chem. Eng., 2021, 9, (35), 11661 LINK https://doi.org/10.1021/acssuschemeng.1c03786 [Google Scholar]
  88. Wang N. M., Strong G., DaSilva V., Gao L., Huacuja R., Konstantinov I. A., Rosen M. S., Nett A. J., Ewart S., Geyer R., Scott S. L., and Guironnet D. J. Am. Chem. Soc., 2022, 144, (40), 18526 LINK https://doi.org/10.1021/jacs.2c07781 [Google Scholar]
  89. Wang C., Han H., Wu Y., and Astruc D. Coord. Chem. Rev., 2022, 458, 214422 LINK https://doi.org/10.1016/j.ccr.2022.214422 [Google Scholar]
  90. Kiran N., Ekinci E., and Snape C. E. Resour. Conserv. Recycl., 2000, 29, (4), 273 LINK https://doi.org/10.1016/s0921-3449(00)00052-5 [Google Scholar]
  91. Ocean Recovery Alliance ‘2015 Plastics-to-Fuel Project Developer’s Guide’, The American Chemical Council, California, USA, June, 2015 LINK https://www.americanchemistry.com/better-policy-regulation/plastics/resources/2015-plastics-to-fuel-project-developer-s-guide [Google Scholar]
  92. Yu J., Sun L., Ma C., Qiao Y., and Yao H. Waste Manag., 2016, 48, 300 LINK https://doi.org/10.1016/j.wasman.2015.11.041 [Google Scholar]
  93. Rahimi A., and García J. M. Nat. Rev. Chem., 2017, 1, (6), 0046 LINK https://doi.org/10.1038/s41570-017-0046 [Google Scholar]
  94. Qureshi M. S., Oasmaa A., Pihkola H., Deviatkin I., Tenhunen A., Mannila J., Minkkinen H., Pohjakallio M., and Laine-Ylijoki J. J. Anal. Appl. Pyrolysis, 2020, 152, 104804 LINK https://doi.org/10.1016/j.jaap.2020.104804 [Google Scholar]
  95. Wang C., Wang H., Fu J., and Liu Y. Waste Manag., 2015, 41, 28 LINK https://doi.org/10.1016/j.wasman.2015.03.027 [Google Scholar]
  96. Wu G., Li J., and Xu Z. Waste Manag., 2013, 33, (3), 585 LINK https://doi.org/10.1016/j.wasman.2012.10.014 [Google Scholar]
  97. Pappa G., Boukouvalas C., Giannaris C., Ntaras N., Zografos V., Magoulas K., Lygeros A., and Tassios D. Resour. Conserv. Recycl., 2001, 34, (1), 33 LINK https://doi.org/10.1016/s0921-3449(01)00092-1 [Google Scholar]
  98. Al-Salem S. M., Antelava A., Constantinou A., Manos G., and Dutta A. J. Environ. Manag., 2017, 197, 177 LINK https://doi.org/10.1016/j.jenvman.2017.03.084 [Google Scholar]
  99. Aguado J., Serrano D. P., Romero M. D., and Escola J. M. Chem. Commun., 1996, (6), 725 LINK https://doi.org/10.1039/cc9960000725 [Google Scholar]
  100. Aguado J., Sotelo J. L., Serrano D. P., Calles J. A., and Escola J. M. Energy Fuels, 1997, 11, (6), 1225 LINK https://doi.org/10.1021/ef970055v [Google Scholar]
  101. Bin Jumah A., Anbumuthu V., Tedstone A. A., and Garforth A. A. Ind. Eng. Chem. Res., 2019, 58, (45), 20601 LINK https://doi.org/10.1021/acs.iecr.9b04263 [Google Scholar]
  102. Munir D., Irfan M. F., and Usman M. R. Renew. Sustain. Energy Rev., 2018, 90, 490 LINK https://doi.org/10.1016/j.rser.2018.03.034 [Google Scholar]
  103. Lee W.-T., Bobbink F. D., van Muyden A. P., Lin K.-H., Corminboeuf C., Zamani R. R., and Dyson P. J. Cell Rep. Phys. Sci., 2021, 2, (2), 100332 LINK https://doi.org/10.1016/j.xcrp.2021.100332 [Google Scholar]
  104. Munir D., Amer H., Aslam R., Bououdina M., and Usman M. R. Mater. Renew. Sustain. Energy, 2020, 9, (2), 9 LINK https://doi.org/10.1007/s40243-020-00169-3 [Google Scholar]
  105. Kohli K., Prajapati R., Maity S. K., and Sharma B. K. J. Anal. Appl. Pyrolysis, 2019, 140, 179 LINK https://doi.org/10.1016/j.jaap.2019.03.013 [Google Scholar]
  106. Fuentes-Ordóñez E. G., Salbidegoitia J. A., González-Marcos M. P., and González-Velasco J. R. Polym. Degrad. Stab., 2016, 124, 51 LINK https://doi.org/10.1016/j.polymdegradstab.2015.12.009 [Google Scholar]
  107. Akah A., Hernandez-Martinez J., Rallan C., and Garforth A. A. Chem Eng. Trans., 2015, 43, 2395 LINK https://doi.org/10.3303/CET1543400 [Google Scholar]
/content/journals/10.1595/205651324X17001378211164
Loading
/content/journals/10.1595/205651324X17001378211164
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error