Skip to content
Volume 68, Issue 3
  • ISSN: 2056-5135


End-of-life plastics present a significant challenge to achieving a sustainable economy. It is crucial to develop environmentally friendly technologies to process the waste streams beyond landfilling. This review provides a detailed overview of end-of-life plastics management, covering mechanical recycling, pyrolysis and hydrocracking methods. Mechanical recycling is the predominant technique employed on a large scale in recycling end-of-life plastics, and this review discusses the technoeconomic assessment and life cycle assessment (LCA) of mechanical recycling. This review also summarises key studies concentrating on chemical recycling techniques for handling end-of-life plastics. Among these, pyrolysis and hydrocracking are discussed in depth. Recent advancements and fundamentals of these two techniques are covered, highlighting their significance in tackling the plastic waste challenge. The prospects of scaling up pyrolysis and hydrocracking technologies are interpreted in terms of technical and economic feasibility. The discussion concludes with recommendations for future research to commercialise chemical recycling of end-of-life plastics.


Article metrics loading...

Loading full text...

Full text loading...



  1. ‘Advancing Sustainable Materials Management: 2018 Tables and Figures’, US Environmental Protection Agency, Washington, DC, USA, December, 2020 LINK [Google Scholar]
  2. Wakefield F. ‘Top 25 Recycling Facts and Statistics for 2022’, World Economic Forum, Geneva, Switzerland, 22nd June, 2022 LINK [Google Scholar]
  3. Manzoor J., Sharma M., Sofi I. R., Dar A. A., ‘Plastic Waste Environmental and Human Health Impacts’, in “Handbook of Research on Environmental and Human Health Impacts of Plastic Pollution”, eds. Wani K. A., Ariana L., and Zuber S. M. IGI Global, Hershey, PA, USA, 2020, pp. 2937 LINK [Google Scholar]
  4. Verma R., Vinoda K. S., Papireddy M., and Gowda A. N. S. Proc. Environ. Sci., 2016, 35, 701 LINK [Google Scholar]
  5. Sridharan S., Kumar M., Singh L., Bolan N. S., and Saha M. J. Hazard. Mater., 2021, 418, 126245 LINK [Google Scholar]
  6. Chu J., Liu H., and Salvo A. Nat. Hum. Behav., 2021, 5, (2), 212 LINK [Google Scholar]
  7. Rigamonti L., Grosso M., Møller J., Martinez Sanchez V., Magnani S., and Christensen T. H. Resour. Conserv. Recycl., 2014, 85, 42 LINK [Google Scholar]
  8. Li L., Zuo J., Duan X., Wang S., Hu K., and Chang R. Environ. Impact. Assess. Rev., 2021, 90, 106642 LINK [Google Scholar]
  9. El-Saadony M. T., Saad A. M., El-Wafai N. A., Abou-Aly H. E., Salem H. M., Soliman S. M., Abd El-Mageed T. A., Elrys A. S., Selim S., Abd El-Hack M. E., Kappachery S., El-Tarabily K. A., and AbuQamar S. F. Environ. Technol. Innov., 2023, 31, 103150 LINK [Google Scholar]
  10. Jagaba A. H., Kutty S. R. M., Lawal I. M., Abubakar S., Hassan I., Zubairu I., Umaru I., Abdurrasheed A. S., Adam A. A., Ghaleb A. A. S., Almahbashi N. M. Y., Al-dhawi B. N. S., and Noor A. J. Environ. Manage., 2021, 282, 111946 LINK [Google Scholar]
  11. Luo H., Zeng Y., Cheng Y., He D., and Pan X. Sci. Total Environ., 2020, 703, 135468 LINK [Google Scholar]
  12. Law K. L., Starr N., Siegler T. R., Jambeck J. R., Mallos N. J., and Leonard G. H. Sci. Adv., 2020, 6, (44), eabd0288 LINK [Google Scholar]
  13. Campanale C., Massarelli C., Savino I., Locaputo V., and Uricchio V. F. Int. J. Environ. Res. Public Health, 2020, 17, (4), 1212 LINK [Google Scholar]
  14. Jamieson A. J., Brooks L. S. R., Reid W. D. K., Piertney S. B., Narayanaswamy B. E., and Linley T. D. R. Soc. Open Sci., 2019, 6, (2), 180667 LINK [Google Scholar]
  15. Hopewell J., Dvorak R., and Kosior E. Philos. Trans. R. Soc. B: Biol. Sci., 2009, 364, (1526), 2115 LINK [Google Scholar]
  16. Oladele I. O., Okoro C. J., Taiwo A. S., Onuh L. N., Agbeboh N. I., Balogun O. P., Olubambi P. A., and Lephuthing S. S. J. Comp. Sci., 2023, 7, (5), 198 LINK [Google Scholar]
  17. Schyns Z. O. G., and Shaver M. P. Macromol. Rapid Commun., 2021, 42, (3), 2000415 LINK [Google Scholar]
  18. Jahirul M. I., Faisal F., Rasul M. G., Schaller D., Khan M. M. K., and Dexter R. B. Energy Rep., 2022, 8, (16), 730 LINK [Google Scholar]
  19. Amen R., Hameed J., Albashar G., Kamran H. W., Hassan Shah M. U., Zaman M. K. U., Mukhtar A., Saqib S., Ch S. I., Ibrahim M., Ullah S., Al-Sehemi A. G., Ahmad S. R., Klemeš J. J., Bokhari A., and Asif S. J. Clean. Prod., 2021, 287, 125575 LINK [Google Scholar]
  20. Tait P. W., Brew J., Che A., Costanzo A., Danyluk A., Davis M., Khalaf A., McMahon K., Watson A., Rowcliff K., and Bowles D. Aust. N. Z. J. Public Health, 2020, 44, (1), 40 LINK [Google Scholar]
  21. “Solid Waste Engineering and Management”, eds. Wang L. K., Wang M.-H. S., and Hung Y.-T. Springer Nature, Switzerland, 2021 LINK [Google Scholar]
  22. Burgess M., Holmes H., Sharmina M., and Shaver M. P. Resour. Conserv. Recycl., 2021, 164, 105191 LINK [Google Scholar]
  23. Smith R. L., Takkellapati S., and Riegerix R. C. ACS Sustain. Chem. Eng., 2022, 10, (6), 2084 LINK [Google Scholar]
  24. Olafasakin O., Ma J., Bradshaw S. L., Aguirre-Villegas H. A., Huber C., Benson G. W., Zavala V. M., and Mba-Wright M. Waste Manag., 2023, 166, 368 LINK [Google Scholar]
  25. Fitzgerald G. C., Krones J. S., and Themelis N. J. Resour. Conserv. Recycl., 2012, 69, 50 LINK [Google Scholar]
  26. Tonjes D. J., Aphale O., Clark L., and Thyberg K. L. Resour. Conserv. Recycl., 2018, 138, 151 LINK [Google Scholar]
  27. Bashir M. J. K., Chong S.-T., Chin Y.-T., Yusoff M. S., Aziz H. A., ‘Single Waste Stream Processing and Material Recovery Facility (MRF)’, in “Solid Waste Engineering and Management”, eds. Wang L. K., Wang M.-H. S., and Hung Y.-T. Springer Nature, Switzerland, 2022, pp. 71164 LINK [Google Scholar]
  28. Hahladakis J. N., Velis C. A., Weber R., Iacovidou E., and Purnell P. J. Hazard. Mater., 2018, 344, 179 LINK [Google Scholar]
  29. ‘Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2010’, US Environmental Protection Agency, Washington, DC, USA, 2010 LINK [Google Scholar]
  30. Chaudhari U. S., Lin Y., Thompson V. S., Handler R. M., Pearce J. M., Caneba G., Muhuri P., Watkins D., and Shonnard D. R. ACS Sustain. Chem. Eng., 2021, 9, (22), 7403 LINK [Google Scholar]
  31. Volk R., Stallkamp C., Steins J. J., Yogish S. P., Müller R. C., Stapf D., and Schultmann F. J. Ind. Ecol., 2021, 25, (5), 1318 LINK [Google Scholar]
  32. Zhao X., Korey M., Li K., Copenhaver K., Tekinalp H., Celik S., Kalaitzidou K., Ruan R., Ragauskas A. J., and Ozcan S. Chem. Eng. J., 2022, 428, 131928 LINK [Google Scholar]
  33. Sohn Y. J., Kim H. T., Baritugo K., Jo S. Y., Song H. M., Park S. Y., Park S. K., Pyo J., Cha H. G., Kim H., Na J., Park C., Choi J., Joo J. C., and Park S. J. Biotechnol. J., 2020, 15, (6), 1900489 LINK [Google Scholar]
  34. Chen X., Wang Y., and Zhang L. ChemSusChem, 2021, 14, (19), 4137 LINK [Google Scholar]
  35. Jehanno C., Alty J. W., Roosen M., De Meester S., Dove A. P., Chen E. Y.-X., Leibfarth F. A., and Sardon H. Nature, 2022, 603, (7903), 803 LINK [Google Scholar]
  36. Huang P., Zhou W., Jin K., Wang Y., Qian J., Liu L., Peng H., Wu J., Hu J., Wang M., Wang W., Luo T., and Fan L. ACS Sustain. Chem. Eng., 2023, 11, (2), 696 LINK [Google Scholar]
  37. Zhang Y., Duan D., Lei H., Villota E., and Ruan R. Appl. Energy, 2019, 251, 113337 LINK [Google Scholar]
  38. Jia C., Xie S., Zhang W., Intan N. N., Sampath J., Pfaendtner J., and Lin H. Chem. Catal., 2021, 1, (2), 437 LINK [Google Scholar]
  39. Maity A., Chaudhari S., Titman J. J., and Polshettiwar V. Nat. Commun., 2020, 11, (1), 3828 LINK [Google Scholar]
  40. Rorrer J. E., Beckham G. T., and Roman-Leshkov Y. JACS Au, 2021, 1, (1), 8 LINK [Google Scholar]
  41. Zhang Y., Chen X., Cheng L., Gu J., and Xu Y. Int. J. Environ. Res. Public Health, 2023, 20, (5), 4048 LINK [Google Scholar]
  42. Zhang W., Kim S., Wahl L., Khare R., Hale L., Hu J., Camaioni D. M., Gutiérrez O. Y., Liu Y., and Lercher J. A. Science, 2023, 379, (6634), 807 LINK [Google Scholar]
  43. Zhang F., Zeng M., Yappert R. D., Sun J., Lee Y.-H., LaPointe A. M., Peters B., Abu-Omar M. M., and Scott S. L. Science, 2020, 370, (6515), 437 LINK [Google Scholar]
  44. Sun K., Huang Q., Ali M., Chi Y., and Yan J. Energy Fuels, 2018, 32, (4), 5471 LINK [Google Scholar]
  45. Xu Z., Pan F., Sun M., Xu J., Munyaneza N. E., Croft Z. L., Cai G. G., and Liu G. Proc. Natl. Acad. Sci., 2022, 119, (34), e2203346119 LINK [Google Scholar]
  46. Amjad U.-S., Tajjamal A., Ul-Hamid A., Faisal A., Zaidi S. A. H., Sherin L., Mir A., Mustafa M., Ahmad N., Hussain M., and Park Y.-K. Waste Manag., 2022, 141, 240 LINK [Google Scholar]
  47. Yan Y., Zhou H., Xu S.-M., Yang J., Hao P., Cai X., Ren Y., Xu M., Kong X., Shao M., Li Z., and Duan H. J. Am. Chem. Soc., 2023, 145, (11), 6144 LINK [Google Scholar]
  48. Lee K., Jing Y., Wang Y., and Yan N. Nat. Rev. Chem., 2022, 6, (9), 635 LINK [Google Scholar]
  49. Kwan C. S., Takada H., ‘Release of Additives and Monomers from Plastic Wastes’, in “Hazardous Chemicals Associated with Plastics in the Marine Environment”, eds. Takada H., and Karapanagioti H. K. Springer International Publishing, Cham, Switzerland, 2019, pp. 5170 LINK [Google Scholar]
  50. Akin O., Varghese R. J., Eschenbacher A., Oenema J., Abbas-Abadi M. S., Stefanidis G. D., and Van Geem K. M. J. Anal. Appl. Pyrol., 2023, 172, 106036 LINK [Google Scholar]
  51. Hayes G., Laurel M., MacKinnon D., Zhao T., Houck H. A., and Becer C. R. Chem. Rev., 2023, 123, (5), 2609 LINK [Google Scholar]
  52. Choi J., Yang I., Kim S.-S., Cho S. Y., and Lee S. Macromol. Rapid. Commun., 2022, 43, (1), 2100467 LINK [Google Scholar]
  53. Robertson M., Güillen Obando A., Emery J., and Qiang Z. ACS Omega, 2022, 7, (14), 12278 LINK [Google Scholar]
  54. Estahbanati M. R. K., Kong X. Y., Eslami A., and Soo H. S. ChemSusChem, 2021, 14, (19), 4152 LINK [Google Scholar]
  55. ‘Used Oil Management and Beneficial Reuse Options to Address Section 1: Energy Savings from Lubricating Oil Public Law 115-345’, US Department of Energy, Washington, DC, USA, December, 2020 LINK [Google Scholar]
  56. ‘Weekly Retail Gasoline and Diesel Prices’, US Department of Energy, Washington, DC, USA: (Accessed on 30th June 2023) [Google Scholar]
  57. ‘U.S. Airlines’ January 2023 Fuel Cost per Gallon Up 4.3% from December 2022; Aviation Fuel Consumption Down 0.7% from Pre-Pandemic January 2019’, US Department of Transportation, Washington, DC, USA, 3rd March, 2019 LINK [Google Scholar]
  58. ‘Price of Naphtha Worldwide from 2017 to 2022’, Statista Inc, New York, NY, USA, March, 2023 LINK,U.S.%20dollars%20per%20metric%20ton. [Google Scholar]
  59. ‘Price of Benzene Worldwide from 2017 to 2022’, Statista Inc, New York, NY, USA, September, 2023 LINK [Google Scholar]
  60. Li J., Zhang Y., Yang Y., Zhang X., Zheng Y., Qian Q., Tian Y., and Xie K. Res. Policy, 2022, 77, 102629 LINK [Google Scholar]
  61. Zhao Z., Jiang J., and Wang F. J. Energy Chem., 2021, 56, 193 LINK [Google Scholar]
  62. Yilmaz N., and Atmanli A. Energy, 2017, 140, (2), 1378 LINK [Google Scholar]
  63. Dahal K., Brynolf S., Xisto C., Hansson J., Grahn M., Grönstedt T., and Lehtveer M. Renew. Sust. Energy Rev., 2021, 151, 111564 LINK [Google Scholar]
  64. Hou Q., Zhen M., Qian H., Nie Y., Bai X., Xia T., Ur Rehman M. L., Li Q., and Ju M. Cell Rep. Phys. Sci., 2021, 2, (8), 100514 LINK [Google Scholar]
  65. Bora R. R., Wang R., and You F. ACS Sust. Chem. Eng., 2020, 8, (43), 16350 LINK [Google Scholar]
  66. Gracida-Alvarez U. R., Winjobi O., Sacramento-Rivero J. C., and Shonnard D. R. ACS Sustain. Chem. Eng., 2019, 7, (22), 18254 LINK [Google Scholar]
  67. Fivga A., and Dimitriou I. Energy, 2018, 149, 865 LINK [Google Scholar]
  68. Nat. Catal., 2019, 2, (11), 945 LINK [Google Scholar]
  69. Chen H., Wan K., Zhang Y., and Wang Y. ChemSusChem, 2021, 14, (19), 4123 LINK [Google Scholar]
  70. Kim P. J., Fontecha H. D., Kim K., and Pol V. G. ACS Appl. Mater. Interfaces, 2018, 10, (17), 14827 LINK [Google Scholar]
  71. Villagómez-Salas S., Manikandan P., Acuña Guzmán S. F., and Pol V. G. ACS Omega, 2018, 3, (12), 17520 LINK [Google Scholar]
  72. Feng J., Gong J., Wen X., Tian N., Chen X., Mijowska E., and Tang T. RSC Adv, 2014, 4, (51), 26817 LINK [Google Scholar]
  73. Liu X., Ma C., Wen Y., Chen X., Zhao X., Tang T., Holze R., and Mijowska E. Carbon, 2021, 171, 819 LINK [Google Scholar]
  74. Sun J., Lee Y.-H., Yappert R. D., LaPointe A. M., Coates G. W., Peters B., Abu-Omar M. M., and Scott S. L. Chem, 2023, 9, (8), 2318 LINK [Google Scholar]
  75. Celik G., Kennedy R. M., Hackler R. A., Ferrandon M., Tennakoon A., Patnaik S., LaPointe A. M., Ammal S. C., Heyden A., Perras F. A., Pruski M., Scott S. L., Poeppelmeier K. R., Sadow A. D., and Delferro M. ACS Cent. Sci., 2019, 5, (11), 1795 LINK [Google Scholar]
  76. Bäckström E., Odelius K., and Hakkarainen M. ACS Sustain. Chem. Eng., 2019, 7, (12), 11004 LINK [Google Scholar]
  77. Bäckström E., Odelius K., and Hakkarainen M. Ind. Eng. Chem. Res., 2017, 56, (50), 14814 LINK [Google Scholar]
  78. Jiao X., Zheng K., Chen Q., Li X., Li Y., Shao W., Xu J., Zhu J., Pan Y., Sun Y., and Xie Y. Angew. Chem. Int. Ed., 2020, 59, (36), 15497 LINK [Google Scholar]
  79. Barbarias I., Lopez G., Alvarez J., Artetxe M., Arregi A., Bilbao J., and Olazar M. Chem. Eng. J., 2016, 296, 191 LINK [Google Scholar]
  80. Kots P. A., Liu S., Vance B. C., Wang C., Sheehan J. D., and Vlachos D. G. ACS Catal., 2021, 11, (13), 8104 LINK [Google Scholar]
  81. Wang C., Xie T., Kots P. A., Vance B. C., Yu K., Kumar P., Fu J., Liu S., Tsilomelekis G., Stach E. A., Zheng W., and Vlachos D. G. JACS Au, 2021, 1, (9), 1422 LINK [Google Scholar]
  82. Nakaji Y., Tamura M., Miyaoka S., Kumagai S., Tanji M., Nakagawa Y., Yoshioka T., and Tomishige K. Appl. Catal. B: Environ., 2021, 285, 119805 LINK [Google Scholar]
  83. Liu S., Kots P. A., Vance B. C., Danielson A., and Vlachos D. G. Sci. Adv., 2021, 7, (17), eabf8283 LINK [Google Scholar]
  84. Qiu Z., Lin S., Chen Z., Chen A., Zhou Y., Cao X., Wang Y., and Lin B.-L. Sci. Adv., 2023, 9, (25), eadg5332 LINK [Google Scholar]
  85. Bunescu A., Lee S., Li Q., and Hartwig J. F. ACS Cent. Sci., 2017, 3, (8), 895 LINK [Google Scholar]
  86. Rorrer J. E., Ebrahim A. M., Questell-Santiago Y., Zhu J., Troyano-Valls C., Asundi A. S., Brenner A. E., Bare S. R., Tassone C. J., Beckham G. T., and Román-Leshkov Y. ACS Catal., 2022, 12, (22), 13969 LINK [Google Scholar]
  87. Rorrer J. E., Troyano-Valls C., Beckham G. T., and Román-Leshkov Y. ACS Sustain. Chem. Eng., 2021, 9, (35), 11661 LINK [Google Scholar]
  88. Wang N. M., Strong G., DaSilva V., Gao L., Huacuja R., Konstantinov I. A., Rosen M. S., Nett A. J., Ewart S., Geyer R., Scott S. L., and Guironnet D. J. Am. Chem. Soc., 2022, 144, (40), 18526 LINK [Google Scholar]
  89. Wang C., Han H., Wu Y., and Astruc D. Coord. Chem. Rev., 2022, 458, 214422 LINK [Google Scholar]
  90. Kiran N., Ekinci E., and Snape C. E. Resour. Conserv. Recycl., 2000, 29, (4), 273 LINK [Google Scholar]
  91. Ocean Recovery Alliance ‘2015 Plastics-to-Fuel Project Developer’s Guide’, The American Chemical Council, California, USA, June, 2015 LINK [Google Scholar]
  92. Yu J., Sun L., Ma C., Qiao Y., and Yao H. Waste Manag., 2016, 48, 300 LINK [Google Scholar]
  93. Rahimi A., and García J. M. Nat. Rev. Chem., 2017, 1, (6), 0046 LINK [Google Scholar]
  94. Qureshi M. S., Oasmaa A., Pihkola H., Deviatkin I., Tenhunen A., Mannila J., Minkkinen H., Pohjakallio M., and Laine-Ylijoki J. J. Anal. Appl. Pyrolysis, 2020, 152, 104804 LINK [Google Scholar]
  95. Wang C., Wang H., Fu J., and Liu Y. Waste Manag., 2015, 41, 28 LINK [Google Scholar]
  96. Wu G., Li J., and Xu Z. Waste Manag., 2013, 33, (3), 585 LINK [Google Scholar]
  97. Pappa G., Boukouvalas C., Giannaris C., Ntaras N., Zografos V., Magoulas K., Lygeros A., and Tassios D. Resour. Conserv. Recycl., 2001, 34, (1), 33 LINK [Google Scholar]
  98. Al-Salem S. M., Antelava A., Constantinou A., Manos G., and Dutta A. J. Environ. Manag., 2017, 197, 177 LINK [Google Scholar]
  99. Aguado J., Serrano D. P., Romero M. D., and Escola J. M. Chem. Commun., 1996, (6), 725 LINK [Google Scholar]
  100. Aguado J., Sotelo J. L., Serrano D. P., Calles J. A., and Escola J. M. Energy Fuels, 1997, 11, (6), 1225 LINK [Google Scholar]
  101. Bin Jumah A., Anbumuthu V., Tedstone A. A., and Garforth A. A. Ind. Eng. Chem. Res., 2019, 58, (45), 20601 LINK [Google Scholar]
  102. Munir D., Irfan M. F., and Usman M. R. Renew. Sustain. Energy Rev., 2018, 90, 490 LINK [Google Scholar]
  103. Lee W.-T., Bobbink F. D., van Muyden A. P., Lin K.-H., Corminboeuf C., Zamani R. R., and Dyson P. J. Cell Rep. Phys. Sci., 2021, 2, (2), 100332 LINK [Google Scholar]
  104. Munir D., Amer H., Aslam R., Bououdina M., and Usman M. R. Mater. Renew. Sustain. Energy, 2020, 9, (2), 9 LINK [Google Scholar]
  105. Kohli K., Prajapati R., Maity S. K., and Sharma B. K. J. Anal. Appl. Pyrolysis, 2019, 140, 179 LINK [Google Scholar]
  106. Fuentes-Ordóñez E. G., Salbidegoitia J. A., González-Marcos M. P., and González-Velasco J. R. Polym. Degrad. Stab., 2016, 124, 51 LINK [Google Scholar]
  107. Akah A., Hernandez-Martinez J., Rallan C., and Garforth A. A. Chem Eng. Trans., 2015, 43, 2395 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error