Skip to content
Volume 68, Issue 1
  • ISSN: 2056-5135


Part I of this review covered the synthesis methods for synthesis of rhodium films and nanoparticles (1). In Part II, we review the literature on the current and potential applications of rhodium and rhodium alloy films and nanoparticles in catalysis, components for the glass, chemical and electronic industries, thermal sensors and anticancer drugs.


Article metrics loading...

Loading full text...

Full text loading...



  1. Zhou Y., Wu W., Wang Q., and Wang L. Johnson Matthey Technol. Rev., 2024, 68, (1), 91 LINK [Google Scholar]
  2. Rai S., Shaislamov U., Yang J. K., Saud S., Muhammed W. A., and Lee H. J. J. Korean Phys. Soc., 2019, 75, (8), 644 LINK [Google Scholar]
  3. Marot L., De Temmerman G., Oelhafen P., Covarel G., and Litnovsky A. Rev. Sci. Instrum., 2007, 78, (10), 103507 LINK [Google Scholar]
  4. Mostako A. T. T., Khare A., Rao C. V. S., Vala S., Makwana R. J., and Basu T. K. Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 2015, 342, 150 LINK [Google Scholar]
  5. Wrbanek J., Fralick G., Farmer S., Sayir A., Blaha C., and Gonzalez J. ‘Development of Thin Film Ceramic Thermocouples for High Temperature Environments’, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, USA, 11th –14th July, 2004, No. AIAA 2004-3549, Institute of Aeronautics and Astronautics, Reston, USA, 2004 LINK [Google Scholar]
  6. Tougas I. M., Amani M., and Gregory O. J. Sensors, 2013, 13, (11), 15324 LINK [Google Scholar]
  7. Gregory O. J., and You T. IEEE Sens. J., 2005, 5, (5), 833 LINK [Google Scholar]
  8. Choi H., and Li X. Sensors Actuators A: Phys., 2007, 136, (1), 118 LINK [Google Scholar]
  9. Zhao X., Li H., Yang K., Jiang S., Jiang H., and Zhang W. J. Alloys Compd., 2017, 698, 147 LINK [Google Scholar]
  10. Zribi A., Barthès M., Bégot S., Lanzetta F., Rauch J. Y., and Moutarlier V. Sensors Actuators A: Phys., 2016, 245, 26 LINK [Google Scholar]
  11. Liu D., Shi P., Ren W., Liu Y., Niu G., Liu M., Zhang N., Tian B., Jing W., Jiang Z., and Ye Z.-G. J. Mater. Chem. C, 2018, 6, (13), 3206 LINK [Google Scholar]
  12. Liu Y., Ren W., Shi P., Liu D., Zhang Y., Liu M., Ye Z.-G., Jing W., Tian B., and Jiang Z. Sensors, 2018, 18, (4), 958 LINK [Google Scholar]
  13. Liu Y., Jiang H., Zhao X., Liu B., Jia Z., Deng X., and Zhang W. Ceram. Int., 2022, 48, (22), 33943 LINK [Google Scholar]
  14. Jin X., Ma B., Deng J., Luo J., and Yuan W. Ceram. Int., 2021, 47, 28411 LINK [Google Scholar]
  15. Wei Y., Liang H., Wang G., Xingqi W., Yang L., Zhou H., Yang L., Mu X., and Yin G. Ultrasonics, 2021, 113, 106361 LINK [Google Scholar]
  16. Wu Y., Luo C., Wu W., and Su Q. J. Chem. Technol. Biotechnol., 2019, 94, (9), 2969 LINK [Google Scholar]
  17. Omrani M., Goriaux M., Liu Y., Martinet S., Jean-Soro L., and Ruban V. Environ. Pollut., 2020, 257, 113477 LINK [Google Scholar]
  18. Lu Y., Zhang Z., Lin F., Wang H., and Wang Y. ChemNanoMat, 2020, 6, (12), 1659 LINK [Google Scholar]
  19. Lan L., Chen S., Wang S., Xiang J., Huang L., Zhu M., and Lin H. Arab. J. Chem., 2022, 15, (2), 103587 LINK [Google Scholar]
  20. Han B., Li T., Zhang J., Zeng C., Matsumoto H., Su Y., Qiao B., and Zhang T. Chem. Commun., 2020, 56, (36), 4870 LINK [Google Scholar]
  21. Ashida K., Maeda H., Araki T., Hoshino M., Hiraya K., Izumi T., and Yasuoka M. SAE Int. J. Fuels Lubr., 2015, 8, (2), 358 LINK [Google Scholar]
  22. Gomes S. R., Bion N., Blanchard G., Rousseau S., Bellière-Baca V., Harlé V., Duprez D., and Epron F. Appl. Catal. B: Environ., 2011, 102, (1–2), 44 LINK [Google Scholar]
  23. Betchaku M., Nakagawa Y., Tamura M., Yabushita M., Miura Y., Iida S., and Tomishige K. Fuel Process. Technol., 2022, 225, 107061 LINK [Google Scholar]
  24. Guo X., Wang Y., Zhang H., Du D., and Qi Z. Environ. Prog. Sustain. Energy, 2023, 42, (4), e 14073 LINK [Google Scholar]
  25. Zang W., Li G., Wang L., and Zhang X. Catal. Sci. Technol., 2015, 5, (5), 2532 LINK [Google Scholar]
  26. Vlasenko E. S., Nikovskiy I. A., Nelyubina Y. V, Korlyukov A. A., and Novikov V. V. Mendeleev Commun., 2022, 32, (3), 320 LINK [Google Scholar]
  27. García S., Zhang L., Piburn G. W., Henkelman G., and Humphrey S. M. ACS Nano, 2014, 8, (11), 11512 LINK [Google Scholar]
  28. Moriai T., Tsukamoto T., Tanabe M., Kambe T., and Yamamoto K. Angew. Chem., 2020, 132, (51), 23251 LINK [Google Scholar]
  29. Piburn G. W., Li H., Kunal P., Henkelman G., and Humphrey S. M. ChemCatChem, 2018, 10, (1), 329 LINK [Google Scholar]
  30. Wang L., Li Y., Xia M., Li Z., Chen Z., Ma Z., Qin X., and Shao G. J. Power Sources, 2017, 347, 220 LINK [Google Scholar]
  31. Niishiro R., Tanaka S., and Kudo A. Appl. Catal. B: Environ., 2014, 150–151, 187 LINK [Google Scholar]
  32. Liu S., Li M., Wang C., Jiang P., Hu L., and Chen Q. ACS Sustain. Chem. Eng., 2018, 6, (7), 9137 LINK [Google Scholar]
  33. Kim J., Kim H., and Ahn S. H. ACS Sustain. Chem. Eng., 2019, 7, (16), 14041 LINK [Google Scholar]
  34. Guo H., Fang Z., Li H., Fernandez D., Henkelman G., Humphrey S. M., and Yu G. ACS Nano, 2019, 13, (11), 13225 LINK [Google Scholar]
  35. Shen W., Ge L., Sun Y., Liao F., Xu L., Dang Q., Kang Z., and Shao M. ACS Appl. Mater. Interfaces, 2018, 10, (39), 33153 LINK [Google Scholar]
  36. Wu X., Wang R., Li W., Feng B., and Hu W. ACS Appl. Nano Mater., 2021, 4, (4), 3369 LINK [Google Scholar]
  37. Duan H., Li D., Tang Y., He Y., Ji S., Wang R., Lv H., Lopes P. P., Paulikas A. P., Li H., Mao S. X., Wang C., Markovic N. M., Li J., Stamenkovic V. R., and Li Y. J. Am. Chem. Soc., 2017, 139, (15), 5494 LINK [Google Scholar]
  38. Zhu L., Lin H., Li Y., Liao F., Lifshitz Y., Sheng M., Lee S.-T., and Shao M. Nat. Commun., 2016, 7, 12272 LINK [Google Scholar]
  39. Yu N.-F., Tian N., Zhou Z.-Y., Huang L., Xiao J., Wen Y.-H., and Sun S.-G. Angew. Chem. Int. Ed., 2014, 53, (20), 5097 LINK [Google Scholar]
  40. Cheng Y., Lu S., Liao F., Liu L., Li Y., and Shao M. Adv. Funct. Mater., 2017, 27, (23), 1700359 LINK [Google Scholar]
  41. Weisberg A. M. Metal Finish., 1999, 97, (1), 297 LINK [Google Scholar]
  42. Qu B., Yu X., Chen Y., Zhu C., Li C., Yin Z., and Zhang X. ACS Appl. Mater. Interfaces, 2015, 7, (26), 14170 LINK [Google Scholar]
  43. Yin Y., Zhang Y., Gao T., Yao T., Zhang X., Han J., Wang X., Zhang Z., Xu P., Zhang P., Cao X., Song B., and Jin S. Adv. Mater., 2017, 29, (28), 1700311 LINK [Google Scholar]
  44. Gao D., Xia B., Zhu C., Du Y., Xi P., Xue D., Ding J., and Wang J. Mater. Chem. A, 2018, 6, (2), 510 LINK [Google Scholar]
  45. Zhu Z., Yang X., Liu J., Zhu M., and Xu X. Carbon Energy, 2023, 5, (10), e327 LINK [Google Scholar]
  46. Liu Z., Li N., Zhao H., and Du Y. J. Mater. Chem. A, 2015, 3, (39), 19706 LINK [Google Scholar]
  47. Gao D., Xia B., Wang Y., Xiao W., Xi P., Xue D., and Ding J. Small, 2018, 14, (14), 1704150 LINK [Google Scholar]
  48. Yu L., Xia B. Y., Wang X., and Lou X. W. Adv. Mater., 2016, 28, (1), 92 LINK [Google Scholar]
  49. Chen X., Qiu Y., Liu G., Zheng W., Feng W., Gao F., Cao W., Fu Y., Hu W., and Hu P. J. Mater. Chem. A, 2017, 5, (22), 11357 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error