Skip to content
Volume 68, Issue 1
  • ISSN: 2056-5135


Noble metals are key to various research fields and noble metal nanomaterials are directly relevant to optics, catalysis, medicine, sensing and many other applications. Rhodium-based nanomaterials have been less studied than metals such as gold, silver or platinum. There have been many improvements in characterisation tools over the years and knowledge about rhodium chemistry and nanomaterials is growing rapidly. Rhodium nanoparticles are widely used as catalysts for automotive emissions control and for hydrogen and oxygen precipitation reactions in electrolytic cells. Novel applications in electronics, anticancer drugs and aerospace are being revisited. In Part I of this two-part review, we cover different strategies for the synthesis of rhodium films and nanoparticles.


Article metrics loading...

Loading full text...

Full text loading...



  1. Mourdikoudis S., Pallares R. M., and Thanh N. T. K. Nanoscale, 2018, 10, (27), 12871 LINK [Google Scholar]
  2. Losch P., Huang W., Goodman E. D., Wrasman C. J., Holm A., Riscoe A. R., Schwalbe J. A., and Cargnello M. Nano Today, 2019, 24, 15 LINK [Google Scholar]
  3. Quinson J. Adv. Colloid Interface Sci., 2022, 303, 102643 LINK [Google Scholar]
  4. Krajczewski J., Ambroziak R., and Kudelski A. RSC Adv., 2022, 12, (4), 2123 LINK [Google Scholar]
  5. Xu L., Liu D., Chen D., Liu H., and Yang J. Heliyon, 2019, 5, (1), e01165 LINK [Google Scholar]
  6. Xie S., Choi S.-I., Xia X., and Xia Y. Curr. Opin. Chem. Eng., 2013, 2, (2), 142 LINK [Google Scholar]
  7. Zang W., Li G., Wang L., and Zhang X. Catal. Sci. Technol., 2015, 5, (5), 2532 LINK [Google Scholar]
  8. Marot L., Covarel G., Tuilier M.-H., Steiner R., and Oelhafen P. Thin Solid Films, 2008, 516, (21), 7604 LINK [Google Scholar]
  9. Rai S., Shaislamov U., Yang J. K., Saud S., Muhammed W. A., and Lee H. J. J. Korean Phys. Soc., 2019, 75, (8), 644 LINK [Google Scholar]
  10. Taylor G., Paladines R., Marti A., Jacobs D., Tint S., Fones A., Hamilton H., Yu L., Amini S., and Hettinger J. Electrochim. Acta, 2021, 394, 139118 LINK [Google Scholar]
  11. Marot L., De Temmerman G., Oelhafen P., Covarel G., and Litnovsky A. Rev. Sci. Instrum., 2007, 78, (10), 103507 LINK [Google Scholar]
  12. Marot L., De Temmerman G., Thommen V., Mathys D., and Oelhafen P. Surf. Coatings Technol., 2008, 202, (13), 2837 LINK [Google Scholar]
  13. Marot L., Steiner R., Gantenbein M., Mathys D., and Meyer E. J. Nucl. Mater., 2011, 415, (1), S1203 LINK [Google Scholar]
  14. Uccello A., Eren B., Marot L., Dellasega D., Maffini A., Steiner R., Mathys D., Meyer E., and Passoni M. J. Nucl. Mater., 2014, 446, (1–3), 106 LINK [Google Scholar]
  15. Mostako A. T. T., Khare A., Rao C. V. S., Vala S., Basu T. K., Raole P. M., and Makwana R. J. Nucl. Mater., 2014, 446, (1–3), 63 LINK [Google Scholar]
  16. De Bonis A., Santagata A., Sansone M., V Rau J., Mori T., and Teghil R. Appl. Surf. Sci., 2013, 278, 321 LINK [Google Scholar]
  17. Mostako A. T. T., Khare A., Rao C. V. S., Vala S., Makwana R. J., and Basu T. K. Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 2015, 342, 150 LINK [Google Scholar]
  18. Mostako A. T. T., Khare A., Rao C. V. S., Raole P. M., Vala S., Jakhar S., Basu T. K., Abhangi M., and Makwana R. J. J. Nucl. Mater., 2012, 423, (1–3), 53 LINK [Google Scholar]
  19. Negi D. S., Roy A., Loukya B., Dileep K., Shetty S., Kumar N., Kumar P. S. A., and Datta R. J. Cryst. Growth, 2014, 394, 112 LINK [Google Scholar]
  20. Usman A., Rafique M. S., Khaleeq-ur-Rahman M., Siraj K., Anjum S., Latif H., Khan T. M., and Mehmood M. Mater. Chem. Phys., 2011, 126, (3), 649 LINK [Google Scholar]
  21. Uccello A., Maffini A., Dellasega D., and Passoni M. Fusion Eng. Des., 2013, 88, (6–8), 1347 LINK [Google Scholar]
  22. Mostako A. T. T., Rao C. V. S., and Khare A. Rev. Sci. Instrum., 2011, 82, (1), 013101 LINK [Google Scholar]
  23. Uccello A., Dellasega D., Perissinotto S., Lecis N., and Passoni M. J. Nucl. Mater., 2013, 432, (1–3), 261 LINK [Google Scholar]
  24. Passoni M., Dellasega D., Grosso G., Conti C., Ubaldi M. C., and Bottani C. E. J. Nucl. Mater., 2010, 404, (1), 1 LINK [Google Scholar]
  25. Mertens P., Boman R., Dickheuer S., Krasikov Y., Krimmer A., Leichtle D., Liegeois K., Linsmeier C., Litnovsky A., Marchuk O., Rasinski M., and De Bock M. Fusion Eng. Des., 2019, 146, (B), 2514 LINK [Google Scholar]
  26. Saidani F., Rochefort D., and Mohamedi M. Electrocatalysis, 2011, 2, (2), 114 LINK [Google Scholar]
  27. Li R., Li Y., Yang P., Wang D., Xu H., Wang B., Meng F., Zhang J., and An M. J. Energy Chem., 2021, 57, 547 LINK [Google Scholar]
  28. Devendra B. K., Praveen B. M., Tripathi V. S., Nagaraju G., Nagaraju D. H., and Nayana K. O. Inorg. Chem. Commun., 2021, 134, 109065 LINK [Google Scholar]
  29. Devendra B. K., Praveen B. M., Tripathi V. S., Nagaraju D. H., Padaki M., Nagaswarupa H. P., and Krishna R. H. Appl. Surf. Sci. Adv., 2022, 12, 100320 LINK [Google Scholar]
  30. Angus H. C. Trans. IMF, 1965, 43, (1), 135 LINK [Google Scholar]
  31. Pletcher D., and Urbina R. I. J. Electroanal. Chem., 1997, 421, (1–2), 137 LINK [Google Scholar]
  32. Pletcher D., and Urbina R. I. J. Electroanal. Chem., 1997, 421, (1–2), 145 LINK [Google Scholar]
  33. Reid F. H. Trans. IMF, 1955, 33, (1), 105 LINK [Google Scholar]
  34. Baraka A. M., Hamed H. A., and Shaarawy H. H. Anti-Corros. Meth. Mater., 2002, 49, (4), 277 LINK [Google Scholar]
  35. Janata J. Angew. Chem., 2011, 123, (41), 9710 LINK [Google Scholar]
  36. Oliveira R. T. S., Santos M. C., Bulhões L. O. S, and Pereira E. C. J. Electroanal. Chem., 2004, 569, (2), 233 LINK [Google Scholar]
  37. Mech K., Żabiński P., Kowalik R., and Wojnicki M. Surf. Coat. Technol., 2014, 258, 72 LINK [Google Scholar]
  38. Rudolf R., Budić B., Stamenković D., Čolić M., Ivanič A., and Kosec B. Metalurgija, 2013, 52, (3), 337 LINK [Google Scholar]
  39. Varentsov V. K., and Varentsova V. I. Russ. J. Electrochem., 2003, 39, (6), 703 LINK [Google Scholar]
  40. Wu W., Liu J., Zhang Y., Wang X., and Zhang Y. J. Appl. Electrochem., 2019, 49, (10), 1043 LINK [Google Scholar]
  41. Devendra B. K., Praveen B. M., Tripathi V. S., Kumar H. P. P., and Chethana K. R. J. Indian Chem. Soc., 2022, 99, (6), 100466 LINK [Google Scholar]
  42. Tabet-Aoul A., and Mohamedi M. Thin Solid Films, 2013, 534, 270 LINK [Google Scholar]
  43. Kibler L. A., Kleinert M., and Kolb D. M. J. Electroanal. Chem., 1999, 467, (1–2), 249 LINK [Google Scholar]
  44. Panda H. “Handbook on Electroplating with Manufacture of Electrochemicals”, Asia Pacific Business Press Inc, Delhi, India, 2017 [Google Scholar]
  45. Weisberg A. M. Metal Finish., 1999, 97, (1), 297 LINK [Google Scholar]
  46. Yamazaki H. Tanaka Kikinzoku Kogyo KK, Japan, ‘Process for Preparing Rhodium Nitrate Solution’, US Patent, 4, 844,879; 1989 [Google Scholar]
  47. Sadeghi M., Van den Winkel P., Afarideh H., and Haji-Saeid M. J. Radioanal. Nucl. Chem., 2005, 262, (3), 665 LINK [Google Scholar]
  48. Hirai H., Nakao Y., and Toshima N. J. Macromol. Sci. Part A Chem., 1978, 12, (8), 1117 LINK [Google Scholar]
  49. Bundli S., Dhak P., Jensen M., Gunnæs A. E., Nguyen P. D., Fjellvåg H., and Sjåstad A. O. J. Alloys Compd., 2019, 779, 879 LINK [Google Scholar]
  50. Liang S., Wang J., Lin Q., Zhang R., and Wang X. J. Alloys Compd., 2022, 904, 164021 LINK [Google Scholar]
  51. Shuai Q., Yang L., Guo X., Baslé O., and Li C.-J. J. Am. Chem. Soc., 2010, 132, (35), 12212 LINK [Google Scholar]
  52. Zacahua-Tlacuatl G., Ramírez-Meneses E., Manzo-Robledo A., Torres-Huerta A. M., Betancourt I., Philippot K., Ibrahim M., and Domínguez-Crespo M. A. Int. J. Hydrogen Energy, 2023, 48, (23), 8450 LINK [Google Scholar]
  53. Zhou Y., Wu W., Wang Q., and Wang L. Johnson Matthey Technol. Rev., 2024, 68, (1), 102 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error