Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135

Abstract

Noble metals are key to various research fields and noble metal nanomaterials are directly relevant to optics, catalysis, medicine, sensing and many other applications. Rhodium-based nanomaterials have been less studied than metals such as gold, silver or platinum. There have been many improvements in characterisation tools over the years and knowledge about rhodium chemistry and nanomaterials is growing rapidly. Rhodium nanoparticles are widely used as catalysts for automotive emissions control and for hydrogen and oxygen precipitation reactions in electrolytic cells. Novel applications in electronics, anticancer drugs and aerospace are being revisited. In Part I of this two-part review, we cover different strategies for the synthesis of rhodium films and nanoparticles.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16794770872879
2023-03-22
2024-02-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/Wu_Pt1_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16794770872879&mimeType=html&fmt=ahah

References

  1. Mourdikoudis S., Pallares R. M., and Thanh N. T. K. Nanoscale, 2018, 10, (27), 12871 LINK https://doi.org/10.1039/c8nr02278j [Google Scholar]
  2. Losch P., Huang W., Goodman E. D., Wrasman C. J., Holm A., Riscoe A. R., Schwalbe J. A., and Cargnello M. Nano Today, 2019, 24, 15 LINK https://doi.org/10.1016/j.nantod.2018.12.002 [Google Scholar]
  3. Quinson J. Adv. Colloid Interface Sci., 2022, 303, 102643 LINK https://doi.org/10.1016/j.cis.2022.102643 [Google Scholar]
  4. Krajczewski J., Ambroziak R., and Kudelski A. RSC Adv., 2022, 12, (4), 2123 LINK https://doi.org/10.1039/d1ra07470a [Google Scholar]
  5. Xu L., Liu D., Chen D., Liu H., and Yang J. Heliyon, 2019, 5, (1), e01165 LINK https://doi.org/10.1016/j.heliyon.2019.e01165 [Google Scholar]
  6. Xie S., Choi S.-I., Xia X., and Xia Y. Curr. Opin. Chem. Eng., 2013, 2, (2), 142 LINK https://doi.org/10.1016/j.coche.2013.02.003 [Google Scholar]
  7. Zang W., Li G., Wang L., and Zhang X. Catal. Sci. Technol., 2015, 5, (5), 2532 LINK https://doi.org/10.1039/c4cy01619j [Google Scholar]
  8. Marot L., Covarel G., Tuilier M.-H., Steiner R., and Oelhafen P. Thin Solid Films, 2008, 516, (21), 7604 LINK https://doi.org/10.1016/j.tsf.2008.04.087 [Google Scholar]
  9. Rai S., Shaislamov U., Yang J. K., Saud S., Muhammed W. A., and Lee H. J. J. Korean Phys. Soc., 2019, 75, (8), 644 LINK https://doi.org/10.3938/jkps.75.644 [Google Scholar]
  10. Taylor G., Paladines R., Marti A., Jacobs D., Tint S., Fones A., Hamilton H., Yu L., Amini S., and Hettinger J. Electrochim. Acta, 2021, 394, 139118 LINK https://doi.org/10.1016/j.electacta.2021.139118 [Google Scholar]
  11. Marot L., De Temmerman G., Oelhafen P., Covarel G., and Litnovsky A. Rev. Sci. Instrum., 2007, 78, (10), 103507 LINK https://doi.org/10.1063/1.2800779 [Google Scholar]
  12. Marot L., De Temmerman G., Thommen V., Mathys D., and Oelhafen P. Surf. Coatings Technol., 2008, 202, (13), 2837 LINK https://doi.org/10.1016/j.surfcoat.2007.10.014 [Google Scholar]
  13. Marot L., Steiner R., Gantenbein M., Mathys D., and Meyer E. J. Nucl. Mater., 2011, 415, (1), S1203 LINK https://doi.org/10.1016/j.jnucmat.2010.08.062 [Google Scholar]
  14. Uccello A., Eren B., Marot L., Dellasega D., Maffini A., Steiner R., Mathys D., Meyer E., and Passoni M. J. Nucl. Mater., 2014, 446, (1–3), 106 LINK https://doi.org/10.1016/j.jnucmat.2013.11.023 [Google Scholar]
  15. Mostako A. T. T., Khare A., Rao C. V. S., Vala S., Basu T. K., Raole P. M., and Makwana R. J. Nucl. Mater., 2014, 446, (1–3), 63 LINK https://doi.org/10.1016/j.jnucmat.2013.11.013 [Google Scholar]
  16. De Bonis A., Santagata A., Sansone M., V Rau J., Mori T., and Teghil R. Appl. Surf. Sci., 2013, 278, 321 LINK https://doi.org/10.1016/j.apsusc.2012.11.166 [Google Scholar]
  17. Mostako A. T. T., Khare A., Rao C. V. S., Vala S., Makwana R. J., and Basu T. K. Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 2015, 342, 150 LINK https://doi.org/10.1016/j.nimb.2014.09.031 [Google Scholar]
  18. Mostako A. T. T., Khare A., Rao C. V. S., Raole P. M., Vala S., Jakhar S., Basu T. K., Abhangi M., and Makwana R. J. J. Nucl. Mater., 2012, 423, (1–3), 53 LINK https://doi.org/10.1016/j.jnucmat.2011.12.023 [Google Scholar]
  19. Negi D. S., Roy A., Loukya B., Dileep K., Shetty S., Kumar N., Kumar P. S. A., and Datta R. J. Cryst. Growth, 2014, 394, 112 LINK https://doi.org/10.1016/j.jcrysgro.2014.02.033 [Google Scholar]
  20. Usman A., Rafique M. S., Khaleeq-ur-Rahman M., Siraj K., Anjum S., Latif H., Khan T. M., and Mehmood M. Mater. Chem. Phys., 2011, 126, (3), 649 LINK https://doi.org/10.1016/j.matchemphys.2011.01.003 [Google Scholar]
  21. Uccello A., Maffini A., Dellasega D., and Passoni M. Fusion Eng. Des., 2013, 88, (6–8), 1347 LINK https://doi.org/10.1016/j.fusengdes.2013.01.036 [Google Scholar]
  22. Mostako A. T. T., Rao C. V. S., and Khare A. Rev. Sci. Instrum., 2011, 82, (1), 013101 LINK https://doi.org/10.1063/1.3529441 [Google Scholar]
  23. Uccello A., Dellasega D., Perissinotto S., Lecis N., and Passoni M. J. Nucl. Mater., 2013, 432, (1–3), 261 LINK https://doi.org/10.1016/j.jnucmat.2012.08.046 [Google Scholar]
  24. Passoni M., Dellasega D., Grosso G., Conti C., Ubaldi M. C., and Bottani C. E. J. Nucl. Mater., 2010, 404, (1), 1 LINK https://doi.org/10.1016/j.jnucmat.2010.06.015 [Google Scholar]
  25. Mertens P., Boman R., Dickheuer S., Krasikov Y., Krimmer A., Leichtle D., Liegeois K., Linsmeier C., Litnovsky A., Marchuk O., Rasinski M., and De Bock M. Fusion Eng. Des., 2019, 146, (B), 2514 LINK https://doi.org/10.1016/j.fusengdes.2019.04.031 [Google Scholar]
  26. Saidani F., Rochefort D., and Mohamedi M. Electrocatalysis, 2011, 2, (2), 114 LINK https://doi.org/10.1007/s12678-011-0045-2 [Google Scholar]
  27. Li R., Li Y., Yang P., Wang D., Xu H., Wang B., Meng F., Zhang J., and An M. J. Energy Chem., 2021, 57, 547 LINK https://doi.org/10.1016/j.jechem.2020.08.040 [Google Scholar]
  28. Devendra B. K., Praveen B. M., Tripathi V. S., Nagaraju G., Nagaraju D. H., and Nayana K. O. Inorg. Chem. Commun., 2021, 134, 109065 LINK https://doi.org/10.1016/j.inoche.2021.109065 [Google Scholar]
  29. Devendra B. K., Praveen B. M., Tripathi V. S., Nagaraju D. H., Padaki M., Nagaswarupa H. P., and Krishna R. H. Appl. Surf. Sci. Adv., 2022, 12, 100320 LINK https://doi.org/10.1016/j.apsadv.2022.100320 [Google Scholar]
  30. Angus H. C. Trans. IMF, 1965, 43, (1), 135 LINK https://doi.org/10.1080/00202967.1965.11869966 [Google Scholar]
  31. Pletcher D., and Urbina R. I. J. Electroanal. Chem., 1997, 421, (1–2), 137 LINK https://doi.org/10.1016/s0022-0728(96)04844-9 [Google Scholar]
  32. Pletcher D., and Urbina R. I. J. Electroanal. Chem., 1997, 421, (1–2), 145 LINK https://doi.org/10.1016/s0022-0728(96)04845-0 [Google Scholar]
  33. Reid F. H. Trans. IMF, 1955, 33, (1), 105 LINK https://doi.org/10.1080/00202967.1955.11869693 [Google Scholar]
  34. Baraka A. M., Hamed H. A., and Shaarawy H. H. Anti-Corros. Meth. Mater., 2002, 49, (4), 277 LINK https://doi.org/10.1108/00035590210431791 [Google Scholar]
  35. Janata J. Angew. Chem., 2011, 123, (41), 9710 LINK https://doi.org/10.1002/ange.201104618 [Google Scholar]
  36. Oliveira R. T. S., Santos M. C., Bulhões L. O. S, and Pereira E. C. J. Electroanal. Chem., 2004, 569, (2), 233 LINK https://doi.org/10.1016/j.jelechem.2004.03.006 [Google Scholar]
  37. Mech K., Żabiński P., Kowalik R., and Wojnicki M. Surf. Coat. Technol., 2014, 258, 72 LINK https://doi.org/10.1016/j.surfcoat.2014.10.001 [Google Scholar]
  38. Rudolf R., Budić B., Stamenković D., Čolić M., Ivanič A., and Kosec B. Metalurgija, 2013, 52, (3), 337 LINK https://hrcak.srce.hr/95771 [Google Scholar]
  39. Varentsov V. K., and Varentsova V. I. Russ. J. Electrochem., 2003, 39, (6), 703 LINK https://doi.org/10.1023/a:1024177900312 [Google Scholar]
  40. Wu W., Liu J., Zhang Y., Wang X., and Zhang Y. J. Appl. Electrochem., 2019, 49, (10), 1043 LINK https://doi.org/10.1007/s10800-019-01348-5 [Google Scholar]
  41. Devendra B. K., Praveen B. M., Tripathi V. S., Kumar H. P. P., and Chethana K. R. J. Indian Chem. Soc., 2022, 99, (6), 100466 LINK https://doi.org/10.1016/j.jics.2022.100466 [Google Scholar]
  42. Tabet-Aoul A., and Mohamedi M. Thin Solid Films, 2013, 534, 270 LINK https://doi.org/10.1016/j.tsf.2013.03.002 [Google Scholar]
  43. Kibler L. A., Kleinert M., and Kolb D. M. J. Electroanal. Chem., 1999, 467, (1–2), 249 LINK https://doi.org/10.1016/s0022-0728(99)00126-6 [Google Scholar]
  44. Panda H. “Handbook on Electroplating with Manufacture of Electrochemicals”, Asia Pacific Business Press Inc, Delhi, India, 2017 [Google Scholar]
  45. Weisberg A. M. Metal Finish., 1999, 97, (1), 297 LINK https://doi.org/10.1016/s0026-0576(00)83089-5 [Google Scholar]
  46. Yamazaki H. Tanaka Kikinzoku Kogyo KK, Japan, ‘Process for Preparing Rhodium Nitrate Solution’, US Patent, 4, 844,879; 1989 [Google Scholar]
  47. Sadeghi M., Van den Winkel P., Afarideh H., and Haji-Saeid M. J. Radioanal. Nucl. Chem., 2005, 262, (3), 665 LINK https://doi.org/10.1007/s10967-005-0490-6 [Google Scholar]
  48. Hirai H., Nakao Y., and Toshima N. J. Macromol. Sci. Part A Chem., 1978, 12, (8), 1117 LINK https://doi.org/10.1080/00222337808063179 [Google Scholar]
  49. Bundli S., Dhak P., Jensen M., Gunnæs A. E., Nguyen P. D., Fjellvåg H., and Sjåstad A. O. J. Alloys Compd., 2019, 779, 879 LINK https://doi.org/10.1016/j.jallcom.2018.11.301 [Google Scholar]
  50. Liang S., Wang J., Lin Q., Zhang R., and Wang X. J. Alloys Compd., 2022, 904, 164021 LINK https://doi.org/10.1016/j.jallcom.2022.164021 [Google Scholar]
  51. Shuai Q., Yang L., Guo X., Baslé O., and Li C.-J. J. Am. Chem. Soc., 2010, 132, (35), 12212 LINK https://doi.org/10.1021/ja105396b [Google Scholar]
  52. Zacahua-Tlacuatl G., Ramírez-Meneses E., Manzo-Robledo A., Torres-Huerta A. M., Betancourt I., Philippot K., Ibrahim M., and Domínguez-Crespo M. A. Int. J. Hydrogen Energy, 2023, 48, (23), 8450 LINK https://doi.org/10.1016/j.ijhydene.2022.11.169 [Google Scholar]
  53. Zhou Y., Wu W., Wang Q., and Wang L. Johnson Matthey Technol. Rev., 2024, 68, (1), 102 LINK https://doi.org/10.1595/205651324X16965116259515 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651324X16794770872879
Loading
/content/journals/10.1595/205651324X16794770872879
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error