Skip to content
1887
Volume 68, Issue 1
  • ISSN: 2056-5135
  • oa Rhodium and Rhodium-Alloy Films and Nanoparticles: Part I

    A review of synthesis methods

  • Authors: Yicheng Zhou1, Wangping Wu1, Qinqin Wang2 and Liangbing Wang3
  • Affiliations: 1 Electrochemistry and Corrosion Laboratory, School of Mechanical Engineering and Rail Transit, Changzhou UniversityChangzhou 213164China 2 School of Mechanical Engineering, Yangzhou UniversityYangzhou 225127China 3 Avic Tianjin Aviation Electro-mechanical Co LtdTianjin 300308China
  • Source: Johnson Matthey Technology Review, Volume 68, Issue 1, Jan 2024, p. 91 - 101
  • DOI: https://doi.org/10.1595/205651324X16794770872879
    • Received: 24 Oct 2022
    • Accepted: 20 Mar 2023
    • Published online: 22 Mar 2023

Abstract

Noble metals are key to various research fields and noble metal nanomaterials are directly relevant to optics, catalysis, medicine, sensing and many other applications. Rhodium-based nanomaterials have been less studied than metals such as gold, silver or platinum. There have been many improvements in characterisation tools over the years and knowledge about rhodium chemistry and nanomaterials is growing rapidly. Rhodium nanoparticles are widely used as catalysts for automotive emissions control and for hydrogen and oxygen precipitation reactions in electrolytic cells. Novel applications in electronics, anticancer drugs and aerospace are being revisited. In Part I of this two-part review, we cover different strategies for the synthesis of rhodium films and nanoparticles.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16794770872879
2023-03-22
2024-12-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/1/Wu_Pt1_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16794770872879&mimeType=html&fmt=ahah

References

  1. S. Mourdikoudis, R. M. Pallares, N. T. K. Thanh, Nanoscale, 2018, 10, (27), 12871 LINK https://doi.org/10.1039/c8nr02278j [Google Scholar]
  2. P. Losch, W. Huang, E. D. Goodman, C. J. Wrasman, A. Holm, A. R. Riscoe, J. A. Schwalbe, M. Cargnello, Nano Today, 2019, 24, 15 LINK https://doi.org/10.1016/j.nantod.2018.12.002 [Google Scholar]
  3. J. Quinson, Adv. Colloid Interface Sci., 2022, 303, 102643 LINK https://doi.org/10.1016/j.cis.2022.102643 [Google Scholar]
  4. J. Krajczewski, R. Ambroziak, A. Kudelski, RSC Adv., 2022, 12, (4), 2123 LINK https://doi.org/10.1039/d1ra07470a [Google Scholar]
  5. L. Xu, D. Liu, D. Chen, H. Liu, J. Yang, Heliyon, 2019, 5, (1), e01165 LINK https://doi.org/10.1016/j.heliyon.2019.e01165 [Google Scholar]
  6. S. Xie, S.-I. Choi, X. Xia, Y. Xia, Curr. Opin. Chem. Eng., 2013, 2, (2), 142 LINK https://doi.org/10.1016/j.coche.2013.02.003 [Google Scholar]
  7. W. Zang, G. Li, L. Wang, X. Zhang, Catal. Sci. Technol., 2015, 5, (5), 2532 LINK https://doi.org/10.1039/c4cy01619j [Google Scholar]
  8. L. Marot, G. Covarel, M.-H. Tuilier, R. Steiner, P. Oelhafen, Thin Solid Films, 2008, 516, (21), 7604 LINK https://doi.org/10.1016/j.tsf.2008.04.087 [Google Scholar]
  9. S. Rai, U. Shaislamov, J. K. Yang, S. Saud, W. A. Muhammed, H. J. Lee, J. Korean Phys. Soc., 2019, 75, (8), 644 LINK https://doi.org/10.3938/jkps.75.644 [Google Scholar]
  10. G. Taylor, R. Paladines, A. Marti, D. Jacobs, S. Tint, A. Fones, H. Hamilton, L. Yu, S. Amini, J. Hettinger, Electrochim. Acta, 2021, 394, 139118 LINK https://doi.org/10.1016/j.electacta.2021.139118 [Google Scholar]
  11. L. Marot, G. De Temmerman, P. Oelhafen, G. Covarel, A. Litnovsky, Rev. Sci. Instrum., 2007, 78, (10), 103507 LINK https://doi.org/10.1063/1.2800779 [Google Scholar]
  12. L. Marot, G. De Temmerman, V. Thommen, D. Mathys, P. Oelhafen, Surf. Coatings Technol., 2008, 202, (13), 2837 LINK https://doi.org/10.1016/j.surfcoat.2007.10.014 [Google Scholar]
  13. L. Marot, R. Steiner, M. Gantenbein, D. Mathys, E. Meyer, J. Nucl. Mater., 2011, 415, (1), S1203 LINK https://doi.org/10.1016/j.jnucmat.2010.08.062 [Google Scholar]
  14. A. Uccello, B. Eren, L. Marot, D. Dellasega, A. Maffini, R. Steiner, D. Mathys, E. Meyer, M. Passoni, J. Nucl. Mater., 2014, 446, (1–3), 106 LINK https://doi.org/10.1016/j.jnucmat.2013.11.023 [Google Scholar]
  15. A. T. T. Mostako, A. Khare, C. V. S. Rao, S. Vala, T. K. Basu, P. M. Raole, R. Makwana, J. Nucl. Mater., 2014, 446, (1–3), 63 LINK https://doi.org/10.1016/j.jnucmat.2013.11.013 [Google Scholar]
  16. A. De Bonis, A. Santagata, M. Sansone, J. V Rau, T. Mori, R. Teghil, Appl. Surf. Sci., 2013, 278, 321 LINK https://doi.org/10.1016/j.apsusc.2012.11.166 [Google Scholar]
  17. A. T. T. Mostako, A. Khare, C. V. S. Rao, S. Vala, R. J. Makwana, T. K. Basu, Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 2015, 342, 150 LINK https://doi.org/10.1016/j.nimb.2014.09.031 [Google Scholar]
  18. A. T. T. Mostako, A. Khare, C. V. S. Rao, P. M. Raole, S. Vala, S. Jakhar, T. K. Basu, M. Abhangi, R. J. Makwana, J. Nucl. Mater., 2012, 423, (1–3), 53 LINK https://doi.org/10.1016/j.jnucmat.2011.12.023 [Google Scholar]
  19. D. S. Negi, A. Roy, B. Loukya, K. Dileep, S. Shetty, N. Kumar, P. S. A. Kumar, R. Datta, J. Cryst. Growth, 2014, 394, 112 LINK https://doi.org/10.1016/j.jcrysgro.2014.02.033 [Google Scholar]
  20. A. Usman, M. S. Rafique, M. Khaleeq-ur-Rahman, K. Siraj, S. Anjum, H. Latif, T. M. Khan, M. Mehmood, Mater. Chem. Phys., 2011, 126, (3), 649 LINK https://doi.org/10.1016/j.matchemphys.2011.01.003 [Google Scholar]
  21. A. Uccello, A. Maffini, D. Dellasega, M. Passoni, Fusion Eng. Des., 2013, 88, (6–8), 1347 LINK https://doi.org/10.1016/j.fusengdes.2013.01.036 [Google Scholar]
  22. A. T. T. Mostako, C. V. S. Rao, A. Khare, Rev. Sci. Instrum., 2011, 82, (1), 013101 LINK https://doi.org/10.1063/1.3529441 [Google Scholar]
  23. A. Uccello, D. Dellasega, S. Perissinotto, N. Lecis, M. Passoni, J. Nucl. Mater., 2013, 432, (1–3), 261 LINK https://doi.org/10.1016/j.jnucmat.2012.08.046 [Google Scholar]
  24. M. Passoni, D. Dellasega, G. Grosso, C. Conti, M. C. Ubaldi, C. E. Bottani, J. Nucl. Mater., 2010, 404, (1), 1 LINK https://doi.org/10.1016/j.jnucmat.2010.06.015 [Google Scholar]
  25. P. Mertens, R. Boman, S. Dickheuer, Y. Krasikov, A. Krimmer, D. Leichtle, K. Liegeois, C. Linsmeier, A. Litnovsky, O. Marchuk, M. Rasinski, M. De Bock, Fusion Eng. Des., 2019, 146, (B), 2514 LINK https://doi.org/10.1016/j.fusengdes.2019.04.031 [Google Scholar]
  26. F. Saidani, D. Rochefort, M. Mohamedi, Electrocatalysis, 2011, 2, (2), 114 LINK https://doi.org/10.1007/s12678-011-0045-2 [Google Scholar]
  27. R. Li, Y. Li, P. Yang, D. Wang, H. Xu, B. Wang, F. Meng, J. Zhang, M. An, J. Energy Chem., 2021, 57, 547 LINK https://doi.org/10.1016/j.jechem.2020.08.040 [Google Scholar]
  28. B. K. Devendra, B. M. Praveen, V. S. Tripathi, G. Nagaraju, D. H. Nagaraju, K. O. Nayana, Inorg. Chem. Commun., 2021, 134, 109065 LINK https://doi.org/10.1016/j.inoche.2021.109065 [Google Scholar]
  29. B. K. Devendra, B. M. Praveen, V. S. Tripathi, D. H. Nagaraju, M. Padaki, H. P. Nagaswarupa, R. H. Krishna, Appl. Surf. Sci. Adv., 2022, 12, 100320 LINK https://doi.org/10.1016/j.apsadv.2022.100320 [Google Scholar]
  30. H. C. Angus, Trans. IMF, 1965, 43, (1), 135 LINK https://doi.org/10.1080/00202967.1965.11869966 [Google Scholar]
  31. D. Pletcher, R. I. Urbina, J. Electroanal. Chem., 1997, 421, (1–2), 137 LINK https://doi.org/10.1016/s0022-0728(96)04844-9 [Google Scholar]
  32. D. Pletcher, R. I. Urbina, J. Electroanal. Chem., 1997, 421, (1–2), 145 LINK https://doi.org/10.1016/s0022-0728(96)04845-0 [Google Scholar]
  33. F. H. Reid, Trans. IMF, 1955, 33, (1), 105 LINK https://doi.org/10.1080/00202967.1955.11869693 [Google Scholar]
  34. A. M. Baraka, H. A. Hamed, H. H. Shaarawy, Anti-Corros. Meth. Mater., 2002, 49, (4), 277 LINK https://doi.org/10.1108/00035590210431791 [Google Scholar]
  35. J. Janata, Angew. Chem., 2011, 123, (41), 9710 LINK https://doi.org/10.1002/ange.201104618 [Google Scholar]
  36. R. T. S. Oliveira, M. C. Santos, L. O. S Bulhões, E. C. Pereira, J. Electroanal. Chem., 2004, 569, (2), 233 LINK https://doi.org/10.1016/j.jelechem.2004.03.006 [Google Scholar]
  37. K. Mech, P. Żabiński, R. Kowalik, M. Wojnicki, Surf. Coat. Technol., 2014, 258, 72 LINK https://doi.org/10.1016/j.surfcoat.2014.10.001 [Google Scholar]
  38. R. Rudolf, B. Budić, D. Stamenković, M. Čolić, A. Ivanič, B. Kosec, Metalurgija, 2013, 52, (3), 337 LINK https://hrcak.srce.hr/95771 [Google Scholar]
  39. V. K. Varentsov, V. I. Varentsova, Russ. J. Electrochem., 2003, 39, (6), 703 LINK https://doi.org/10.1023/a:1024177900312 [Google Scholar]
  40. W. Wu, J. Liu, Y. Zhang, X. Wang, Y. Zhang, J. Appl. Electrochem., 2019, 49, (10), 1043 LINK https://doi.org/10.1007/s10800-019-01348-5 [Google Scholar]
  41. B. K. Devendra, B. M. Praveen, V. S. Tripathi, H. P. P. Kumar, K. R. Chethana, J. Indian Chem. Soc., 2022, 99, (6), 100466 LINK https://doi.org/10.1016/j.jics.2022.100466 [Google Scholar]
  42. A. Tabet-Aoul, M. Mohamedi, Thin Solid Films, 2013, 534, 270 LINK https://doi.org/10.1016/j.tsf.2013.03.002 [Google Scholar]
  43. L. A. Kibler, M. Kleinert, D. M. Kolb, J. Electroanal. Chem., 1999, 467, (1–2), 249 LINK https://doi.org/10.1016/s0022-0728(99)00126-6 [Google Scholar]
  44. H. Panda, “Handbook on Electroplating with Manufacture of Electrochemicals”, Asia Pacific Business Press Inc, Delhi, India, 2017 [Google Scholar]
  45. A. M. Weisberg, Metal Finish., 1999, 97, (1), 297 LINK https://doi.org/10.1016/s0026-0576(00)83089-5 [Google Scholar]
  46. H. Yamazaki, Tanaka Kikinzoku Kogyo KK, Japan, ‘Process for Preparing Rhodium Nitrate Solution’, US Patent, 4, 844,879; 1989 [Google Scholar]
  47. M. Sadeghi, P. Van den Winkel, H. Afarideh, M. Haji-Saeid, J. Radioanal. Nucl. Chem., 2005, 262, (3), 665 LINK https://doi.org/10.1007/s10967-005-0490-6 [Google Scholar]
  48. H. Hirai, Y. Nakao, N. Toshima, J. Macromol. Sci. Part A Chem., 1978, 12, (8), 1117 LINK https://doi.org/10.1080/00222337808063179 [Google Scholar]
  49. S. Bundli, P. Dhak, M. Jensen, A. E. Gunnæs, P. D. Nguyen, H. Fjellvåg, A. O. Sjåstad, J. Alloys Compd., 2019, 779, 879 LINK https://doi.org/10.1016/j.jallcom.2018.11.301 [Google Scholar]
  50. S. Liang, J. Wang, Q. Lin, R. Zhang, X. Wang, J. Alloys Compd., 2022, 904, 164021 LINK https://doi.org/10.1016/j.jallcom.2022.164021 [Google Scholar]
  51. Q. Shuai, L. Yang, X. Guo, O. Baslé, C.-J. Li, J. Am. Chem. Soc., 2010, 132, (35), 12212 LINK https://doi.org/10.1021/ja105396b [Google Scholar]
  52. G. Zacahua-Tlacuatl, E. Ramírez-Meneses, A. Manzo-Robledo, A. M. Torres-Huerta, I. Betancourt, K. Philippot, M. Ibrahim, M. A. Domínguez-Crespo, Int. J. Hydrogen Energy, 2023, 48, (23), 8450 LINK https://doi.org/10.1016/j.ijhydene.2022.11.169 [Google Scholar]
  53. Y. Zhou, W. Wu, Q. Wang, L. Wang, Johnson Matthey Technol. Rev., 2024, 68, (1), 102 LINK https://doi.org/10.1595/205651324X16965116259515 [Google Scholar]
/content/journals/10.1595/205651324X16794770872879
Loading
/content/journals/10.1595/205651324X16794770872879
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test