Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135

Graphical Abstract

This literature review examines the hydrogen spillover mechanisms on copper on zinc oxide (Cu/ZnO)-based catalysts for CO hydrogenation to methanol. The production of methanol from CO is an attractive process for mitigating greenhouse gas emissions and producing a valuable chemical feedstock. Cu/ZnO-based catalysts are known to exhibit high activity and selectivity towards methanol production and the hydrogen spillover effect is believed to play a crucial role in their performance. The review discusses the current understanding of the hydrogen spillover mechanism, including the nature of the active sites and the factors that affect spillover efficiency. It also summarises recent advances in catalyst design, such as the use of promoters and dopants, to enhance the hydrogen spillover effect and improve catalytic performance. This article provides a comprehensive overview of the hydrogen spillover mechanism on Cu/ZnO-based catalysts for CO hydrogenation to methanol, highlighting the potential of this technology for sustainable methanol production.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16980703569747
2023-10-23
2024-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Alsalmi1_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16980703569747&mimeType=html&fmt=ahah

References

  1. S. Fujita, M. Usui, H. Ito, N. Takezawa, J. Catal., 1995, 157, (2), 403 LINK https://doi.org/10.1006/jcat.1995.1306 [Google Scholar]
  2. W. Wang, Z. Qu, L. Song, Q. Fu, J. Catal., 2020, 382, 129 LINK https://doi.org/10.1016/j.jcat.2019.12.022 [Google Scholar]
  3. M. I. Shajedul, J. Appl. Sci. Environ. Manag., 2023, 27, (3), 473 LINK https://doi.org/10.4314/jasem.v27i3.10 [Google Scholar]
  4. J. Cai, J. Ni, Z. Chen, S. Wu, R. Wu, C. He, J. Wang, Y. Liu, W. Zhou, J. Xu, Front. Mar. Sci., 2023, 10, 1145048 LINK https://doi.org/10.3389/fmars.2023.1145048 [Google Scholar]
  5. Z. Li, J. Wang, Y. Qu, H. Liu, C. Tang, S. Miao, Z. Feng, H. An, C. Li, ACS Catal., 2017, 7, (12), 8544 LINK https://doi.org/10.1021/acscatal.7b03251 [Google Scholar]
  6. C. Álvarez Galván, J. Schumann, M. Behrens, J. L. G. Fierro, R. Schlögl, E. Frei, Appl. Catal. B: Environ., 2016, 195, 104 LINK https://doi.org/10.1016/j.apcatb.2016.05.007 [Google Scholar]
  7. P. Ranjan, V. B. Saptal, J. K. Bera, ChemSusChem, 2022, 15, (21), e202201183 LINK https://doi.org/10.1002/cssc.202201183 [Google Scholar]
  8. M. Tawalbeh, R. M. N. Javed, A. Al-Othman, F. Almomani, S. Ajith, Environ. Technol. Innov., 2023, 31, 103217 LINK https://doi.org/10.1016/j.eti.2023.103217 [Google Scholar]
  9. S. Gesmanee, W. Koo-amornpattana, Energy Procedia, 2017, 138, 739 LINK https://doi.org/10.1016/j.egypro.2017.10.211 [Google Scholar]
  10. A. M. Bahmanpour, A. Hoadley, A. Tanksale, Green Chem., 2015, 17, (6), 3500 LINK https://doi.org/10.1039/c5gc00599j [Google Scholar]
  11. I. Hegemann, A. Schwaebe, K. Fink, J. Comput. Chem., 2008, 29, (13), 2302 LINK https://doi.org/10.1002/jcc.21043 [Google Scholar]
  12. W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, C. Song, RSC Adv., 2018, 8, (14), 7651 LINK https://doi.org/10.1039/c7ra13546g [Google Scholar]
  13. C. V. Miguel, M. A. Soria, A. Mendes, L. M. Madeira, J. Nat. Gas Sci. Eng., 2015, 22, 1 LINK https://doi.org/10.1016/j.jngse.2014.11.010 [Google Scholar]
  14. H. Xiu, SHS Web Conf., 2022, 144, 01011 LINK https://doi.org/10.1051/shsconf/202214401011 [Google Scholar]
  15. G. Liu, D. Willcox, M. Garland, H. H. Kung, J. Catal., 1984, 90, (1), 139 LINK https://doi.org/10.1016/0021-9517(84)90094-0 [Google Scholar]
  16. Z. Hong, Y. Cao, J. Deng, K. Fan, Catal Letters., 2002, 82, (1–2), 37 LINK https://doi.org/10.1023/A:1020531822590 [Google Scholar]
  17. M. Xiong, Z. Gao, Y. Qin, ACS Catal., 2021, 11, (5), 3159 LINK https://doi.org/10.1021/acscatal.0c05567 [Google Scholar]
  18. W. Karim, C. Spreafico, A. Kleibert, J. Gobrecht, J. VandeVondele, Y. Ekinci, J. A. van Bokhoven, Nature, 2017, 541, (7635), 68 LINK https://doi.org/10.1038/nature20782 [Google Scholar]
  19. M. Li, W. Yin, J. Pan, Y. Zhu, N. Sun, X. Zhang, Y. Wan, Z. Luo, L. Yi, L. Wang, Chem. Eng. J., 2023, 471, 144691 LINK https://doi.org/10.1016/j.cej.2023.144691 [Google Scholar]
  20. M. Choi, S. Yook, H. Kim, ChemCatChem, 2015, 7, (7), 1048 LINK https://doi.org/10.1002/cctc.201500032 [Google Scholar]
  21. K. Murakami, Y. Sekine, Phys. Chem. Chem. Phys., 2020, 22, (40), 22852 LINK https://doi.org/10.1039/d0cp04139d [Google Scholar]
  22. R. Prins, V. K. Palfi, M. Reiher, J. Phys. Chem. C, 2012, 116, (27), 14274 LINK https://doi.org/10.1021/jp212274y [Google Scholar]
  23. B. Hu, Y. Yin, G. Liu, S. Chen, X. Hong, S. C. E. Tsang, J. Catal., 2018, 359, 17 LINK https://doi.org/10.1016/j.jcat.2017.12.029 [Google Scholar]
  24. S. E. Collins, D. L. Chiavassa, A. L. Bonivardi, M. A. Baltanás, Catal. Lett., 2005, 103, (1–2), 83 LINK https://doi.org/10.1007/s10562-005-6507-5 [Google Scholar]
  25. A.-G. Boudjahem, M. M. Bettahar, J. Mol. Catal. A: Chem., 2017, 426, (A), 190 LINK https://doi.org/10.1016/j.molcata.2016.11.014 [Google Scholar]
  26. K. Mori, N. Hashimoto, N. Kamiuchi, H. Yoshida, H. Kobayashi, H. Yamashita, Nat. Commun., 2021, 12, 3884 LINK https://doi.org/10.1038/s41467-021-24228-z [Google Scholar]
  27. A. J. Lachawiec, G. Qi, R. T. Yang, Langmuir, 2005, 21, (24), 11418 LINK https://doi.org/10.1021/la051659r [Google Scholar]
  28. Y. Li, R. T. Yang, J. Am. Chem. Soc., 2006, 128, (25), 8136 LINK https://doi.org/10.1021/ja061681m [Google Scholar]
  29. R. Prins, Chem. Rev., 2012, 112, (5), 2714 LINK https://doi.org/10.1021/cr200346z [Google Scholar]
  30. X. Sha, L. Chen, A. C. Cooper, G. P. Pez, H. Cheng, J. Phys. Chem. C, 2009, 113, (26), 11399 LINK https://doi.org/10.1021/jp9017212 [Google Scholar]
  31. H. Shen, H. Li, Z. Yang, C. Li, Green Energy Environ., 2022, 7, (6), 1161 LINK https://doi.org/10.1016/j.gee.2022.01.013 [Google Scholar]
  32. K. Shun, K. Mori, S. Masuda, N. Hashimoto, Y. Hinuma, H. Kobayashi, H. Yamashita, Chem. Sci., 2022, 13, (27), 8137 LINK https://doi.org/10.1039/d2sc00871h [Google Scholar]
  33. M. Zielinski, R. Wojcieszak, S. Monteverdi, M. Mercy, M. Bettahar, Int. Hydrogen J. Energy, 2007, 32, (8), 1024 LINK https://doi.org/10.1016/j.ijhydene.2006.07.004 [Google Scholar]
  34. Y. Li, R. T. Yang, C. Liu, Z. Wang, Ind. Eng. Chem. Res., 2007, 46, (24), 8277 LINK https://doi.org/10.1021/ie0712075 [Google Scholar]
  35. M. Blanco-Rey, J. I. Juaristi, M. Alducin, M. J. López, J. A. Alonso, J. Phys. Chem. C, 2016, 120, (31), 17357 LINK https://doi.org/10.1021/acs.jpcc.6b04006 [Google Scholar]
  36. H. Chen, R. T. Yang, Langmuir, 2010, 26, (19), 15394 LINK https://doi.org/10.1021/la100172b [Google Scholar]
  37. Y. Geng, H. Li, ChemSusChem, 2022, 15, (8), e202102495 LINK https://doi.org/10.1002/cssc.202102495 [Google Scholar]
  38. M. S. Salman, C. Pratthana, Q. Lai, T. Wang, N. Rambhujun, K. Srivastava, K.-F. Aguey-Zinsou, Energy Technol., 2022, 10, (9), 2200433 LINK https://doi.org/10.1002/ente.202200433 [Google Scholar]
  39. J.-H. Guo, S.-J. Li, Y. Su, G. Chen, Int. J. Hydrogen Energy, 2020, 45, (48), 25900 LINK https://doi.org/10.1016/j.ijhydene.2019.12.146 [Google Scholar]
  40. R. Kosydar, M. Kołodziej, E. Lalik, J. Gurgul, G. Mordarski, A. Dreiewicz, Int. J. Hydrogen Energy, 2022, 47, (4), 2347 LINK https://doi.org/10.1016/j.ijhydene.2021.10.162 [Google Scholar]
  41. Y. Xi, L. Huang, H. Cheng, J. Phys. Chem. C, 2015, 119, (39), 22477 LINK https://doi.org/10.1021/acs.jpcc.5b06486 [Google Scholar]
  42. Y. Xi, Q. Zhang, H. Cheng, J. Phys. Chem. C, 2014, 118, (1), 494 LINK https://doi.org/10.1021/jp410244c [Google Scholar]
  43. I. Kostis, N. Vourdas, G. Papadimitropoulos, A. Douvas, M. Vasilopoulou, N. Boukos, D. Davazoglou, J. Phys. Chem. C, 2013, 117, (35), 18013 LINK https://doi.org/10.1021/jp407354j [Google Scholar]
  44. M. Yang, B. Han, H. Cheng, J. Phys. Chem. C, 2012, 116, (46), 24630 LINK https://doi.org/10.1021/jp308255a [Google Scholar]
  45. M. Bowker, ChemCatChem, 2019, 11, (17), 4238 LINK https://doi.org/10.1002/cctc.201900401 [Google Scholar]
  46. B. Liang, J. Ma, X. Su, C. Yang, H. Duan, H. Zhou, S. Deng, L. Li, Y. Huang, Ind. Eng. Chem. Res., 2019, 58, (21), 9030 LINK https://doi.org/10.1021/acs.iecr.9b01546 [Google Scholar]
  47. H. Wan, Z. Wang, J. Zhu, X. Li, B. Liu, F. Gao, L. Dong, Y. Chen, Appl. Catal. B: Environ., 2008, 79, (3), 254 LINK https://doi.org/10.1016/j.apcatb.2007.10.025 [Google Scholar]
  48. K. K. Bando, K. Sayama, H. Kusama, K. Okabe, H. Arakawa, Appl. Catal. A: Gen., 1997, 165, (1–2), 391 LINK https://doi.org/10.1016/s0926-860x(97)00221-4 [Google Scholar]
  49. S. D. Jones, H. E. Hagelin-Weaver, Appl. Catal. B: Environ., 2009, 90, (1–2), 195 LINK https://doi.org/10.1016/j.apcatb.2009.03.013 [Google Scholar]
  50. P.-O. Larsson, A. Andersson, Appl. Catal. B: Environ., 2000, 24, (3–4), 175 LINK https://doi.org/10.1016/s0926-3373(99)00104-6 [Google Scholar]
  51. S. M. Fehr, K. Nguyen, I. Krossing, ChemCatChem, 2022, 14, (3), e202101500 LINK https://doi.org/10.1002/cctc.202101500 [Google Scholar]
  52. J. Howard, I. J. Braid, J. Tomkinson, J. Chem. Soc. Faraday Trans. 1, 1984, 80, (1), 225 LINK https://doi.org/10.1039/f19848000225 [Google Scholar]
  53. M. Huš, D. Kopač, B. Likozar, ACS Catal., 2019, 9, (1), 105 LINK https://doi.org/10.1021/acscatal.8b03810 [Google Scholar]
  54. M. A. Manae, L. Dheer, U. V. Waghmare, Trans. Indian Natl. Acad. Eng., 2022, 7, (1), 1 LINK https://doi.org/10.1007/s41403-021-00262-7 [Google Scholar]
  55. L. Zhang, X. Zhang, K. Qian, Z. Li, Y. Cheng, L. L. Daemen, Z. Wu, W. Huang, J. Energy Chem., 2020, 50, 351 LINK https://doi.org/10.1016/j.jechem.2020.03.038 [Google Scholar]
  56. J.-D. Grunwaldt, A. M. Molenbroek, N.-Y. Topsøe, H. Topsøe, B. S. Clausen, J. Catal., 2000, 194, (2), 452 LINK https://doi.org/10.1006/jcat.2000.2930 [Google Scholar]
  57. J. Nakamura, Y. Choi, T. Fujitani, Top Catal., 2003, 22, (3–4), 277 LINK https://doi.org/10.1023/A:1023588322846 [Google Scholar]
  58. A. A. Tsyganenko, J. Lamotte, J. Saussey, J. C. Lavalley, J. Chem. Soc. Faraday Trans. 1, 1989, 85, (8), 2397 LINK https://doi.org/10.1039/f19898502397 [Google Scholar]
  59. G. Hussain, N. Sheppard, J. Chem. Soc., Faraday Trans., 1990, 86, (9), 1615 LINK https://doi.org/10.1039/ft9908601615 [Google Scholar]
  60. K. Nishida, I. Atake, D. Li, T. Shishido, Y. Oumi, T. Sano, K. Takehira, Appl. Catal. A: Gen., 2008, 337, (1), 48 LINK https://doi.org/10.1016/j.apcata.2007.11.036 [Google Scholar]
  61. M. Zabilskiy, V. L. Sushkevich, M. A. Newton, J. A. van Bokhoven, ACS Catal., 2020, 10, (23), 14240 LINK https://doi.org/10.1021/acscatal.0c03661 [Google Scholar]
  62. S. Shaharun, M. S. Shaharun, D. Mohamad, M. F. Taha, AIP Conf. Proc., 2014, 1621, (10), 3 LINK https://doi.org/10.1063/1.4898437 [Google Scholar]
  63. Y. Zhang, S. Nagamori, S. Hinchiranan, T. Vitidsant, N. Tsubaki, Energy Fuels, 2006, 20, (2), 417 LINK https://doi.org/10.1021/ef050218c [Google Scholar]
  64. L. Yang, W. Luo, G. Cheng, ACS Appl. Mater. Interfaces, 2013, 5, (16), 8231 LINK https://doi.org/10.1021/am402373p [Google Scholar]
  65. S. Wang, Z.-J. Zhao, X. Chang, J. Zhao, H. Tian, C. Yang, M. Li, Q. Fu, R. Mu, J. Gong, Angew. Chem. Int. Ed., 2019, 58, (23), 7668 LINK https://doi.org/10.1002/anie.201903827 [Google Scholar]
  66. G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Science, 2012, 335, (6073), 1209 LINK https://doi.org/10.1126/science.1215864 [Google Scholar]
  67. F. R. Lucci, M. D. Marcinkowski, T. J. Lawton, E. C. H. Sykes, J. Phys. Chem. C, 2015, 119, (43), 24351 LINK https://doi.org/10.1021/acs.jpcc.5b05562 [Google Scholar]
  68. G. C. Chinchen, P. J. Denny, D. G. Parker, M. S. Spencer, D. A. Whan, Appl. Catal., 1987, 30, (2), 333 LINK https://doi.org/10.1016/s0166-9834(00)84123-8 [Google Scholar]
  69. R. T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Chem. Rev., 2020, 120, (21), 12044 LINK https://doi.org/10.1021/acs.chemrev.0c00078 [Google Scholar]
  70. M. S. Spencer, Catal. Lett., 1998, 50, (1–2), 37 LINK https://doi.org/10.1023/a:1019098414820 [Google Scholar]
  71. J. Terreni, E. Billeter, O. Sambalova, X. Liu, M. Trottmann, A. Sterzi, H. Geerlings, P. Trtik, A. Kaestner, A. Borgschulte, Phys. Chem. Chem. Phys., 2020, 22, (40), 22979 LINK https://doi.org/10.1039/d0cp03414b [Google Scholar]
  72. R. Warringham, D. Bellaire, S. F. Parker, J. Taylor, R. A. Ewings, C. M. Goodway, M. Kibble, S. R. Wakefield, M. Jura, M. P. Dudman, R. P. Tooze, P. B. Webb, D. Lennon, J. Phys.: Conf. Ser., 2014, 554, 012005 LINK https://doi.org/10.1088/1742-6596/554/1/012005 [Google Scholar]
  73. S. Golunski, R. Burch, Top. Catal., 2021, 64, (17–20), 974 LINK https://doi.org/10.1007/s11244-021-01427-y [Google Scholar]
  74. K. Ploner, M. Watschinger, P. D. K. Nezhad, T. Götsch, L. Schlicker, E.-M. Köck, A. Gurlo, A. Gili, A. Doran, L. Zhang, N. Köwitsch, M. Armbrüster, S. Vanicek, W. Wallisch, C. Thurner, B. Klötzer, S. Penner, J. Catal., 2020, 391, 497 LINK https://doi.org/10.1016/j.jcat.2020.09.018 [Google Scholar]
  75. X. Yu, Y. Cheng, Y. Li, F. Polo-Garzon, J. Liu, E. Mamontov, M. Li, D. Lennon, S. F. Parker, A. J. Ramirez-Cuesta, Z. Wu, Chem. Rev., 2023, 123, (13), 8638 LINK https://doi.org/10.1021/acs.chemrev.3c00101 [Google Scholar]
  76. J. Terreni, O. Sambalova, A. Borgschulte, S. Rudić, S. F. Parker, A. J. Ramirez-Cuesta, Catalysts, 2020, 10, (4), 433 LINK https://doi.org/10.3390/catal10040433 [Google Scholar]
  77. B. Kniep, F. Girgsdies, T. Ressler, J. Catal., 2005, 236, (1), 34 LINK https://doi.org/10.1016/j.jcat.2005.09.001 [Google Scholar]
  78. S. G. Sanches, J. H. Flores, M. I. Pais da Silva, Mol. Catal., 2018, 454, 55 LINK https://doi.org/10.1016/j.mcat.2018.05.012 [Google Scholar]
  79. A. Arandia, J. Yim, H. Warraich, E. Leppäkangas, R. Bes, A. Lempelto, L. Gell, H. Jiang, K. Meinander, T. Viinikainen, S. Huotari, K. Honkala, R. L. Puurunen, Appl. Catal. B: Environ., 2023, 321, 122046 LINK https://doi.org/10.1016/j.apcatb.2022.122046 [Google Scholar]
  80. M. Pori, I. Arčon, V. D. B. C. Dasireddy, B. Likozar, Z. C. Orel, M. Marinšek, Catal. Lett., 2021, 151, (11), 3114 LINK https://doi.org/10.1007/s10562-021-03556-1 [Google Scholar]
  81. D. Laudenschleger, H. Ruland, M. Muhler, Nat. Commun., 2020, 11, 3898 LINK https://doi.org/10.1038/s41467-020-17631-5 [Google Scholar]
  82. C. Dong, Y. Li, D. Cheng, M. Zhang, J. Liu, Y.-G. Wang, D. Xiao, D. Ma, ACS Catal., 2020, 10, (19), 11011 LINK https://doi.org/10.1021/acscatal.0c02818 [Google Scholar]
  83. L. C. Grabow, M. Mavrikakis, ACS Catal., 2011, 1, (4), 365 LINK https://doi.org/10.1021/cs200055d [Google Scholar]
  84. B. Mockenhaupt, P. Schwiderowski, J. Jelic, F. Studt, M. Muhler, M. Behrens, J. Phys. Chem. C, 2023, 127, (7), 3497 LINK https://doi.org/10.1021/acs.jpcc.2c08823 [Google Scholar]
  85. K. Krim, A. Sachse, A. Le Valant, Y. Pouilloux, S. Hocine, Catal. Lett., 2023, 153, (1), 83 LINK https://doi.org/10.1007/s10562-022-03949-w [Google Scholar]
  86. H.-X. Li, L.-Q.-Q. Yang, Z.-Y. Chi, Y.-L. Zhang, X.-G. Li, Y.-L. He, T. R. Reina, W.-D. Xiao, Catal. Lett., 2022, 152, (10), 3110 LINK https://doi.org/10.1007/s10562-021-03913-0 [Google Scholar]
  87. H. Xiao, Y. Lian, S. Zhang, M. Zhang, J. Zhang, C. Li, Nanoscale, 2023, 15, (20), 9040 LINK https://doi.org/10.1039/d3nr01001e [Google Scholar]
  88. S. M. Perera, S. R. Hettiarachchi, J. W. Hewage, ACS Omega, 2022, 7, (2), 2316 LINK https://doi.org/10.1021/acsomega.1c06146 [Google Scholar]
  89. C. M. Quine, H. L. Smith, C. C. Ahn, A. Hasse-Zamudio, D. A. Boyd, B. Fultz, J. Phys. Chem. C, 2022, 126, (39), 16579 LINK https://doi.org/10.1021/acs.jpcc.2c02960 [Google Scholar]
  90. E. A. Lewis, M. D. Marcinkowski, C. J. Murphy, M. L. Liriano, E. C. H. Sykes, J. Phys. Chem. Lett., 2014, 5, (19), 3380 LINK https://doi.org/10.1021/jz5016789 [Google Scholar]
  91. D. Xu, X. Hong, G. Liu, J. Catal., 2021, 393, 207 LINK https://doi.org/10.1016/j.jcat.2020.11.039 [Google Scholar]
  92. A. Ashrafi, C. Jagadish, J. Appl. Phys., 2007, 102, (7), 071101 LINK https://doi.org/10.1063/1.2787957 [Google Scholar]
  93. H. V. Thang, G. Pacchioni, ChemNanoMat, 2019, 5, (7), 932 LINK https://doi.org/10.1002/cnma.201900195 [Google Scholar]
  94. Z. Luo, S. Tian, Z. Wang, Ind. Eng. Chem. Res., 2020, 59, (13), 5657 LINK https://doi.org/10.1021/acs.iecr.9b06996 [Google Scholar]
  95. J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M. C. Álvarez Galván, R. Schlögl, M. Behrens, ACS Catal., 2015, 5, (6), 3260 LINK https://doi.org/10.1021/acscatal.5b00188 [Google Scholar]
  96. E. L. Kunkes, F. Studt, F. Abild-Pedersen, R. Schlögl, M. Behrens, J. Catal., 2015, 328, 43 LINK https://doi.org/10.1016/j.jcat.2014.12.016 [Google Scholar]
  97. J. Nunan, C. E. Bogdan, K. Klier, K. J. Smith, C.-W. Young, R. G. Herman, J. Catal., 1988, 113, (2), 410 LINK https://doi.org/10.1016/0021-9517(88)90268-0 [Google Scholar]
  98. P. Tunyasitikun, ‘Methanol Synthesis via Hydrogenation of Mixed CO/CO2 over Mn Modified Cu/ZnO/AL2O3 Catalyst’, Masters Thesis, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand, 2020 LINK https://doi.org/10.58837/chula.the.2020.66 [Google Scholar]
  99. M. R. Gogate, Petrol. Sci. Technol., 2019, 37, (5), 603 LINK https://doi.org/10.1080/10916466.2018.1558248 [Google Scholar]
  100. H. Bai, M. Ma, B. Bai, J. Zuo, H. Cao, L. Zhang, Q.-F. Zhang, V. A. Vinokurov, W. Huang, J. Catal., 2019, 380, 68 LINK https://doi.org/10.1016/j.jcat.2019.10.002 [Google Scholar]
  101. U. J. Etim, Y. Song, Z. Zhong, Front. Energy Res., 2020, 8, 545431 LINK https://doi.org/10.3389/fenrg.2020.545431 [Google Scholar]
  102. C. Jeong, Y.-W. Suh, Appl. Chem. Eng., 2016, 27, (6), 555 LINK https://doi.org/10.14478/ace.2016.1109 [Google Scholar]
  103. S. Natesakhawat, P. R. Ohodnicki, B. H. Howard, J. W. Lekse, J. P. Baltrus, C. Matranga, Top. Catal., 2013, 56, (18–20), 1752 LINK https://doi.org/10.1007/s11244-013-0111-5 [Google Scholar]
  104. E. D. Batyrev, N. R. Shiju, G. Rothenberg, J. Phys. Chem. C, 2012, 116, (36), 19335 LINK https://doi.org/10.1021/jp3051438 [Google Scholar]
  105. J. Anton, J. Nebel, H. Song, C. Froese, P. Weide, H. Ruland, M. Muhler, S. Kaluza, J. Catal., 2016, 335, 175 LINK https://doi.org/10.1016/j.jcat.2015.12.016 [Google Scholar]
  106. I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, R. Schlögl, Angew. Chem., 2007, 119, (38), 7465 LINK https://doi.org/10.1002/ange.200702600 [Google Scholar]
  107. H. Meng, J. Zhang, Y. Yang, ChemCatChem, 2023, 15, (17), e202300733 LINK https://doi.org/10.1002/cctc.202300733 [Google Scholar]
  108. C. Bartholomew, ‘Catalyst Deactivation and Regeneration’, in “Kirk-Othmer Encyclopedia of Chemical Technology”, John Wiley & Sons Inc, Hoboken, USA, 2003 LINK https://doi.org/10.1002/0471238961.1415021218150209.a01.pub2 [Google Scholar]
  109. P. Forzatti, Catal. Today, 1999, 52, (2–3), 165 LINK https://doi.org/10.1016/s0920-5861(99)00074-7 [Google Scholar]
  110. M. B. Fichtl, D. Schlereth, N. Jacobsen, I. Kasatkin, J. Schumann, M. Behrens, R. Schlögl, O. Hinrichsen, Appl. Catal. A: Gen., 2015, 502, 262 LINK https://doi.org/10.1016/j.apcata.2015.06.014 [Google Scholar]
  111. H. H. Kung, Catal. Today, 1992, 11, (4), 443 LINK https://doi.org/10.1016/0920-5861(92)80037-n [Google Scholar]
  112. M. V. Twigg, M. S. Spencer, Appl. Catal. A: Gen., 2001, 212, (1–2), 161 LINK https://doi.org/10.1016/s0926-860x(00)00854-1 [Google Scholar]
  113. M. V. Twigg, Top. Catal., 2003, 22, (3–4), 191 LINK https://doi.org/10.1023/A:1023567718303 [Google Scholar]
  114. S. K. Matam, S. A. F. Nastase, A. J. Logsdail, C. R. A Catlow, Chem. Sci., 2020, 11, (26), 6805 LINK https://doi.org/10.1039/d0sc01924k [Google Scholar]
  115. Y. Liu, G. L. Rempel, F. T. T. Ng, Biomass, 2022, 2, (1), 27 LINK https://doi.org/10.3390/biomass2010003 [Google Scholar]
  116. H. Sharifi Pajaie, M. Taghizadeh, Chem. Eng. Technol., 2012, 35, (10), 1857 LINK https://doi.org/10.1002/ceat.201200170 [Google Scholar]
  117. T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, J. Mol. Catal. A: Chem., 2007, 268, (1–2), 185 LINK https://doi.org/10.1016/j.molcata.2006.12.018 [Google Scholar]
  118. T. T. N. Vu, P. Fongarland, L. Vanoye, F. Bornette, G. Postole, A. Desgagnés, M. C. Iliuta, Ind. Eng. Chem. Res., 2022, 61, (41), 15085 LINK https://doi.org/10.1021/acs.iecr.2c00391 [Google Scholar]
  119. Z. Luo, S. Tian, Z. Wang, Ind Eng Chem Res., 2020, 59, (13), 5657 LINK https://doi.org/10.1021/acs.iecr.9b06996 [Google Scholar]
  120. S. Ren, W. R. Shoemaker, X. Wang, Z. Shang, N. Klinghoffer, S. Li, M. Yu, X. He, T. A. White, X. Liang, Fuel, 2019, 239, 1125 LINK https://doi.org/10.1016/j.fuel.2018.11.105 [Google Scholar]
  121. X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, Catal. Commun., 2011, 12, (12), 1095 LINK https://doi.org/10.1016/j.catcom.2011.03.033 [Google Scholar]
  122. E. Frei, A. Gaur, H. Lichtenberg, C. Heine, M. Friedrich, M. Greiner, T. Lunkenbein, J.-D. Grunwaldt, R. Schlögl, ChemCatChem, 2019, 11, (6), 1587 LINK https://doi.org/10.1002/cctc.201900069 [Google Scholar]
  123. L. Shi, W. Shen, G. Yang, X. Fan, Y. Jin, C. Zeng, K. Matsuda, N. Tsubaki, J. Catal., 2013, 302, 83 LINK https://doi.org/10.1016/j.jcat.2013.02.025 [Google Scholar]
  124. I. U. Din, M. S. Shaharun, M. A. Alotaibi, A. I. Alharthi, A. Naeem, J. CO2 Util., 2019, 34, 20 LINK https://doi.org/10.1016/j.jcou.2019.05.036 [Google Scholar]
  125. P. A. Alaba, A. Abbas, W. M. W. Daud, J. Clean. Prod., 2017, 140, (3), 1298 LINK https://doi.org/10.1016/j.jclepro.2016.10.022 [Google Scholar]
  126. R. Gaikwad, H. Reymond, N. Phongprueksathat, P. Rudolf von Rohr, A. Urakawa, Catal. Sci. Technol., 2020, 10, (9), 2763 LINK https://doi.org/10.1039/d0cy00050g [Google Scholar]
  127. Y. Li, S. H. Chan, Q. Sun, Nanoscale, 2015, 7, (19), 8663 LINK https://doi.org/10.1039/c5nr00092k [Google Scholar]
  128. R. Guil-López, N. Mota, J. Llorente, E. Millán, B. Pawelec, J. L. G. Fierro, R. M. Navarro, Materials, 2019, 12, (23), 3902 LINK https://doi.org/10.3390/ma12233902 [Google Scholar]
  129. M. Hoppe, N. Ababii, V. Postica, O. Lupan, O. Polonskyi, F. Schütt, S. Kaps, L. F. Sukhodub, V. Sontea, T. Strunskus, F. Faupel, R. Adelung, Sens. Actuat. B: Chem., 2018, 255, (2), 1362 LINK https://doi.org/10.1016/j.snb.2017.08.135 [Google Scholar]
  130. A. Indarto, J. W. Choi, H. Lee, H. K. Song, IEEE Trans. Plasma Sci., 2008, 36, (2), 516 LINK https://doi.org/10.1109/tps.2008.917162 [Google Scholar]
  131. J. Abu-Dahrieh, D. Rooney, A. Goguet, Y. Saih, Chem. Eng. J., 2012, 203, 201 LINK https://doi.org/10.1016/j.cej.2012.07.011 [Google Scholar]
  132. Y. Wang, W. Gao, K. Li, Y. Zheng, Z. Xie, W. Na, J. G. Chen, H. Wang, Chem, 2020, 6, (2), 419 LINK https://doi.org/10.1016/j.chempr.2019.10.023 [Google Scholar]
  133. J. Papavasiliou, G. Avgouropoulos, T. Ioannides, Appl. Catal. B: Environ., 2009, 88, (3–4), 490 LINK https://doi.org/10.1016/j.apcatb.2008.10.018 [Google Scholar]
  134. S. Kopf, F. Bourriquen, W. Li, H. Neumann, K. Junge, M. Beller, Chem. Rev., 2022, 122, (6), 6634 LINK https://doi.org/10.1021/acs.chemrev.1c00795 [Google Scholar]
  135. J. Zhu, S. S. Araya, X. Cui, S. L. Sahlin, S. K. Kær, Energies, 2020, 13, (3), 610 LINK https://doi.org/10.3390/en13030610 [Google Scholar]
  136. S.-C. Qi, X.-Y. Liu, R.-R. Zhu, D.-M. Xue, X.-Q. Liu, L.-B. Sun, Chem. Eng. J., 2022, 430, (2), 132784 LINK https://doi.org/10.1016/j.cej.2021.132784 [Google Scholar]
  137. C. Tisseraud, C. Comminges, T. Belin, H. Ahouari, A. Soualah, Y. Pouilloux, A. Le Valant, J. Catal., 2015, 330, 533 LINK https://doi.org/10.1016/j.jcat.2015.04.035 [Google Scholar]
  138. M.-Y. Yao, Q.-L. Tang, C. Chen, T.-T. Zhang, X.-X. Duan, X. Zhang, M.-L. Zhang, W. Hu, Comput. Mater. Sci., 2022, 205, 111222 LINK https://doi.org/10.1016/j.commatsci.2022.111222 [Google Scholar]
  139. I. Abbas, H. Kim, C.-H. Shin, S. Yoon, K.-D. Jung, Appl. Catal. B: Environ., 2019, 258, 117971 LINK https://doi.org/10.1016/j.apcatb.2019.117971 [Google Scholar]
  140. M. Peter, J. Fendt, H. Wilmer, O. Hinrichsen, Catal. Lett., 2012, 142, (5), 547 LINK https://doi.org/10.1007/s10562-012-0807-3 [Google Scholar]
  141. M. Zabilskiy, V. L. Sushkevich, D. Palagin, M. A. Newton, F. Krumeich, J. A. van Bokhoven, Nat. Commun., 2020, 11, 2409 LINK https://doi.org/10.1038/s41467-020-16342-1 [Google Scholar]
  142. F. Raimondi, K. Geissler, J. Wambach, A. Wokaun, Appl. Surf. Sci., 2002, 189, (1–2), 59 LINK https://doi.org/10.1016/s0169-4332(01)01045-5 [Google Scholar]
  143. L, E. Kunkes, F. Studt, F. Abild-Pedersen, R. Schlögl, M. Behrens, J Catal., 2015, 328, 43 LINK https://doi.org/10.1016/j.jcat.2014.12.016 [Google Scholar]
  144. L. Wang, U. J. Etim, C. Zhang, L. Amirav, Z. Zhong, Nanomaterials, 2022, 12, (15), 2527 LINK https://doi.org/10.3390/nano12152527 [Google Scholar]
  145. N. U. Topsøe, H. Topsøe, J. Mol. Catal. A: Chem., 1999, 141, (1–3), 95 LINK https://doi.org/10.1016/s1381-1169(98)00253-2 [Google Scholar]
  146. F. Arena, G. Mezzatesta, G. Zafarana, G. Trunfio, F. Frusteri, L. Spadaro, J. Catal., 2013, 300, 141 LINK https://doi.org/10.1016/j.jcat.2012.12.019 [Google Scholar]
  147. J. Shah, M. R. Jan, F. Khitab, Proc. Saf. Environ. Protect., 2018, 116, 149 LINK https://doi.org/10.1016/j.psep.2018.01.008 [Google Scholar]
  148. J. W. Bae, S.-H. Kang, Y.-J. Lee, K.-W. Jun, Appl. Catal. B: Environ., 2009, 90, (3–4), 426 LINK https://doi.org/10.1016/j.apcatb.2009.04.002 [Google Scholar]
  149. T. Genger, O. Hinrichsen, M. Muhler, Catal. Lett., 1999, 59, (2–4), 137 LINK https://doi.org/10.1023/a:1019076722708 [Google Scholar]
  150. F. Arena, G. Italiano, K. Barbera, S. Bordiga, G. Bonura, L. Spadaro, F. Frusteri, Appl. Catal. A: Gen., 2008, 350, (1), 16 LINK https://doi.org/10.1016/j.apcata.2008.07.028 [Google Scholar]
  151. F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F. Frusteri, J. Catal., 2007, 249, (2), 185 LINK https://doi.org/10.1016/j.jcat.2007.04.003 [Google Scholar]
  152. R. Burch, S. E. Golunski, M. S. Spencer, J. Chem. Soc. Faraday Trans., 1990, 86, (15), 2683 LINK https://doi.org/10.1039/ft9908602683 [Google Scholar]
  153. V. D. B. C. Dasireddy, B. Likozar, Renew. Energy, 2019, 140, 452 LINK https://doi.org/10.1016/j.renene.2019.03.073 [Google Scholar]
  154. M. M. Bettahar, Catal. Rev., 2022, 64, (1), 87 LINK https://doi.org/10.1080/01614940.2020.1787771 [Google Scholar]
  155. H. Zhou, H. Jin, Y. Li, Y. Li, S. Huang, W. Lin, W. Chen, Y. Zhang, Catalysts, 2023, 13, (9), 1244 LINK https://doi.org/10.3390/catal13091244 [Google Scholar]
  156. K. Stangeland, H. Li, Z. Yu, Energy, Ecol. Environ., 2020, 5, (4), 272 LINK https://doi.org/10.1007/s40974-020-00156-4 [Google Scholar]
  157. W. C. Conner, J. L. Falconer, Chem. Rev., 1995, 95, (3), 759 LINK https://doi.org/10.1021/cr00035a014 [Google Scholar]
  158. X. Cui, Y. Liu, W. Yan, Y. Xue, Y. Mei, J. Li, X. Gao, H. Zhang, S. Zhu, Y. Niu, T. Deng, Appl. Catal. B: Environ., 2023, 339, 123099 LINK https://doi.org/10.1016/j.apcatb.2023.123099 [Google Scholar]
  159. Y. Wang, S. Kattel, W. Gao, K. Li, P. Liu, J. G. Chen, H. Wang, Nat. Commun., 2019, 10, 1166 LINK https://doi.org/10.1038/s41467-019-09072-6 [Google Scholar]
  160. X. Wang, H. Zhang, H. Qin, K. Wu, K. Wang, J. Ma, W. Fan, Fuel, 2023, 346, 128381 LINK https://doi.org/10.1016/j.fuel.2023.128381 [Google Scholar]
  161. Y. A. Daza, J. N. Kuhn, RSC Adv., 2016, 6, (55), 49675 LINK https://doi.org/10.1039/c6ra05414e [Google Scholar]
  162. F. S. Stone, D. Waller, Top Catal., 2003, 22, (3–4), 305 LINK https://doi.org/10.1023/A:1023592407825 [Google Scholar]
  163. H. Chen, H. Cui, Y. Lv, P. Liu, F. Hao, W. Xiong, H. Luo, Fuel, 2022, 314, 123035 LINK https://doi.org/10.1016/j.fuel.2021.123035 [Google Scholar]
  164. M. González-Castaño, B. Dorneanu, H. Arellano-García, React. Chem. Eng., 2021, 6, (6), 954 LINK https://doi.org/10.1039/d0re00478b [Google Scholar]
  165. K. Tsuchiya, J.-D. Huang, K. Tominaga, ACS Catal., 2013, 3, (12), 2865 LINK https://doi.org/10.1021/cs400809k [Google Scholar]
  166. S.-I. Fujita, M. Usui, N. Takezawa, J. Catal., 1992, 134, (1), 220 LINK https://doi.org/10.1016/0021-9517(92)90223-5 [Google Scholar]
  167. C.-S. Chen, W.-H. Cheng, S.-S. Lin, Catal Lett., 2000, 68, (1–2), 45 LINK https://doi.org/10.1023/A:1019071117449 [Google Scholar]
  168. J. Yoshihara, C. T. Campbell, J. Catal., 1996, 161, (2), 776 LINK https://doi.org/10.1006/jcat.1996.0240 [Google Scholar]
  169. M. Kusche, F. Enzenberger, S. Bajus, H. Niedermeyer, A. Bösmann, A. Kaftan, M. Laurin, J. Libuda, P. Wasserscheid, Angew. Chem. Int. Ed., 2013, 52, (19), 5028 LINK https://doi.org/10.1002/anie.201209758 [Google Scholar]
  170. J. Toyir, P. R. de la Piscina, J. L. G. Fierro, N. Homs, Appl. Catal. B: Environ., 2001, 29, (3), 207 LINK https://doi.org/10.1016/s0926-3373(00)00205-8 [Google Scholar]
  171. J. Toyir, P. R. de la Piscina, J. L. G. Fierro, N. Homs, Appl. Catal. B: Environ., 2001, 34, (4), 255 LINK https://doi.org/10.1016/s0926-3373(01)00203-x [Google Scholar]
  172. J.-W. An, G.-C. Wang, Appl. Surf. Sci., 2023, 636, 157773 LINK https://doi.org/10.1016/j.apsusc.2023.157773 [Google Scholar]
  173. M. Behrens, S. Zander, P. Kurr, N. Jacobsen, J. Senker, G. Koch, T. Ressler, R. W. Fischer, R. Schlögl, J. Am. Chem. Soc., 2013, 135, (16), 6061 LINK https://doi.org/10.1021/ja310456f [Google Scholar]
  174. J. Zhu, L. Lv, S. Zaman, X. Chen, Y. Dai, S. Chen, G. He, D. Wang, L. Mai, Energy Environ. Sci., 2023, 16, (11), 4812 LINK https://doi.org/10.1039/d3ee02196c [Google Scholar]
  175. N. A. Sholeha, H. Holilah, H. Bahruji, A. Ayub, N. Widiastuti, R. Ediati, A. A. Jalil, M. Ulfa, N. Masruchin, R. E. Nugraha, D. Prasetyoko, South African J. Chem. Eng., 2023, 44, 14 LINK https://doi.org/10.1016/j.sajce.2023.01.002 [Google Scholar]
  176. E. Lam, G. Noh, K. Larmier, O. V. Safonova, C. Copéret, J. Catal., 2021, 394, 266 LINK https://doi.org/10.1016/j.jcat.2020.04.028 [Google Scholar]
  177. U. Mondal, G. D. Yadav, React. Chem. Eng., 2022, 7, (6), 1391 LINK https://doi.org/10.1039/d2re00025c [Google Scholar]
  178. C. S. Santana, L. F. Rasteiro, F. C. F. Marcos, E. M. Assaf, J. F. Gomes, J. M. Assaf, Mol. Catal., 2022, 528, 112512 LINK https://doi.org/10.1016/j.mcat.2022.112512 [Google Scholar]
  179. W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev., 2011, 40, (7), 3703 LINK https://doi.org/10.1039/c1cs15008a [Google Scholar]
  180. B. V. Farahani, F. H. Rajabi, M. Bahmani, M. Ghelichkhani, S. Sahebdelfar, Appl. Catal. A: Gen., 2014, 482, 237 LINK https://doi.org/10.1016/j.apcata.2014.05.034 [Google Scholar]
  181. E. Frei, A. Schaadt, T. Ludwig, H. Hillebrecht, I. Krossing, ChemCatChem, 2014, 6, (6), 1721 LINK https://doi.org/10.1002/cctc.201300665 [Google Scholar]
  182. N. H. Berahim, N. A. M. Zabidi, R. M. Ramli, N. A. Suhaimi, Processes, 2023, 11, (3), 719 LINK https://doi.org/10.3390/pr11030719 [Google Scholar]
  183. I. Kowalec, L. Kabalan, C. R. A. Catlow, A. J. Logsdail, Phys. Chem. Chem. Phys., 2022, 24, (16), 9360 LINK https://doi.org/10.1039/d2cp01019d [Google Scholar]
  184. F. Brix, V. Desbuis, L. Piccolo, É. Gaudry, J. Phys. Chem. Lett., 2020, 11, (18), 7672 LINK https://doi.org/10.1021/acs.jpclett.0c02011 [Google Scholar]
  185. N. Koizumi, X. Jiang, J. Kugai, C. Song, Catal. Today, 2012, 194, (1), 16 LINK https://doi.org/10.1016/j.cattod.2012.08.007 [Google Scholar]
  186. S. Akhter, K. Lui, H. H. Kung, J. Phys. Chem., 1985, 89, (10), 1958 LINK https://doi.org/10.1021/j100256a029 [Google Scholar]
  187. J. Kiss, A. Witt, B. Meyer, D. Marx, J. Chem. Phys., 2009, 130, (18), 184706 LINK https://doi.org/10.1063/1.3126682 [Google Scholar]
  188. H. Chen, H. Cui, Y. Lv, P. Liu, F. Hao, W. Xiong, H. Luo, Fuel, 2022, 314, 123035 LINK https://doi.org/10.1016/j.fuel.2021.123035 [Google Scholar]
  189. K. Wang, D. Liu, L. Liu, J. Liu, X. Hu, P. Li, M. Li, A. S. Vasenko, C. Xiao, S. Ding, eScience, 2022, 2, (5), 518 LINK https://doi.org/10.1016/j.esci.2022.08.002 [Google Scholar]
  190. R. Singh, K. Tripathi, K. K. Pant, Fuel, 2021, 303, 121289 LINK https://doi.org/10.1016/j.fuel.2021.121289 [Google Scholar]
  191. T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira, Appl. Catal. A: Gen., 2006, 303, (1), 62 LINK https://doi.org/10.1016/j.apcata.2006.01.031 [Google Scholar]
  192. S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, Science, 2017, 355, (6331), 1296 LINK https://doi.org/10.1126/science.aal3573 [Google Scholar]
  193. S. Kattel, B. Yan, Y. Yang, J. G. Chen, P. Liu, J. Am. Chem. Soc., 2016, 138, (38), 12440 LINK https://doi.org/10.1021/jacs.6b05791 [Google Scholar]
  194. Y. Pan, X. Shen, L. Yao, A. Bentalib, Z. Peng, Catalysts, 2018, 8, (10), 478 LINK https://doi.org/10.3390/catal8100478 [Google Scholar]
  195. N. Yusuf, F. Almomani, Fuel, 2023, 332, (1), 126027 LINK https://doi.org/10.1016/j.fuel.2022.126027 [Google Scholar]
  196. Z. Zhen, W. Tang, W. (Willy) Chu, T. Zhang, L. Lv, S. Tang, Catal. Sci. Technol., 2020, 10, (8), 2343 LINK https://doi.org/10.1039/c9cy02608h [Google Scholar]
  197. F. Zhang, X. Xu, Z. Qiu, B. Feng, Y. Liu, A. Xing, M. Fan, Green Energy Environ., 2022, 7, (4), 772 LINK https://doi.org/10.1016/j.gee.2020.11.027 [Google Scholar]
  198. W. Zhang, J. Chang, Y. Yang, SusMat, 2023, 3, (1), 2 LINK https://doi.org/10.1002/sus2.108 [Google Scholar]
  199. Z. Hu, R. T. Yang, Ind. Eng. Chem. Res., 2019, 58, (24), 10140 LINK https://doi.org/10.1021/acs.iecr.9b01843 [Google Scholar]
  200. M. Tawalbeh, R. M. N. Javed, A. Al-Othman, F. Almomani, Energy Convers. Manag., 2023, 279, 116755 LINK https://doi.org/10.1016/j.enconman.2023.116755 [Google Scholar]
  201. L. Liu, A. Corma, Chem. Rev., 2018, 118, (10), 4981 LINK https://doi.org/10.1021/acs.chemrev.7b00776 [Google Scholar]
  202. N. A. Bahari, W. N. R. W. Isahak, M. S. Masdar, Z. Yaakob, Int. J. Energy Res., 2019, 43, (10), 5128 LINK https://doi.org/10.1002/er.4498 [Google Scholar]
  203. A. Kubacka, M. Fernández-García, A. Martínez-Arias, Appl. Catal. A: Gen., 2016, 518, 2 LINK https://doi.org/10.1016/j.apcata.2016.01.027 [Google Scholar]
  204. A. A. Olajire, J. CO2 Util., 2018, 24, 522 LINK https://doi.org/10.1016/j.jcou.2018.02.012 [Google Scholar]
  205. S. De, A. Dokania, A. Ramirez, J. Gascon, ACS Catal., 2020, 10, (23), 14147 LINK https://doi.org/10.1021/acscatal.0c04273 [Google Scholar]
  206. J. Wang, S. Funk, U. Burghaus, Catal. Lett., 2005, 103, (3–4), 219 LINK https://doi.org/10.1007/s10562-005-7157-3 [Google Scholar]
  207. Y. Yang, J. Evans, J. A. Rodriguez, M. G. White, P. Liu, Phys. Chem. Chem. Phys., 2010, 12, (33), 9909 LINK https://doi.org/10.1039/c001484b [Google Scholar]
  208. M. J. da Silva, Fuel Process. Technol., 2016, 145, 42 LINK https://doi.org/10.1016/j.fuproc.2016.01.023 [Google Scholar]
  209. Z. Li, T. Zhuang, J. Dong, L. Wang, J. Xia, H. Wang, X. Cui, Z. Wang, Ultrason. Sonochem., 2021, 71, 105384 LINK https://doi.org/10.1016/j.ultsonch.2020.105384 [Google Scholar]
/content/journals/10.1595/205651324X16980703569747
Loading
/content/journals/10.1595/205651324X16980703569747
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test