Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135

Graphical Abstract

This literature review examines the hydrogen spillover mechanisms on copper on zinc oxide (Cu/ZnO)-based catalysts for CO hydrogenation to methanol. The production of methanol from CO is an attractive process for mitigating greenhouse gas emissions and producing a valuable chemical feedstock. Cu/ZnO-based catalysts are known to exhibit high activity and selectivity towards methanol production and the hydrogen spillover effect is believed to play a crucial role in their performance. The review discusses the current understanding of the hydrogen spillover mechanism, including the nature of the active sites and the factors that affect spillover efficiency. It also summarises recent advances in catalyst design, such as the use of promoters and dopants, to enhance the hydrogen spillover effect and improve catalytic performance. This article provides a comprehensive overview of the hydrogen spillover mechanism on Cu/ZnO-based catalysts for CO hydrogenation to methanol, highlighting the potential of this technology for sustainable methanol production.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X16980703569747
2023-10-23
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Alsalmi1_16a_Imp.html?itemId=/content/journals/10.1595/205651324X16980703569747&mimeType=html&fmt=ahah

References

  1. Fujita S., Usui M., Ito H., and Takezawa N. J. Catal., 1995, 157, (2), 403 LINK https://doi.org/10.1006/jcat.1995.1306 [Google Scholar]
  2. Wang W., Qu Z., Song L., and Fu Q. J. Catal., 2020, 382, 129 LINK https://doi.org/10.1016/j.jcat.2019.12.022 [Google Scholar]
  3. Shajedul M. I. J. Appl. Sci. Environ. Manag., 2023, 27, (3), 473 LINK https://doi.org/10.4314/jasem.v27i3.10 [Google Scholar]
  4. Cai J., Ni J., Chen Z., Wu S., Wu R., He C., Wang J., Liu Y., Zhou W., and Xu J. Front. Mar. Sci., 2023, 10, 1145048 LINK https://doi.org/10.3389/fmars.2023.1145048 [Google Scholar]
  5. Li Z., Wang J., Qu Y., Liu H., Tang C., Miao S., Feng Z., An H., and Li C. ACS Catal., 2017, 7, (12), 8544 LINK https://doi.org/10.1021/acscatal.7b03251 [Google Scholar]
  6. Álvarez Galván C., Schumann J., Behrens M., Fierro J. L. G., Schlögl R., and Frei E. Appl. Catal. B: Environ., 2016, 195, 104 LINK https://doi.org/10.1016/j.apcatb.2016.05.007 [Google Scholar]
  7. Ranjan P., Saptal V. B., and Bera J. K. ChemSusChem, 2022, 15, (21), e202201183 LINK https://doi.org/10.1002/cssc.202201183 [Google Scholar]
  8. Tawalbeh M., Javed R. M. N., Al-Othman A., Almomani F., and Ajith S. Environ. Technol. Innov., 2023, 31, 103217 LINK https://doi.org/10.1016/j.eti.2023.103217 [Google Scholar]
  9. Gesmanee S., and Koo-amornpattana W. Energy Procedia, 2017, 138, 739 LINK https://doi.org/10.1016/j.egypro.2017.10.211 [Google Scholar]
  10. Bahmanpour A. M., Hoadley A., and Tanksale A. Green Chem., 2015, 17, (6), 3500 LINK https://doi.org/10.1039/c5gc00599j [Google Scholar]
  11. Hegemann I., Schwaebe A., and Fink K. J. Comput. Chem., 2008, 29, (13), 2302 LINK https://doi.org/10.1002/jcc.21043 [Google Scholar]
  12. Li W., Wang H., Jiang X., Zhu J., Liu Z., Guo X., and Song C. RSC Adv., 2018, 8, (14), 7651 LINK https://doi.org/10.1039/c7ra13546g [Google Scholar]
  13. Miguel C. V., Soria M. A., Mendes A., and Madeira L. M. J. Nat. Gas Sci. Eng., 2015, 22, 1 LINK https://doi.org/10.1016/j.jngse.2014.11.010 [Google Scholar]
  14. Xiu H. SHS Web Conf., 2022, 144, 01011 LINK https://doi.org/10.1051/shsconf/202214401011 [Google Scholar]
  15. Liu G., Willcox D., Garland M., and Kung H. H. J. Catal., 1984, 90, (1), 139 LINK https://doi.org/10.1016/0021-9517(84)90094-0 [Google Scholar]
  16. Hong Z., Cao Y., Deng J., and Fan K. Catal Letters., 2002, 82, (1–2), 37 LINK https://doi.org/10.1023/A:1020531822590 [Google Scholar]
  17. Xiong M., Gao Z., and Qin Y. ACS Catal., 2021, 11, (5), 3159 LINK https://doi.org/10.1021/acscatal.0c05567 [Google Scholar]
  18. Karim W., Spreafico C., Kleibert A., Gobrecht J., VandeVondele J., Ekinci Y., and van Bokhoven J. A. Nature, 2017, 541, (7635), 68 LINK https://doi.org/10.1038/nature20782 [Google Scholar]
  19. Li M., Yin W., Pan J., Zhu Y., Sun N., Zhang X., Wan Y., Luo Z., Yi L., and Wang L. Chem. Eng. J., 2023, 471, 144691 LINK https://doi.org/10.1016/j.cej.2023.144691 [Google Scholar]
  20. Choi M., Yook S., and Kim H. ChemCatChem, 2015, 7, (7), 1048 LINK https://doi.org/10.1002/cctc.201500032 [Google Scholar]
  21. Murakami K., and Sekine Y. Phys. Chem. Chem. Phys., 2020, 22, (40), 22852 LINK https://doi.org/10.1039/d0cp04139d [Google Scholar]
  22. Prins R., Palfi V. K., and Reiher M. J. Phys. Chem. C, 2012, 116, (27), 14274 LINK https://doi.org/10.1021/jp212274y [Google Scholar]
  23. Hu B., Yin Y., Liu G., Chen S., Hong X., and Tsang S. C. E. J. Catal., 2018, 359, 17 LINK https://doi.org/10.1016/j.jcat.2017.12.029 [Google Scholar]
  24. Collins S. E., Chiavassa D. L., Bonivardi A. L., and Baltanás M. A. Catal. Lett., 2005, 103, (1–2), 83 LINK https://doi.org/10.1007/s10562-005-6507-5 [Google Scholar]
  25. Boudjahem A.-G., and Bettahar M. M. J. Mol. Catal. A: Chem., 2017, 426, (A), 190 LINK https://doi.org/10.1016/j.molcata.2016.11.014 [Google Scholar]
  26. Mori K., Hashimoto N., Kamiuchi N., Yoshida H., Kobayashi H., and Yamashita H. Nat. Commun., 2021, 12, 3884 LINK https://doi.org/10.1038/s41467-021-24228-z [Google Scholar]
  27. Lachawiec A. J., Qi G., and Yang R. T. Langmuir, 2005, 21, (24), 11418 LINK https://doi.org/10.1021/la051659r [Google Scholar]
  28. Li Y., and Yang R. T. J. Am. Chem. Soc., 2006, 128, (25), 8136 LINK https://doi.org/10.1021/ja061681m [Google Scholar]
  29. Prins R. Chem. Rev., 2012, 112, (5), 2714 LINK https://doi.org/10.1021/cr200346z [Google Scholar]
  30. Sha X., Chen L., Cooper A. C., Pez G. P., and Cheng H. J. Phys. Chem. C, 2009, 113, (26), 11399 LINK https://doi.org/10.1021/jp9017212 [Google Scholar]
  31. Shen H., Li H., Yang Z., and Li C. Green Energy Environ., 2022, 7, (6), 1161 LINK https://doi.org/10.1016/j.gee.2022.01.013 [Google Scholar]
  32. Shun K., Mori K., Masuda S., Hashimoto N., Hinuma Y., Kobayashi H., and Yamashita H. Chem. Sci., 2022, 13, (27), 8137 LINK https://doi.org/10.1039/d2sc00871h [Google Scholar]
  33. Zielinski M., Wojcieszak R., Monteverdi S., Mercy M., and Bettahar M. Int. Hydrogen J. Energy, 2007, 32, (8), 1024 LINK https://doi.org/10.1016/j.ijhydene.2006.07.004 [Google Scholar]
  34. Li Y., Yang R. T., Liu C., and Wang Z. Ind. Eng. Chem. Res., 2007, 46, (24), 8277 LINK https://doi.org/10.1021/ie0712075 [Google Scholar]
  35. Blanco-Rey M., Juaristi J. I., Alducin M., López M. J., and Alonso J. A. J. Phys. Chem. C, 2016, 120, (31), 17357 LINK https://doi.org/10.1021/acs.jpcc.6b04006 [Google Scholar]
  36. Chen H., and Yang R. T. Langmuir, 2010, 26, (19), 15394 LINK https://doi.org/10.1021/la100172b [Google Scholar]
  37. Geng Y., and Li H. ChemSusChem, 2022, 15, (8), e202102495 LINK https://doi.org/10.1002/cssc.202102495 [Google Scholar]
  38. Salman M. S., Pratthana C., Lai Q., Wang T., Rambhujun N., Srivastava K., and Aguey-Zinsou K.-F. Energy Technol., 2022, 10, (9), 2200433 LINK https://doi.org/10.1002/ente.202200433 [Google Scholar]
  39. Guo J.-H., Li S.-J., Su Y., and Chen G. Int. J. Hydrogen Energy, 2020, 45, (48), 25900 LINK https://doi.org/10.1016/j.ijhydene.2019.12.146 [Google Scholar]
  40. Kosydar R., Kołodziej M., Lalik E., Gurgul J., Mordarski G., and Dreiewicz A. Int. J. Hydrogen Energy, 2022, 47, (4), 2347 LINK https://doi.org/10.1016/j.ijhydene.2021.10.162 [Google Scholar]
  41. Xi Y., Huang L., and Cheng H. J. Phys. Chem. C, 2015, 119, (39), 22477 LINK https://doi.org/10.1021/acs.jpcc.5b06486 [Google Scholar]
  42. Xi Y., Zhang Q., and Cheng H. J. Phys. Chem. C, 2014, 118, (1), 494 LINK https://doi.org/10.1021/jp410244c [Google Scholar]
  43. Kostis I., Vourdas N., Papadimitropoulos G., Douvas A., Vasilopoulou M., Boukos N., and Davazoglou D. J. Phys. Chem. C, 2013, 117, (35), 18013 LINK https://doi.org/10.1021/jp407354j [Google Scholar]
  44. Yang M., Han B., and Cheng H. J. Phys. Chem. C, 2012, 116, (46), 24630 LINK https://doi.org/10.1021/jp308255a [Google Scholar]
  45. Bowker M. ChemCatChem, 2019, 11, (17), 4238 LINK https://doi.org/10.1002/cctc.201900401 [Google Scholar]
  46. Liang B., Ma J., Su X., Yang C., Duan H., Zhou H., Deng S., Li L., and Huang Y. Ind. Eng. Chem. Res., 2019, 58, (21), 9030 LINK https://doi.org/10.1021/acs.iecr.9b01546 [Google Scholar]
  47. Wan H., Wang Z., Zhu J., Li X., Liu B., Gao F., Dong L., and Chen Y. Appl. Catal. B: Environ., 2008, 79, (3), 254 LINK https://doi.org/10.1016/j.apcatb.2007.10.025 [Google Scholar]
  48. Bando K. K., Sayama K., Kusama H., Okabe K., and Arakawa H. Appl. Catal. A: Gen., 1997, 165, (1–2), 391 LINK https://doi.org/10.1016/s0926-860x(97)00221-4 [Google Scholar]
  49. Jones S. D., and Hagelin-Weaver H. E. Appl. Catal. B: Environ., 2009, 90, (1–2), 195 LINK https://doi.org/10.1016/j.apcatb.2009.03.013 [Google Scholar]
  50. Larsson P.-O., and Andersson A. Appl. Catal. B: Environ., 2000, 24, (3–4), 175 LINK https://doi.org/10.1016/s0926-3373(99)00104-6 [Google Scholar]
  51. Fehr S. M., Nguyen K., and Krossing I. ChemCatChem, 2022, 14, (3), e202101500 LINK https://doi.org/10.1002/cctc.202101500 [Google Scholar]
  52. Howard J., Braid I. J., and Tomkinson J. J. Chem. Soc. Faraday Trans. 1, 1984, 80, (1), 225 LINK https://doi.org/10.1039/f19848000225 [Google Scholar]
  53. Huš M., Kopač D., and Likozar B. ACS Catal., 2019, 9, (1), 105 LINK https://doi.org/10.1021/acscatal.8b03810 [Google Scholar]
  54. Manae M. A., Dheer L., and Waghmare U. V. Trans. Indian Natl. Acad. Eng., 2022, 7, (1), 1 LINK https://doi.org/10.1007/s41403-021-00262-7 [Google Scholar]
  55. Zhang L., Zhang X., Qian K., Li Z., Cheng Y., Daemen L. L., Wu Z., and Huang W. J. Energy Chem., 2020, 50, 351 LINK https://doi.org/10.1016/j.jechem.2020.03.038 [Google Scholar]
  56. Grunwaldt J.-D., Molenbroek A. M., Topsøe N.-Y., Topsøe H., and Clausen B. S. J. Catal., 2000, 194, (2), 452 LINK https://doi.org/10.1006/jcat.2000.2930 [Google Scholar]
  57. Nakamura J., Choi Y., and Fujitani T. Top Catal., 2003, 22, (3–4), 277 LINK https://doi.org/10.1023/A:1023588322846 [Google Scholar]
  58. Tsyganenko A. A., Lamotte J., Saussey J., and Lavalley J. C. J. Chem. Soc. Faraday Trans. 1, 1989, 85, (8), 2397 LINK https://doi.org/10.1039/f19898502397 [Google Scholar]
  59. Hussain G., and Sheppard N. J. Chem. Soc., Faraday Trans., 1990, 86, (9), 1615 LINK https://doi.org/10.1039/ft9908601615 [Google Scholar]
  60. Nishida K., Atake I., Li D., Shishido T., Oumi Y., Sano T., and Takehira K. Appl. Catal. A: Gen., 2008, 337, (1), 48 LINK https://doi.org/10.1016/j.apcata.2007.11.036 [Google Scholar]
  61. Zabilskiy M., Sushkevich V. L., Newton M. A., and van Bokhoven J. A. ACS Catal., 2020, 10, (23), 14240 LINK https://doi.org/10.1021/acscatal.0c03661 [Google Scholar]
  62. Shaharun S., Shaharun M. S., Mohamad D., and Taha M. F. AIP Conf. Proc., 2014, 1621, (10), 3 LINK https://doi.org/10.1063/1.4898437 [Google Scholar]
  63. Zhang Y., Nagamori S., Hinchiranan S., Vitidsant T., and Tsubaki N. Energy Fuels, 2006, 20, (2), 417 LINK https://doi.org/10.1021/ef050218c [Google Scholar]
  64. Yang L., Luo W., and Cheng G. ACS Appl. Mater. Interfaces, 2013, 5, (16), 8231 LINK https://doi.org/10.1021/am402373p [Google Scholar]
  65. Wang S., Zhao Z.-J., Chang X., Zhao J., Tian H., Yang C., Li M., Fu Q., Mu R., and Gong J. Angew. Chem. Int. Ed., 2019, 58, (23), 7668 LINK https://doi.org/10.1002/anie.201903827 [Google Scholar]
  66. Kyriakou G., Boucher M. B., Jewell A. D., Lewis E. A., Lawton T. J., Baber A. E., Tierney H. L., Flytzani-Stephanopoulos M., and Sykes E. C. H. Science, 2012, 335, (6073), 1209 LINK https://doi.org/10.1126/science.1215864 [Google Scholar]
  67. Lucci F. R., Marcinkowski M. D., Lawton T. J., and Sykes E. C. H. J. Phys. Chem. C, 2015, 119, (43), 24351 LINK https://doi.org/10.1021/acs.jpcc.5b05562 [Google Scholar]
  68. Chinchen G. C., Denny P. J., Parker D. G., Spencer M. S., and Whan D. A. Appl. Catal., 1987, 30, (2), 333 LINK https://doi.org/10.1016/s0166-9834(00)84123-8 [Google Scholar]
  69. Hannagan R. T., Giannakakis G., Flytzani-Stephanopoulos M., and Sykes E. C. H. Chem. Rev., 2020, 120, (21), 12044 LINK https://doi.org/10.1021/acs.chemrev.0c00078 [Google Scholar]
  70. Spencer M. S. Catal. Lett., 1998, 50, (1–2), 37 LINK https://doi.org/10.1023/a:1019098414820 [Google Scholar]
  71. Terreni J., Billeter E., Sambalova O., Liu X., Trottmann M., Sterzi A., Geerlings H., Trtik P., Kaestner A., and Borgschulte A. Phys. Chem. Chem. Phys., 2020, 22, (40), 22979 LINK https://doi.org/10.1039/d0cp03414b [Google Scholar]
  72. Warringham R., Bellaire D., Parker S. F., Taylor J., Ewings R. A., Goodway C. M., Kibble M., Wakefield S. R., Jura M., Dudman M. P., Tooze R. P., Webb P. B., and Lennon D. J. Phys.: Conf. Ser., 2014, 554, 012005 LINK https://doi.org/10.1088/1742-6596/554/1/012005 [Google Scholar]
  73. Golunski S., and Burch R. Top. Catal., 2021, 64, (17–20), 974 LINK https://doi.org/10.1007/s11244-021-01427-y [Google Scholar]
  74. Ploner K., Watschinger M., Nezhad P. D. K., Götsch T., Schlicker L., Köck E.-M., Gurlo A., Gili A., Doran A., Zhang L., Köwitsch N., Armbrüster M., Vanicek S., Wallisch W., Thurner C., Klötzer B., and Penner S. J. Catal., 2020, 391, 497 LINK https://doi.org/10.1016/j.jcat.2020.09.018 [Google Scholar]
  75. Yu X., Cheng Y., Li Y., Polo-Garzon F., Liu J., Mamontov E., Li M., Lennon D., Parker S. F., Ramirez-Cuesta A. J., and Wu Z. Chem. Rev., 2023, 123, (13), 8638 LINK https://doi.org/10.1021/acs.chemrev.3c00101 [Google Scholar]
  76. Terreni J., Sambalova O., Borgschulte A., Rudić S., Parker S. F., and Ramirez-Cuesta A. J. Catalysts, 2020, 10, (4), 433 LINK https://doi.org/10.3390/catal10040433 [Google Scholar]
  77. Kniep B., Girgsdies F., and Ressler T. J. Catal., 2005, 236, (1), 34 LINK https://doi.org/10.1016/j.jcat.2005.09.001 [Google Scholar]
  78. Sanches S. G., Flores J. H., and Pais da Silva M. I. Mol. Catal., 2018, 454, 55 LINK https://doi.org/10.1016/j.mcat.2018.05.012 [Google Scholar]
  79. Arandia A., Yim J., Warraich H., Leppäkangas E., Bes R., Lempelto A., Gell L., Jiang H., Meinander K., Viinikainen T., Huotari S., Honkala K., and Puurunen R. L. Appl. Catal. B: Environ., 2023, 321, 122046 LINK https://doi.org/10.1016/j.apcatb.2022.122046 [Google Scholar]
  80. Pori M., Arčon I., Dasireddy V. D. B. C., Likozar B., Orel Z. C., and Marinšek M. Catal. Lett., 2021, 151, (11), 3114 LINK https://doi.org/10.1007/s10562-021-03556-1 [Google Scholar]
  81. Laudenschleger D., Ruland H., and Muhler M. Nat. Commun., 2020, 11, 3898 LINK https://doi.org/10.1038/s41467-020-17631-5 [Google Scholar]
  82. Dong C., Li Y., Cheng D., Zhang M., Liu J., Wang Y.-G., Xiao D., and Ma D. ACS Catal., 2020, 10, (19), 11011 LINK https://doi.org/10.1021/acscatal.0c02818 [Google Scholar]
  83. Grabow L. C., and Mavrikakis M. ACS Catal., 2011, 1, (4), 365 LINK https://doi.org/10.1021/cs200055d [Google Scholar]
  84. Mockenhaupt B., Schwiderowski P., Jelic J., Studt F., Muhler M., and Behrens M. J. Phys. Chem. C, 2023, 127, (7), 3497 LINK https://doi.org/10.1021/acs.jpcc.2c08823 [Google Scholar]
  85. Krim K., Sachse A., Le Valant A., Pouilloux Y., and Hocine S. Catal. Lett., 2023, 153, (1), 83 LINK https://doi.org/10.1007/s10562-022-03949-w [Google Scholar]
  86. Li H.-X., Yang L.-Q.-Q., Chi Z.-Y., Zhang Y.-L., Li X.-G., He Y.-L., Reina T. R., and Xiao W.-D. Catal. Lett., 2022, 152, (10), 3110 LINK https://doi.org/10.1007/s10562-021-03913-0 [Google Scholar]
  87. Xiao H., Lian Y., Zhang S., Zhang M., Zhang J., and Li C. Nanoscale, 2023, 15, (20), 9040 LINK https://doi.org/10.1039/d3nr01001e [Google Scholar]
  88. Perera S. M., Hettiarachchi S. R., and Hewage J. W. ACS Omega, 2022, 7, (2), 2316 LINK https://doi.org/10.1021/acsomega.1c06146 [Google Scholar]
  89. Quine C. M., Smith H. L., Ahn C. C., Hasse-Zamudio A., Boyd D. A., and Fultz B. J. Phys. Chem. C, 2022, 126, (39), 16579 LINK https://doi.org/10.1021/acs.jpcc.2c02960 [Google Scholar]
  90. Lewis E. A., Marcinkowski M. D., Murphy C. J., Liriano M. L., and Sykes E. C. H. J. Phys. Chem. Lett., 2014, 5, (19), 3380 LINK https://doi.org/10.1021/jz5016789 [Google Scholar]
  91. Xu D., Hong X., and Liu G. J. Catal., 2021, 393, 207 LINK https://doi.org/10.1016/j.jcat.2020.11.039 [Google Scholar]
  92. Ashrafi A., and Jagadish C. J. Appl. Phys., 2007, 102, (7), 071101 LINK https://doi.org/10.1063/1.2787957 [Google Scholar]
  93. Thang H. V., and Pacchioni G. ChemNanoMat, 2019, 5, (7), 932 LINK https://doi.org/10.1002/cnma.201900195 [Google Scholar]
  94. Luo Z., Tian S., and Wang Z. Ind. Eng. Chem. Res., 2020, 59, (13), 5657 LINK https://doi.org/10.1021/acs.iecr.9b06996 [Google Scholar]
  95. Schumann J., Eichelbaum M., Lunkenbein T., Thomas N., Álvarez Galván M. C., Schlögl R., and Behrens M. ACS Catal., 2015, 5, (6), 3260 LINK https://doi.org/10.1021/acscatal.5b00188 [Google Scholar]
  96. Kunkes E. L., Studt F., Abild-Pedersen F., Schlögl R., and Behrens M. J. Catal., 2015, 328, 43 LINK https://doi.org/10.1016/j.jcat.2014.12.016 [Google Scholar]
  97. Nunan J., Bogdan C. E., Klier K., Smith K. J., Young C.-W., and Herman R. G. J. Catal., 1988, 113, (2), 410 LINK https://doi.org/10.1016/0021-9517(88)90268-0 [Google Scholar]
  98. Tunyasitikun P. ‘Methanol Synthesis via Hydrogenation of Mixed CO/CO2 over Mn Modified Cu/ZnO/AL2O3 Catalyst’, Masters Thesis, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand, 2020 LINK https://doi.org/10.58837/chula.the.2020.66 [Google Scholar]
  99. Gogate M. R. Petrol. Sci. Technol., 2019, 37, (5), 603 LINK https://doi.org/10.1080/10916466.2018.1558248 [Google Scholar]
  100. Bai H., Ma M., Bai B., Zuo J., Cao H., Zhang L., Zhang Q.-F., Vinokurov V. A., and Huang W. J. Catal., 2019, 380, 68 LINK https://doi.org/10.1016/j.jcat.2019.10.002 [Google Scholar]
  101. Etim U. J., Song Y., and Zhong Z. Front. Energy Res., 2020, 8, 545431 LINK https://doi.org/10.3389/fenrg.2020.545431 [Google Scholar]
  102. Jeong C., and Suh Y.-W. Appl. Chem. Eng., 2016, 27, (6), 555 LINK https://doi.org/10.14478/ace.2016.1109 [Google Scholar]
  103. Natesakhawat S., Ohodnicki P. R., Howard B. H., Lekse J. W., Baltrus J. P., and Matranga C. Top. Catal., 2013, 56, (18–20), 1752 LINK https://doi.org/10.1007/s11244-013-0111-5 [Google Scholar]
  104. Batyrev E. D., Shiju N. R., and Rothenberg G. J. Phys. Chem. C, 2012, 116, (36), 19335 LINK https://doi.org/10.1021/jp3051438 [Google Scholar]
  105. Anton J., Nebel J., Song H., Froese C., Weide P., Ruland H., Muhler M., and Kaluza S. J. Catal., 2016, 335, 175 LINK https://doi.org/10.1016/j.jcat.2015.12.016 [Google Scholar]
  106. Kasatkin I., Kurr P., Kniep B., Trunschke A., and Schlögl R. Angew. Chem., 2007, 119, (38), 7465 LINK https://doi.org/10.1002/ange.200702600 [Google Scholar]
  107. Meng H., Zhang J., and Yang Y. ChemCatChem, 2023, 15, (17), e202300733 LINK https://doi.org/10.1002/cctc.202300733 [Google Scholar]
  108. Bartholomew C. ‘Catalyst Deactivation and Regeneration’, in “Kirk-Othmer Encyclopedia of Chemical Technology”, John Wiley & Sons Inc, Hoboken, USA, 2003 LINK https://doi.org/10.1002/0471238961.1415021218150209.a01.pub2 [Google Scholar]
  109. Forzatti P. Catal. Today, 1999, 52, (2–3), 165 LINK https://doi.org/10.1016/s0920-5861(99)00074-7 [Google Scholar]
  110. Fichtl M. B., Schlereth D., Jacobsen N., Kasatkin I., Schumann J., Behrens M., Schlögl R., and Hinrichsen O. Appl. Catal. A: Gen., 2015, 502, 262 LINK https://doi.org/10.1016/j.apcata.2015.06.014 [Google Scholar]
  111. Kung H. H. Catal. Today, 1992, 11, (4), 443 LINK https://doi.org/10.1016/0920-5861(92)80037-n [Google Scholar]
  112. Twigg M. V., and Spencer M. S. Appl. Catal. A: Gen., 2001, 212, (1–2), 161 LINK https://doi.org/10.1016/s0926-860x(00)00854-1 [Google Scholar]
  113. Twigg M. V. Top. Catal., 2003, 22, (3–4), 191 LINK https://doi.org/10.1023/A:1023567718303 [Google Scholar]
  114. Matam S. K., Nastase S. A. F., Logsdail A. J., and Catlow C. R. A Chem. Sci., 2020, 11, (26), 6805 LINK https://doi.org/10.1039/d0sc01924k [Google Scholar]
  115. Liu Y., Rempel G. L., and Ng F. T. T. Biomass, 2022, 2, (1), 27 LINK https://doi.org/10.3390/biomass2010003 [Google Scholar]
  116. Sharifi Pajaie H., and Taghizadeh M. Chem. Eng. Technol., 2012, 35, (10), 1857 LINK https://doi.org/10.1002/ceat.201200170 [Google Scholar]
  117. Shishido T., Yamamoto Y., Morioka H., and Takehira K. J. Mol. Catal. A: Chem., 2007, 268, (1–2), 185 LINK https://doi.org/10.1016/j.molcata.2006.12.018 [Google Scholar]
  118. Vu T. T. N., Fongarland P., Vanoye L., Bornette F., Postole G., Desgagnés A., and Iliuta M. C. Ind. Eng. Chem. Res., 2022, 61, (41), 15085 LINK https://doi.org/10.1021/acs.iecr.2c00391 [Google Scholar]
  119. Luo Z., Tian S., and Wang Z. Ind Eng Chem Res., 2020, 59, (13), 5657 LINK https://doi.org/10.1021/acs.iecr.9b06996 [Google Scholar]
  120. Ren S., Shoemaker W. R., Wang X., Shang Z., Klinghoffer N., Li S., Yu M., He X., White T. A., and Liang X. Fuel, 2019, 239, 1125 LINK https://doi.org/10.1016/j.fuel.2018.11.105 [Google Scholar]
  121. Guo X., Mao D., Lu G., Wang S., and Wu G. Catal. Commun., 2011, 12, (12), 1095 LINK https://doi.org/10.1016/j.catcom.2011.03.033 [Google Scholar]
  122. Frei E., Gaur A., Lichtenberg H., Heine C., Friedrich M., Greiner M., Lunkenbein T., Grunwaldt J.-D., and Schlögl R. ChemCatChem, 2019, 11, (6), 1587 LINK https://doi.org/10.1002/cctc.201900069 [Google Scholar]
  123. Shi L., Shen W., Yang G., Fan X., Jin Y., Zeng C., Matsuda K., and Tsubaki N. J. Catal., 2013, 302, 83 LINK https://doi.org/10.1016/j.jcat.2013.02.025 [Google Scholar]
  124. Din I. U., Shaharun M. S., Alotaibi M. A., Alharthi A. I., and Naeem A. J. CO2 Util., 2019, 34, 20 LINK https://doi.org/10.1016/j.jcou.2019.05.036 [Google Scholar]
  125. Alaba P. A., Abbas A., and Daud W. M. W. J. Clean. Prod., 2017, 140, (3), 1298 LINK https://doi.org/10.1016/j.jclepro.2016.10.022 [Google Scholar]
  126. Gaikwad R., Reymond H., Phongprueksathat N., Rudolf von Rohr P., and Urakawa A. Catal. Sci. Technol., 2020, 10, (9), 2763 LINK https://doi.org/10.1039/d0cy00050g [Google Scholar]
  127. Li Y., Chan S. H., and Sun Q. Nanoscale, 2015, 7, (19), 8663 LINK https://doi.org/10.1039/c5nr00092k [Google Scholar]
  128. Guil-López R., Mota N., Llorente J., Millán E., Pawelec B., Fierro J. L. G., and Navarro R. M. Materials, 2019, 12, (23), 3902 LINK https://doi.org/10.3390/ma12233902 [Google Scholar]
  129. Hoppe M., Ababii N., Postica V., Lupan O., Polonskyi O., Schütt F., Kaps S., Sukhodub L. F., Sontea V., Strunskus T., Faupel F., and Adelung R. Sens. Actuat. B: Chem., 2018, 255, (2), 1362 LINK https://doi.org/10.1016/j.snb.2017.08.135 [Google Scholar]
  130. Indarto A., Choi J. W., Lee H., and Song H. K. IEEE Trans. Plasma Sci., 2008, 36, (2), 516 LINK https://doi.org/10.1109/tps.2008.917162 [Google Scholar]
  131. Abu-Dahrieh J., Rooney D., Goguet A., and Saih Y. Chem. Eng. J., 2012, 203, 201 LINK https://doi.org/10.1016/j.cej.2012.07.011 [Google Scholar]
  132. Wang Y., Gao W., Li K., Zheng Y., Xie Z., Na W., Chen J. G., and Wang H. Chem, 2020, 6, (2), 419 LINK https://doi.org/10.1016/j.chempr.2019.10.023 [Google Scholar]
  133. Papavasiliou J., Avgouropoulos G., and Ioannides T. Appl. Catal. B: Environ., 2009, 88, (3–4), 490 LINK https://doi.org/10.1016/j.apcatb.2008.10.018 [Google Scholar]
  134. Kopf S., Bourriquen F., Li W., Neumann H., Junge K., and Beller M. Chem. Rev., 2022, 122, (6), 6634 LINK https://doi.org/10.1021/acs.chemrev.1c00795 [Google Scholar]
  135. Zhu J., Araya S. S., Cui X., Sahlin S. L., and Kær S. K. Energies, 2020, 13, (3), 610 LINK https://doi.org/10.3390/en13030610 [Google Scholar]
  136. Qi S.-C., Liu X.-Y., Zhu R.-R., Xue D.-M., Liu X.-Q., and Sun L.-B. Chem. Eng. J., 2022, 430, (2), 132784 LINK https://doi.org/10.1016/j.cej.2021.132784 [Google Scholar]
  137. Tisseraud C., Comminges C., Belin T., Ahouari H., Soualah A., Pouilloux Y., and Le Valant A. J. Catal., 2015, 330, 533 LINK https://doi.org/10.1016/j.jcat.2015.04.035 [Google Scholar]
  138. Yao M.-Y., Tang Q.-L., Chen C., Zhang T.-T., Duan X.-X., Zhang X., Zhang M.-L., and Hu W. Comput. Mater. Sci., 2022, 205, 111222 LINK https://doi.org/10.1016/j.commatsci.2022.111222 [Google Scholar]
  139. Abbas I., Kim H., Shin C.-H., Yoon S., and Jung K.-D. Appl. Catal. B: Environ., 2019, 258, 117971 LINK https://doi.org/10.1016/j.apcatb.2019.117971 [Google Scholar]
  140. Peter M., Fendt J., Wilmer H., and Hinrichsen O. Catal. Lett., 2012, 142, (5), 547 LINK https://doi.org/10.1007/s10562-012-0807-3 [Google Scholar]
  141. Zabilskiy M., Sushkevich V. L., Palagin D., Newton M. A., Krumeich F., and van Bokhoven J. A. Nat. Commun., 2020, 11, 2409 LINK https://doi.org/10.1038/s41467-020-16342-1 [Google Scholar]
  142. Raimondi F., Geissler K., Wambach J., and Wokaun A. Appl. Surf. Sci., 2002, 189, (1–2), 59 LINK https://doi.org/10.1016/s0169-4332(01)01045-5 [Google Scholar]
  143. Kunkes L, E., Studt F., Abild-Pedersen F., Schlögl R., and Behrens M. J Catal., 2015, 328, 43 LINK https://doi.org/10.1016/j.jcat.2014.12.016 [Google Scholar]
  144. Wang L., Etim U. J., Zhang C., Amirav L., and Zhong Z. Nanomaterials, 2022, 12, (15), 2527 LINK https://doi.org/10.3390/nano12152527 [Google Scholar]
  145. Topsøe N. U., and Topsøe H. J. Mol. Catal. A: Chem., 1999, 141, (1–3), 95 LINK https://doi.org/10.1016/s1381-1169(98)00253-2 [Google Scholar]
  146. Arena F., Mezzatesta G., Zafarana G., Trunfio G., Frusteri F., and Spadaro L. J. Catal., 2013, 300, 141 LINK https://doi.org/10.1016/j.jcat.2012.12.019 [Google Scholar]
  147. Shah J., Jan M. R., and Khitab F. Proc. Saf. Environ. Protect., 2018, 116, 149 LINK https://doi.org/10.1016/j.psep.2018.01.008 [Google Scholar]
  148. Bae J. W., Kang S.-H., Lee Y.-J., and Jun K.-W. Appl. Catal. B: Environ., 2009, 90, (3–4), 426 LINK https://doi.org/10.1016/j.apcatb.2009.04.002 [Google Scholar]
  149. Genger T., Hinrichsen O., and Muhler M. Catal. Lett., 1999, 59, (2–4), 137 LINK https://doi.org/10.1023/a:1019076722708 [Google Scholar]
  150. Arena F., Italiano G., Barbera K., Bordiga S., Bonura G., Spadaro L., and Frusteri F. Appl. Catal. A: Gen., 2008, 350, (1), 16 LINK https://doi.org/10.1016/j.apcata.2008.07.028 [Google Scholar]
  151. Arena F., Barbera K., Italiano G., Bonura G., Spadaro L., and Frusteri F. J. Catal., 2007, 249, (2), 185 LINK https://doi.org/10.1016/j.jcat.2007.04.003 [Google Scholar]
  152. Burch R., Golunski S. E., and Spencer M. S. J. Chem. Soc. Faraday Trans., 1990, 86, (15), 2683 LINK https://doi.org/10.1039/ft9908602683 [Google Scholar]
  153. Dasireddy V. D. B. C., and Likozar B. Renew. Energy, 2019, 140, 452 LINK https://doi.org/10.1016/j.renene.2019.03.073 [Google Scholar]
  154. Bettahar M. M. Catal. Rev., 2022, 64, (1), 87 LINK https://doi.org/10.1080/01614940.2020.1787771 [Google Scholar]
  155. Zhou H., Jin H., Li Y., Li Y., Huang S., Lin W., Chen W., and Zhang Y. Catalysts, 2023, 13, (9), 1244 LINK https://doi.org/10.3390/catal13091244 [Google Scholar]
  156. Stangeland K., Li H., and Yu Z. Energy, Ecol. Environ., 2020, 5, (4), 272 LINK https://doi.org/10.1007/s40974-020-00156-4 [Google Scholar]
  157. Conner W. C., and Falconer J. L. Chem. Rev., 1995, 95, (3), 759 LINK https://doi.org/10.1021/cr00035a014 [Google Scholar]
  158. Cui X., Liu Y., Yan W., Xue Y., Mei Y., Li J., Gao X., Zhang H., Zhu S., Niu Y., and Deng T. Appl. Catal. B: Environ., 2023, 339, 123099 LINK https://doi.org/10.1016/j.apcatb.2023.123099 [Google Scholar]
  159. Wang Y., Kattel S., Gao W., Li K., Liu P., Chen J. G., and Wang H. Nat. Commun., 2019, 10, 1166 LINK https://doi.org/10.1038/s41467-019-09072-6 [Google Scholar]
  160. Wang X., Zhang H., Qin H., Wu K., Wang K., Ma J., and Fan W. Fuel, 2023, 346, 128381 LINK https://doi.org/10.1016/j.fuel.2023.128381 [Google Scholar]
  161. Daza Y. A., and Kuhn J. N. RSC Adv., 2016, 6, (55), 49675 LINK https://doi.org/10.1039/c6ra05414e [Google Scholar]
  162. Stone F. S., and Waller D. Top Catal., 2003, 22, (3–4), 305 LINK https://doi.org/10.1023/A:1023592407825 [Google Scholar]
  163. Chen H., Cui H., Lv Y., Liu P., Hao F., Xiong W., and Luo H. Fuel, 2022, 314, 123035 LINK https://doi.org/10.1016/j.fuel.2021.123035 [Google Scholar]
  164. González-Castaño M., Dorneanu B., and Arellano-García H. React. Chem. Eng., 2021, 6, (6), 954 LINK https://doi.org/10.1039/d0re00478b [Google Scholar]
  165. Tsuchiya K., Huang J.-D., and Tominaga K. ACS Catal., 2013, 3, (12), 2865 LINK https://doi.org/10.1021/cs400809k [Google Scholar]
  166. Fujita S.-I., Usui M., and Takezawa N. J. Catal., 1992, 134, (1), 220 LINK https://doi.org/10.1016/0021-9517(92)90223-5 [Google Scholar]
  167. Chen C.-S., Cheng W.-H., and Lin S.-S. Catal Lett., 2000, 68, (1–2), 45 LINK https://doi.org/10.1023/A:1019071117449 [Google Scholar]
  168. Yoshihara J., and Campbell C. T. J. Catal., 1996, 161, (2), 776 LINK https://doi.org/10.1006/jcat.1996.0240 [Google Scholar]
  169. Kusche M., Enzenberger F., Bajus S., Niedermeyer H., Bösmann A., Kaftan A., Laurin M., Libuda J., and Wasserscheid P. Angew. Chem. Int. Ed., 2013, 52, (19), 5028 LINK https://doi.org/10.1002/anie.201209758 [Google Scholar]
  170. Toyir J., de la Piscina P. R., Fierro J. L. G., and Homs N. Appl. Catal. B: Environ., 2001, 29, (3), 207 LINK https://doi.org/10.1016/s0926-3373(00)00205-8 [Google Scholar]
  171. Toyir J., de la Piscina P. R., Fierro J. L. G., and Homs N. Appl. Catal. B: Environ., 2001, 34, (4), 255 LINK https://doi.org/10.1016/s0926-3373(01)00203-x [Google Scholar]
  172. An J.-W., and Wang G.-C. Appl. Surf. Sci., 2023, 636, 157773 LINK https://doi.org/10.1016/j.apsusc.2023.157773 [Google Scholar]
  173. Behrens M., Zander S., Kurr P., Jacobsen N., Senker J., Koch G., Ressler T., Fischer R. W., and Schlögl R. J. Am. Chem. Soc., 2013, 135, (16), 6061 LINK https://doi.org/10.1021/ja310456f [Google Scholar]
  174. Zhu J., Lv L., Zaman S., Chen X., Dai Y., Chen S., He G., Wang D., and Mai L. Energy Environ. Sci., 2023, 16, (11), 4812 LINK https://doi.org/10.1039/d3ee02196c [Google Scholar]
  175. Sholeha N. A., Holilah H., Bahruji H., Ayub A., Widiastuti N., Ediati R., Jalil A. A., Ulfa M., Masruchin N., Nugraha R. E., and Prasetyoko D. South African J. Chem. Eng., 2023, 44, 14 LINK https://doi.org/10.1016/j.sajce.2023.01.002 [Google Scholar]
  176. Lam E., Noh G., Larmier K., Safonova O. V., and Copéret C. J. Catal., 2021, 394, 266 LINK https://doi.org/10.1016/j.jcat.2020.04.028 [Google Scholar]
  177. Mondal U., and Yadav G. D. React. Chem. Eng., 2022, 7, (6), 1391 LINK https://doi.org/10.1039/d2re00025c [Google Scholar]
  178. Santana C. S., Rasteiro L. F., Marcos F. C. F., Assaf E. M., Gomes J. F., and Assaf J. M. Mol. Catal., 2022, 528, 112512 LINK https://doi.org/10.1016/j.mcat.2022.112512 [Google Scholar]
  179. Wang W., Wang S., Ma X., and Gong J. Chem. Soc. Rev., 2011, 40, (7), 3703 LINK https://doi.org/10.1039/c1cs15008a [Google Scholar]
  180. Farahani B. V., Rajabi F. H., Bahmani M., Ghelichkhani M., and Sahebdelfar S. Appl. Catal. A: Gen., 2014, 482, 237 LINK https://doi.org/10.1016/j.apcata.2014.05.034 [Google Scholar]
  181. Frei E., Schaadt A., Ludwig T., Hillebrecht H., and Krossing I. ChemCatChem, 2014, 6, (6), 1721 LINK https://doi.org/10.1002/cctc.201300665 [Google Scholar]
  182. Berahim N. H., Zabidi N. A. M., Ramli R. M., and Suhaimi N. A. Processes, 2023, 11, (3), 719 LINK https://doi.org/10.3390/pr11030719 [Google Scholar]
  183. Kowalec I., Kabalan L., Catlow C. R. A., and Logsdail A. J. Phys. Chem. Chem. Phys., 2022, 24, (16), 9360 LINK https://doi.org/10.1039/d2cp01019d [Google Scholar]
  184. Brix F., Desbuis V., Piccolo L., and Gaudry É. J. Phys. Chem. Lett., 2020, 11, (18), 7672 LINK https://doi.org/10.1021/acs.jpclett.0c02011 [Google Scholar]
  185. Koizumi N., Jiang X., Kugai J., and Song C. Catal. Today, 2012, 194, (1), 16 LINK https://doi.org/10.1016/j.cattod.2012.08.007 [Google Scholar]
  186. Akhter S., Lui K., and Kung H. H. J. Phys. Chem., 1985, 89, (10), 1958 LINK https://doi.org/10.1021/j100256a029 [Google Scholar]
  187. Kiss J., Witt A., Meyer B., and Marx D. J. Chem. Phys., 2009, 130, (18), 184706 LINK https://doi.org/10.1063/1.3126682 [Google Scholar]
  188. Chen H., Cui H., Lv Y., Liu P., Hao F., Xiong W., and Luo H. Fuel, 2022, 314, 123035 LINK https://doi.org/10.1016/j.fuel.2021.123035 [Google Scholar]
  189. Wang K., Liu D., Liu L., Liu J., Hu X., Li P., Li M., Vasenko A. S., Xiao C., and Ding S. eScience, 2022, 2, (5), 518 LINK https://doi.org/10.1016/j.esci.2022.08.002 [Google Scholar]
  190. Singh R., Tripathi K., and Pant K. K. Fuel, 2021, 303, 121289 LINK https://doi.org/10.1016/j.fuel.2021.121289 [Google Scholar]
  191. Shishido T., Yamamoto M., Li D., Tian Y., Morioka H., Honda M., Sano T., and Takehira K. Appl. Catal. A: Gen., 2006, 303, (1), 62 LINK https://doi.org/10.1016/j.apcata.2006.01.031 [Google Scholar]
  192. Kattel S., Ramírez P. J., Chen J. G., Rodriguez J. A., and Liu P. Science, 2017, 355, (6331), 1296 LINK https://doi.org/10.1126/science.aal3573 [Google Scholar]
  193. Kattel S., Yan B., Yang Y., Chen J. G., and Liu P. J. Am. Chem. Soc., 2016, 138, (38), 12440 LINK https://doi.org/10.1021/jacs.6b05791 [Google Scholar]
  194. Pan Y., Shen X., Yao L., Bentalib A., and Peng Z. Catalysts, 2018, 8, (10), 478 LINK https://doi.org/10.3390/catal8100478 [Google Scholar]
  195. Yusuf N., and Almomani F. Fuel, 2023, 332, (1), 126027 LINK https://doi.org/10.1016/j.fuel.2022.126027 [Google Scholar]
  196. Zhen Z., Tang W., Chu W. (Willy), Zhang T., Lv L., and Tang S. Catal. Sci. Technol., 2020, 10, (8), 2343 LINK https://doi.org/10.1039/c9cy02608h [Google Scholar]
  197. Zhang F., Xu X., Qiu Z., Feng B., Liu Y., Xing A., and Fan M. Green Energy Environ., 2022, 7, (4), 772 LINK https://doi.org/10.1016/j.gee.2020.11.027 [Google Scholar]
  198. Zhang W., Chang J., and Yang Y. SusMat, 2023, 3, (1), 2 LINK https://doi.org/10.1002/sus2.108 [Google Scholar]
  199. Hu Z., and Yang R. T. Ind. Eng. Chem. Res., 2019, 58, (24), 10140 LINK https://doi.org/10.1021/acs.iecr.9b01843 [Google Scholar]
  200. Tawalbeh M., Javed R. M. N., Al-Othman A., and Almomani F. Energy Convers. Manag., 2023, 279, 116755 LINK https://doi.org/10.1016/j.enconman.2023.116755 [Google Scholar]
  201. Liu L., and Corma A. Chem. Rev., 2018, 118, (10), 4981 LINK https://doi.org/10.1021/acs.chemrev.7b00776 [Google Scholar]
  202. Bahari N. A., Isahak W. N. R. W., Masdar M. S., and Yaakob Z. Int. J. Energy Res., 2019, 43, (10), 5128 LINK https://doi.org/10.1002/er.4498 [Google Scholar]
  203. Kubacka A., Fernández-García M., and Martínez-Arias A. Appl. Catal. A: Gen., 2016, 518, 2 LINK https://doi.org/10.1016/j.apcata.2016.01.027 [Google Scholar]
  204. Olajire A. A. J. CO2 Util., 2018, 24, 522 LINK https://doi.org/10.1016/j.jcou.2018.02.012 [Google Scholar]
  205. De S., Dokania A., Ramirez A., and Gascon J. ACS Catal., 2020, 10, (23), 14147 LINK https://doi.org/10.1021/acscatal.0c04273 [Google Scholar]
  206. Wang J., Funk S., and Burghaus U. Catal. Lett., 2005, 103, (3–4), 219 LINK https://doi.org/10.1007/s10562-005-7157-3 [Google Scholar]
  207. Yang Y., Evans J., Rodriguez J. A., White M. G., and Liu P. Phys. Chem. Chem. Phys., 2010, 12, (33), 9909 LINK https://doi.org/10.1039/c001484b [Google Scholar]
  208. da Silva M. J. Fuel Process. Technol., 2016, 145, 42 LINK https://doi.org/10.1016/j.fuproc.2016.01.023 [Google Scholar]
  209. Li Z., Zhuang T., Dong J., Wang L., Xia J., Wang H., Cui X., and Wang Z. Ultrason. Sonochem., 2021, 71, 105384 LINK https://doi.org/10.1016/j.ultsonch.2020.105384 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651324X16980703569747
Loading
/content/journals/10.1595/205651324X16980703569747
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error