Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135

Abstract

The photocatalytic effect of titania has long been studied with respect to water oxidation and hydrogen evolution. At present, the modification of this semiconducting material by platinum single atoms (Pt-SAs) represents an interesting approach that has been developed in the past decade and has given good results in the photocatalytic hydrogen evolution reaction (HER). Experimental studies have shown that the deposition of Pt-SAs on the titania surface, in aqueous systems, is a spontaneous process and can also be promoted by different reducing processes. Theoretical studies suggest that this deposition is a site-specific reaction, which occurs in oxygen vacancies on the titania surface. Under such conditions, the Pt-SAs are not in a metallic state, due to the interaction with neighbouring atoms of the substrate. This complex system can be probed using different advanced characterisation techniques, which provide a deeper understanding about the modified surface and how this modification improves the photocatalytic performance of titania.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X17042087562424
2024-04-01
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Alonso-Vante_16a_Imp.html?itemId=/content/journals/10.1595/205651324X17042087562424&mimeType=html&fmt=ahah

References

  1. Y. Wang, D. He, H. Chen, D. Wang, J. Photochem. Photobiol. C: Photochem. Rev., 2019, 40, 117 LINK https://doi.org/10.1016/j.jphotochemrev.2019.02.002 [Google Scholar]
  2. Y. Lan, Y. Lu, Z. Ren, Nano Energy, 2013, 2, (5), 1031 LINK https://doi.org/10.1016/j.nanoen.2013.04.002 [Google Scholar]
  3. E. V. Shkol’nikov, Russ. J. Phys. Chem. A, 2016, 90, (3), 567 LINK https://doi.org/10.1134/S0036024416030286 [Google Scholar]
  4. D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Nanotechnology, 2008, 19, (14), 145605 LINK https://doi.org/10.1088/0957-4484/19/14/145605 [Google Scholar]
  5. V. Kumaravel, S. Mathew, J. Bartlett, S. C. Pillai, Appl. Catal. B: Environ., 2019, 244, 1021 LINK https://doi.org/10.1016/j.apcatb.2018.11.080 [Google Scholar]
  6. L. A. Kibler, ChemPhysChem, 2006, 7, (5), 985 LINK https://doi.org/10.1002/cphc.200500646 [Google Scholar]
  7. R. Ravi, A. K. Golder, Coll. Surf. A: Physicochem. Eng. Asp., 2023, 663, 131034 LINK https://doi.org/10.1016/j.colsurfa.2023.131034 [Google Scholar]
  8. Y. Shiraishi, D. Tsukamoto, Y. Sugano, A. Shiro, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal., 2012, 2, (9), 1984 LINK https://doi.org/10.1021/cs300407e [Google Scholar]
  9. G. Cha, A. Mazare, I. Hwang, N. Denisov, J. Will, T. Yokosawa, Z. Badura, G. Zoppellaro, A. B. Tesler, E. Spiecker, P. Schmuki, Electrochim. Acta, 2022, 412, 140129 LINK https://doi.org/10.1016/j.electacta.2022.140129 [Google Scholar]
  10. S.-M. Wu, I. Hwang, B. Osuagwu, J. Will, Z. Wu, B. B. Sarma, F.-F. Pu, L.-Y. Wang, Z. Badura, G. Zoppellaro, E. Spiecker, P. Schmuki, ACS Catal., 2023, 13, (1), 33 LINK https://doi.org/10.1021/acscatal.2c04481 [Google Scholar]
  11. L. Kuai, S. Liu, S. Cao, Y. Ren, E. Kan, Y. Zhao, N. Yu, F. Li, X. Li, Z. Wu, X. Wang, B. Geng, Chem. Mater., 2018, 30, (16), 5534 LINK https://doi.org/10.1021/acs.chemmater.8b02144 [Google Scholar]
  12. Q. Tao, J. Song, N. Sun, Y. Ren, L. Xiang, S. Liu, L. Kuai, Inorg. Chem., 2022, 61, (30), 11932 LINK https://doi.org/10.1021/acs.inorgchem.2c01666 [Google Scholar]
  13. V. Dao, L. A. Cipriano, S.-W. Ki, S. Yadav, W. Wang, G. Di Liberto, K. Chen, H. Son, J.-K. Yang, G. Pacchioni, I.-H. Lee, Appl. Catal. B: Environ., 2023, 330, 122586 LINK https://doi.org/10.1016/j.apcatb.2023.122586 [Google Scholar]
  14. L.-N. Chen, K.-P. Hou, Y.-S. Liu, Z.-Y. Qi, Q. Zheng, Y.-H. Lu, J.-Y. Chen, J.-L. Chen, C.-W. Pao, S.-B. Wang, Y.-B. Li, S.-H. Xie, F.-D. Liu, D. Prendergast, L. E. Klebanoff, V. Stavila, M. D. Allendorf, J. Guo, L.-S. Zheng, J. Su, G. A. Somorjai, J. Am. Chem. Soc., 2019, 141, (45), 17995 LINK https://doi.org/10.1021/jacs.9b09431 [Google Scholar]
  15. B. Han, Y. Guo, Y. Huang, W. Xi, J. Xu, J. Luo, H. Qi, Y. Ren, X. Liu, B. Qiao, T. Zhang, Angew. Chem. Int. Ed., 2020, 59, (29), 11824 LINK https://doi.org/10.1002/anie.202003208 [Google Scholar]
  16. T.-Y. Chang, Y. Tanaka, R. Ishikawa, K. Toyoura, K. Matsunaga, Y. Ikuhara, N. Shibata, Nano Lett., 2014, 14, (1), 134 LINK https://doi.org/10.1021/nl403520c [Google Scholar]
  17. T. Wang, Y. Zhu, Z. Luo, Y. Li, J. Niu, C. Wang, Environ. Chem. Lett., 2021, 19, (2), 1815 LINK https://doi.org/10.1007/s10311-020-01144-0 [Google Scholar]
  18. X. Ma, D. Wang, J. Wu, B. Zhao, F. Chen, ChemPhysChem, 2023, 24, (7), e 202200505 LINK https://doi.org/10.1002/cphc.202200505 [Google Scholar]
  19. J. Jones, H. Xiong, A. T. DeLaRiva, E. J. Peterson, H. Pham, S. R. Challa, G. Qi, S. Oh, M. H. Wiebenga, X. I. Pereira Hernández, Y. Wang, A. K. Datye, Science, 2016, 353, (6295), 150 LINK https://doi.org/10.1126/science.aaf8800 [Google Scholar]
  20. X. Li, X. I. Pereira-Hernández, Y. Chen, J. Xu, J. Zhao, C.-W. Pao, C.-Y. Fang, J. Zeng, Y. Wang, B. C. Gates, J. Liu, Nature, 2022, 611, (7935), 284 LINK https://doi.org/10.1038/s41586-022-05251-6 [Google Scholar]
  21. N. Denisov, S. Qin, J. Will, B. N. Vasiljevic, N. V. Skorodumova, I. A. Pašti, B. B. Sarma, B. Osuagwu, T. Yokosawa, J. Voss, J. Wirth, E. Spiecker, P. Schmuki, Adv. Mater., 2023, 35, (5), 2206569 LINK https://doi.org/10.1002/adma.202206569 [Google Scholar]
  22. L. Liu, D. M. Meira, R. Arenal, P. Concepcion, A. V. Puga, A. Corma, ACS Catal., 2019, 9, (12), 10626 LINK https://doi.org/10.1021/acscatal.9b04214 [Google Scholar]
  23. T. Wei, Y. Zhu, Y. Wu, X. An, L.-M. Liu, Langmuir, 2019, 35, (2), 391 LINK https://doi.org/10.1021/acs.langmuir.8b03488 [Google Scholar]
  24. T. Wei, P. Ding, T. Wang, L.-M. Liu, X. An, X. Yu, ACS Catal., 2021, 11, (23), 14669 LINK https://doi.org/10.1021/acscatal.1c03703 [Google Scholar]
  25. Y. Sui, S. Liu, T. Li, Q. Liu, T. Jiang, Y. Guo, J.-L. Luo, J. Catal., 2017, 353, 250 LINK https://doi.org/10.1016/j.jcat.2017.07.024 [Google Scholar]
  26. T. Tachikawa, N. Wang, S. Yamashita, S.-C. Cui, T. Majima, Angew. Chem. Int. Ed., 2010, 49, (46), 8593 LINK https://doi.org/10.1002/anie.201004976 [Google Scholar]
  27. J. Chen, M. Jiang, W. Xu, J. Chen, Z. Hong, H. Jia, Appl. Catal. B: Environ., 2019, 259, 118013 LINK https://doi.org/10.1016/j.apcatb.2019.118013 [Google Scholar]
  28. H. Wu, X. Yang, S. Zhao, L. Zhai, G. Wang, B. Zhang, Y. Qin, Chem. Commun., 2022, 58, (8), 1191 LINK https://doi.org/10.1039/D1CC06682J [Google Scholar]
  29. S. Qin, J. Guo, X. Chen, R. Cao, N. Denisov, Y.-Y. Song, P. Schmuki, J. Mater. Chem. A, 2023, 11, (33), 17759 LINK https://doi.org/10.1039/D3TA00996C [Google Scholar]
  30. A. A. Ayele, M.-C. Tsai, D. B. Adam, Y. A. Awoke, W.-H. Huang, C.-Y. Chang, S.-C. Liao, P.-Y. Huang, J.-L. Chen, C.-W. Pao, W.-N. Su, B. J. Hwang, Appl. Catal. A: Gen., 2022, 646, 118861 LINK https://doi.org/10.1016/j.apcata.2022.118861 [Google Scholar]
  31. A. Lewera, L. Timperman, A. Roguska, N. Alonso-Vante, J. Phys. Chem. C, 2011, 115, (41), 20153 LINK https://doi.org/10.1021/jp2068446 [Google Scholar]
  32. L. Timperman, N. Alonso-Vante, Electrocatalysis, 2011, 2, (3), 181 LINK https://doi.org/10.1007/s12678-011-0052-3 [Google Scholar]
  33. L. DeRita, J. Resasco, S. Dai, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, X. Pan, P. Christopher, Nat. Mater., 2019, 18, (7), 746 LINK https://doi.org/10.1038/s41563-019-0349-9 [Google Scholar]
  34. T. Wang, S. Qiu, Z. Dai, R. Hocking, C. Sun, Appl. Surf. Sci., 2020, 533, 147362 LINK https://doi.org/10.1016/j.apsusc.2020.147362 [Google Scholar]
  35. X. Wang, L. Zhang, Y. Bu, W. Sun, Appl. Surf. Sci., 2021, 540, (2), 148357 LINK https://doi.org/10.1016/j.apsusc.2020.148357 [Google Scholar]
  36. N. Humphrey, S. Bac, S. M. Sharada, J. Phys. Chem. C, 2020, 124, (44), 24187 LINK https://doi.org/10.1021/acs.jpcc.0c06771 [Google Scholar]
  37. P. Sombut, L. Puntscher, M. Atzmueller, Z. Jakub, M. Reticcioli, M. Meier, G. S. Parkinson, C. Franchini, Top. Catal., 2022, 65, (17–18), 1620 LINK https://doi.org/10.1007/s11244-022-01651-0 [Google Scholar]
  38. B. Wen, W.-J. Yin, A. Selloni, L.-M. Liu, Phys. Chem. Chem. Phys., 2020, 22, (19), 10455 LINK https://doi.org/10.1039/c9cp05097c [Google Scholar]
  39. S. C. Ammal, A. Heyden, J. Phys. Chem. C, 2011, 115, (39), 19246 LINK https://doi.org/10.1021/jp2058723 [Google Scholar]
  40. D. Wang, Z.-P. Liu, W.-M. Yang, ACS Catal., 2018, 8, (8), 7270 LINK https://doi.org/10.1021/acscatal.8b01886 [Google Scholar]
  41. R. Aso, H. Hojo, Y. Takahashi, T. Akashi, Y. Midoh, F. Ichihashi, H. Nakajima, T. Tamaoka, K. Yubuta, H. Nakanishi, H. Einaga, T. Tanigaki, H. Shinada, Y. Murakami, Science, 2022, 378, (6616), 202 LINK https://doi.org/10.1126/science.abq5868 [Google Scholar]
  42. Y. Zhang, Y. Wang, K. Su, F. Wang, J. Mol. Model., 2022, 28, (6), 175 LINK https://doi.org/10.1007/s00894-022-05123-w [Google Scholar]
  43. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev., 2014, 114, (19), 9919 LINK https://doi.org/10.1021/cr5001892 [Google Scholar]
  44. D. Mamedov, S. Zh. Karazhanov, N. Alonso-Vante, J. Electrochem. Soc., 2023, 170, (5), 056503 LINK https://doi.org/10.1149/1945-7111/acd1bd [Google Scholar]
  45. W. M. Haynes, D. R. Lide, T. J. Bruno, “CRC Handbook of Chemistry and Physics”, eds. W. M. Haynes, 97th Edn., Taylor and Francis LLC, Boca Raton, USA, 2016, 2670 pp LINK https://doi.org/10.1201/9781315380476 [Google Scholar]
  46. N. Makivić, J.-Y. Cho, K. D. Harris, J.-M. Tarascon, B. Limoges, V. Balland, Chem. Mater., 2021, 33, (9), 3436 LINK https://doi.org/10.1021/acs.chemmater.1c00840 [Google Scholar]
  47. W. He, X. Zhang, K. Zheng, C. Wu, Y. Pan, H. Li, L. Xu, R. Xu, W. Chen, Y. Liu, C. Wang, Z. Sun, S. Wei, Angew. Chemie Int. Ed., 2023, 62, (2), e 202213365 LINK https://doi.org/10.1002/anie.202213365 [Google Scholar]
  48. S. Weon, M.-J. Suh, C. Chu, D. Huang, E. Stavitski, J.-H. Kim, ACS EST Engg., 2021, 1, (3), 512 LINK https://doi.org/10.1021/acsestengg.0c00210 [Google Scholar]
  49. J. Wu, X. Ma, L. Xu, B. Zhao, F. Chen, Appl. Surf. Sci., 2019, 489, 510 LINK https://doi.org/10.1016/j.apsusc.2019.05.304 [Google Scholar]
  50. S. Qin, N. Denisov, B. B. Sarma, I. Hwang, D. E. Doronkin, O. Tomanec, S. Kment, P. Schmuki, Adv. Mater. Interfaces, 2022, 9, (22), 2200808 LINK https://doi.org/10.1002/admi.202200808 [Google Scholar]
  51. Z. Wu, I. Hwang, G. Cha, S. Qin, O. Tomanec, Z. Badura, S. Kment, R. Zboril, P. Schmuki, Small, 2022, 18, (2), 1, 2104892 LINK https://doi.org/10.1002/smll.202104892 [Google Scholar]
  52. S. Qin, N. Denisov, J. Will, J. Kolařík, E. Spiecker, P. Schmuki, Solar RRL, 2022, 6, (6), 2101026 LINK https://doi.org/10.1002/solr.202101026 [Google Scholar]
  53. X. Hu, J. Song, J. Luo, H. Zhang, Z. Sun, C. Li, S. Zheng, Q. Liu, J. Energy Chem., 2021, 62, 1 LINK https://doi.org/10.1016/j.jechem.2021.03.003 [Google Scholar]
  54. L. Piccolo, P. Afanasiev, F. Morfin, T. Len, C. Dessal, J. L. Rousset, M. Aouine, F. Bourgain, A. Aguilar-Tapia, O. Proux, Y. Chen, L. Soler, J. Llorca, ACS Catal., 2020, 10, (21), 12696 LINK https://doi.org/10.1021/acscatal.0c03464 [Google Scholar]
  55. T. Xu, H. Zheng, P. Zhang, J. Hazard. Mater., 2020, 388, 121746 LINK https://doi.org/10.1016/j.jhazmat.2019.121746 [Google Scholar]
  56. Y. Chen, S. Ji, W. Sun, Y. Lei, Q. Wang, A. Li, W. Chen, G. Zhou, Z. Zhang, Y. Wang, L. Zheng, Q. Zhang, L. Gu, X. Han, D. Wang, Y. Li, Angew. Chem. Int. Ed., 2020, 59, (3), 1295 LINK https://doi.org/10.1002/anie.201912439 [Google Scholar]
  57. H. V. Thang, G. Pacchioni, L. DeRita, P. Christopher, J. Catal., 2018, 367, 104 LINK https://doi.org/10.1016/j.jcat.2018.08.025 [Google Scholar]
  58. N. Sun, J. Song, Q. Tao, E. Kan, L. Kuai, Micropor. Mesopor. Mater., 2022, 337, 111949 LINK https://doi.org/10.1016/j.micromeso.2022.111949 [Google Scholar]
  59. L. DeRita, S. Dai, K. Lopez-Zepeda, N. Pham, G. W. Graham, X. Pan, P. Christopher, J. Am. Chem. Soc., 2017, 139, (40), 14150 LINK https://doi.org/10.1021/jacs.7b07093 [Google Scholar]
  60. Z. Tian, Y. Da, M. Wang, X. Dou, X. Cui, J. Chen, R. Jiang, S. Xi, B. Cui, Y. Luo, H. Yang, Y. Long, Y. Xiao, W. Chen, Nat. Commun., 2023, 14, 142 LINK https://doi.org/10.1038/s41467-023-35875-9 [Google Scholar]
  61. K. Komaguchi, T. Maruoka, H. Nakano, I. Imae, Y. Ooyama, Y. Harima, J. Phys. Chem. C, 2010, 114, (2), 1240 LINK https://doi.org/10.1021/jp909678e [Google Scholar]
  62. E. Carter, A. F. Carley, D. M. Murphy, J. Phys. Chem. C, 2007, 111, (28), 10630 LINK https://doi.org/10.1021/jp0729516 [Google Scholar]
  63. C. A. G. Bezerra, J. P. T. da S. Santos, G. G. Bessegato, C. L. de Paiva e Silva Zanta, V. Del Colle, G. Tremiliosi-Filho, Electrochim. Acta, 2022, 404, 139712 LINK https://doi.org/10.1016/j.electacta.2021.139712 [Google Scholar]
  64. D. Zhao, X. Zhang, W. Wang, L. Sui, C. Guo, Y. Xu, X. Zhou, X. Cheng, S. Gao, L. Huo, Sensors Actuators B: Chem., 2022, 370, 132423 LINK https://doi.org/10.1016/j.snb.2022.132423 [Google Scholar]
  65. S. Hejazi, S. Mohajernia, B. Osuagwu, G. Zoppellaro, P. Andryskova, O. Tomanec, S. Kment, R. Zbořil, P. Schmuki, Adv. Mater., 2020, 32, (16), 1908505 LINK https://doi.org/10.1002/adma.201908505 [Google Scholar]
  66. A. Fujishima, K. Honda, Nature, 1972, 238, (5358), 37 LINK https://doi.org/10.1038/238037a0 [Google Scholar]
  67. J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Adv. Mater., 2017, 29, (20), 1601694 LINK https://doi.org/10.1002/adma.201601694 [Google Scholar]
  68. A. Naldoni, M. D’Arienzo, M. Altomare, M. Marelli, R. Scotti, F. Morazzoni, E. Selli, V. Dal Santo, Appl. Catal. B: Environ., 2013, 130131, 239 LINK https://doi.org/10.1016/j.apcatb.2012.11.006 [Google Scholar]
  69. S. Qin, J. Will, H. Kim, N. Denisov, S. Carl, E. Spiecker, P. Schmuki, ACS Energy Lett., 2023, 8, (2), 1209 LINK https://doi.org/10.1021/acsenergylett.2c02801 [Google Scholar]
  70. J. Xi, X. Zhang, X. Zhou, X. Wu, S. Wang, W. Yu, N. Yan, K. P. Loh, Q.-H. Xu, J. Colloid Interface Sci., 2022, 623, 799 LINK https://doi.org/10.1016/j.jcis.2022.05.108 [Google Scholar]
  71. Y. Matsumoto, T. Yoshikawa, E. Sato, J. Electrochem. Soc., 1989, 136, (5), 1389 LINK https://doi.org/10.1149/1.2096927 [Google Scholar]
  72. M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, J. Power Sources, 2008, 181, (1), 46 LINK https://doi.org/10.1016/j.jpowsour.2007.10.082 [Google Scholar]
  73. H. Pan, X. Wang, Z. Xiong, M. Sun, M. Murugananthan, Y. Zhang, Environ. Res., 2021, 198, 111176 LINK https://doi.org/10.1016/j.envres.2021.111176 [Google Scholar]
  74. H. Li, Q. Song, S. Wan, C.-W. Tung, C. Liu, Y. Pan, G.-Q. Luo, H. M. Chen, S. Cao, J. Yu, L.-M. Zhang, Small, 2023, 19, (34), 2301711 LINK https://doi.org/10.1002/smll.202301711 [Google Scholar]
  75. A. Mahmood, X. Wang, X. Xie, J. Sun, ACS Appl. Nano Mater., 2021, 4, (4), 3799 LINK https://doi.org/10.1021/acsanm.1c00208 [Google Scholar]
  76. P. Zhou, Y. Chao, F. Lv, K. Wang, W. Zhang, J. Zhou, H. Chen, L. Wang, Y. Li, Q. Zhang, L. Gu, S. Guo, ACS Catal., 2020, 10, (16), 9109 LINK https://doi.org/10.1021/acscatal.0c01192 [Google Scholar]
  77. U. Kerketta, A. B. Tesler, P. Schmuki, Catalysts, 2022, 12, (10), 1223 LINK https://doi.org/10.3390/catal12101223 [Google Scholar]
/content/journals/10.1595/205651324X17042087562424
Loading
/content/journals/10.1595/205651324X17042087562424
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test