Skip to content
Volume 68 Number 2
  • ISSN: 2056-5135


The photocatalytic effect of titania has long been studied with respect to water oxidation and hydrogen evolution. At present, the modification of this semiconducting material by platinum single atoms (Pt-SAs) represents an interesting approach that has been developed in the past decade and has given good results in the photocatalytic hydrogen evolution reaction (HER). Experimental studies have shown that the deposition of Pt-SAs on the titania surface, in aqueous systems, is a spontaneous process and can also be promoted by different reducing processes. Theoretical studies suggest that this deposition is a site-specific reaction, which occurs in oxygen vacancies on the titania surface. Under such conditions, the Pt-SAs are not in a metallic state, due to the interaction with neighbouring atoms of the substrate. This complex system can be probed using different advanced characterisation techniques, which provide a deeper understanding about the modified surface and how this modification improves the photocatalytic performance of titania.


Article metrics loading...

Loading full text...

Full text loading...



  1. Wang Y., He D., Chen H., and Wang D. J. Photochem. Photobiol. C: Photochem. Rev., 2019, 40, 117 LINK [Google Scholar]
  2. Lan Y., Lu Y., and Ren Z. Nano Energy, 2013, 2, (5), 1031 LINK [Google Scholar]
  3. Shkol’nikov E. V. Russ. J. Phys. Chem. A, 2016, 90, (3), 567 LINK [Google Scholar]
  4. Reyes-Coronado D., Rodríguez-Gattorno G., Espinosa-Pesqueira M. E., Cab C., de Coss R., and Oskam G. Nanotechnology, 2008, 19, (14), 145605 LINK [Google Scholar]
  5. Kumaravel V., Mathew S., Bartlett J., and Pillai S. C. Appl. Catal. B: Environ., 2019, 244, 1021 LINK [Google Scholar]
  6. Kibler L. A. ChemPhysChem, 2006, 7, (5), 985 LINK [Google Scholar]
  7. Ravi R., and Golder A. K. Coll. Surf. A: Physicochem. Eng. Asp., 2023, 663, 131034 LINK [Google Scholar]
  8. Shiraishi Y., Tsukamoto D., Sugano Y., Shiro A., Ichikawa S., Tanaka S., and Hirai T. ACS Catal., 2012, 2, (9), 1984 LINK [Google Scholar]
  9. Cha G., Mazare A., Hwang I., Denisov N., Will J., Yokosawa T., Badura Z., Zoppellaro G., Tesler A. B., Spiecker E., and Schmuki P. Electrochim. Acta, 2022, 412, 140129 LINK [Google Scholar]
  10. Wu S.-M., Hwang I., Osuagwu B., Will J., Wu Z., Sarma B. B., Pu F.-F., Wang L.-Y., Badura Z., Zoppellaro G., Spiecker E., and Schmuki P. ACS Catal., 2023, 13, (1), 33 LINK [Google Scholar]
  11. Kuai L., Liu S., Cao S., Ren Y., Kan E., Zhao Y., Yu N., Li F., Li X., Wu Z., Wang X., and Geng B. Chem. Mater., 2018, 30, (16), 5534 LINK [Google Scholar]
  12. Tao Q., Song J., Sun N., Ren Y., Xiang L., Liu S., and Kuai L. Inorg. Chem., 2022, 61, (30), 11932 LINK [Google Scholar]
  13. Dao V., Cipriano L. A., Ki S.-W., Yadav S., Wang W., Di Liberto G., Chen K., Son H., Yang J.-K., Pacchioni G., and Lee I.-H. Appl. Catal. B: Environ., 2023, 330, 122586 LINK [Google Scholar]
  14. Chen L.-N., Hou K.-P., Liu Y.-S., Qi Z.-Y., Zheng Q., Lu Y.-H., Chen J.-Y., Chen J.-L., Pao C.-W., Wang S.-B., Li Y.-B., Xie S.-H., Liu F.-D., Prendergast D., Klebanoff L. E., Stavila V., Allendorf M. D., Guo J., Zheng L.-S., Su J., and Somorjai G. A. J. Am. Chem. Soc., 2019, 141, (45), 17995 LINK [Google Scholar]
  15. Han B., Guo Y., Huang Y., Xi W., Xu J., Luo J., Qi H., Ren Y., Liu X., Qiao B., and Zhang T. Angew. Chem. Int. Ed., 2020, 59, (29), 11824 LINK [Google Scholar]
  16. Chang T.-Y., Tanaka Y., Ishikawa R., Toyoura K., Matsunaga K., Ikuhara Y., and Shibata N. Nano Lett., 2014, 14, (1), 134 LINK [Google Scholar]
  17. Wang T., Zhu Y., Luo Z., Li Y., Niu J., and Wang C. Environ. Chem. Lett., 2021, 19, (2), 1815 LINK [Google Scholar]
  18. Ma X., Wang D., Wu J., Zhao B., and Chen F. ChemPhysChem, 2023, 24, (7), e 202200505 LINK [Google Scholar]
  19. Jones J., Xiong H., DeLaRiva A. T., Peterson E. J., Pham H., Challa S. R., Qi G., Oh S., Wiebenga M. H., Pereira Hernández X. I., Wang Y., and Datye A. K. Science, 2016, 353, (6295), 150 LINK [Google Scholar]
  20. Li X., Pereira-Hernández X. I., Chen Y., Xu J., Zhao J., Pao C.-W., Fang C.-Y., Zeng J., Wang Y., Gates B. C., and Liu J. Nature, 2022, 611, (7935), 284 LINK [Google Scholar]
  21. Denisov N., Qin S., Will J., Vasiljevic B. N., Skorodumova N. V., Pašti I. A., Sarma B. B., Osuagwu B., Yokosawa T., Voss J., Wirth J., Spiecker E., and Schmuki P. Adv. Mater., 2023, 35, (5), 2206569 LINK [Google Scholar]
  22. Liu L., Meira D. M., Arenal R., Concepcion P., Puga A. V., and Corma A. ACS Catal., 2019, 9, (12), 10626 LINK [Google Scholar]
  23. Wei T., Zhu Y., Wu Y., An X., and Liu L.-M. Langmuir, 2019, 35, (2), 391 LINK [Google Scholar]
  24. Wei T., Ding P., Wang T., Liu L.-M., An X., and Yu X. ACS Catal., 2021, 11, (23), 14669 LINK [Google Scholar]
  25. Sui Y., Liu S., Li T., Liu Q., Jiang T., Guo Y., and Luo J.-L. J. Catal., 2017, 353, 250 LINK [Google Scholar]
  26. Tachikawa T., Wang N., Yamashita S., Cui S.-C., and Majima T. Angew. Chem. Int. Ed., 2010, 49, (46), 8593 LINK [Google Scholar]
  27. Chen J., Jiang M., Xu W., Chen J., Hong Z., and Jia H. Appl. Catal. B: Environ., 2019, 259, 118013 LINK [Google Scholar]
  28. Wu H., Yang X., Zhao S., Zhai L., Wang G., Zhang B., and Qin Y. Chem. Commun., 2022, 58, (8), 1191 LINK [Google Scholar]
  29. Qin S., Guo J., Chen X., Cao R., Denisov N., Song Y.-Y., and Schmuki P. J. Mater. Chem. A, 2023, 11, (33), 17759 LINK [Google Scholar]
  30. Ayele A. A., Tsai M.-C., Adam D. B., Awoke Y. A., Huang W.-H., Chang C.-Y., Liao S.-C., Huang P.-Y., Chen J.-L., Pao C.-W., Su W.-N., and Hwang B. J. Appl. Catal. A: Gen., 2022, 646, 118861 LINK [Google Scholar]
  31. Lewera A., Timperman L., Roguska A., and Alonso-Vante N. J. Phys. Chem. C, 2011, 115, (41), 20153 LINK [Google Scholar]
  32. Timperman L., and Alonso-Vante N. Electrocatalysis, 2011, 2, (3), 181 LINK [Google Scholar]
  33. DeRita L., Resasco J., Dai S., Boubnov A., Thang H. V., Hoffman A. S., Ro I., Graham G. W., Bare S. R., Pacchioni G., Pan X., and Christopher P. Nat. Mater., 2019, 18, (7), 746 LINK [Google Scholar]
  34. Wang T., Qiu S., Dai Z., Hocking R., and Sun C. Appl. Surf. Sci., 2020, 533, 147362 LINK [Google Scholar]
  35. Wang X., Zhang L., Bu Y., and Sun W. Appl. Surf. Sci., 2021, 540, (2), 148357 LINK [Google Scholar]
  36. Humphrey N., Bac S., and Sharada S. M. J. Phys. Chem. C, 2020, 124, (44), 24187 LINK [Google Scholar]
  37. Sombut P., Puntscher L., Atzmueller M., Jakub Z., Reticcioli M., Meier M., Parkinson G. S., and Franchini C. Top. Catal., 2022, 65, (17–18), 1620 LINK [Google Scholar]
  38. Wen B., Yin W.-J., Selloni A., and Liu L.-M. Phys. Chem. Chem. Phys., 2020, 22, (19), 10455 LINK [Google Scholar]
  39. Ammal S. C., and Heyden A. J. Phys. Chem. C, 2011, 115, (39), 19246 LINK [Google Scholar]
  40. Wang D., Liu Z.-P., and Yang W.-M. ACS Catal., 2018, 8, (8), 7270 LINK [Google Scholar]
  41. Aso R., Hojo H., Takahashi Y., Akashi T., Midoh Y., Ichihashi F., Nakajima H., Tamaoka T., Yubuta K., Nakanishi H., Einaga H., Tanigaki T., Shinada H., and Murakami Y. Science, 2022, 378, (6616), 202 LINK [Google Scholar]
  42. Zhang Y., Wang Y., Su K., and Wang F. J. Mol. Model., 2022, 28, (6), 175 LINK [Google Scholar]
  43. Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., and Bahnemann D. W. Chem. Rev., 2014, 114, (19), 9919 LINK [Google Scholar]
  44. Mamedov D., Karazhanov S. Zh., and Alonso-Vante N. J. Electrochem. Soc., 2023, 170, (5), 056503 LINK [Google Scholar]
  45. Haynes W. M., Lide D. R., and Bruno T. J. “CRC Handbook of Chemistry and Physics”, eds. Haynes W. M., 97th Edn., Taylor and Francis LLC, Boca Raton, USA, 2016, 2670 pp LINK [Google Scholar]
  46. Makivić N., Cho J.-Y., Harris K. D., Tarascon J.-M., Limoges B., and Balland V. Chem. Mater., 2021, 33, (9), 3436 LINK [Google Scholar]
  47. He W., Zhang X., Zheng K., Wu C., Pan Y., Li H., Xu L., Xu R., Chen W., Liu Y., Wang C., Sun Z., and Wei S. Angew. Chemie Int. Ed., 2023, 62, (2), e 202213365 LINK [Google Scholar]
  48. Weon S., Suh M.-J., Chu C., Huang D., Stavitski E., and Kim J.-H. ACS EST Engg., 2021, 1, (3), 512 LINK [Google Scholar]
  49. Wu J., Ma X., Xu L., Zhao B., and Chen F. Appl. Surf. Sci., 2019, 489, 510 LINK [Google Scholar]
  50. Qin S., Denisov N., Sarma B. B., Hwang I., Doronkin D. E., Tomanec O., Kment S., and Schmuki P. Adv. Mater. Interfaces, 2022, 9, (22), 2200808 LINK [Google Scholar]
  51. Wu Z., Hwang I., Cha G., Qin S., Tomanec O., Badura Z., Kment S., Zboril R., and Schmuki P. Small, 2022, 18, (2), 1, 2104892 LINK [Google Scholar]
  52. Qin S., Denisov N., Will J., Kolařík J., Spiecker E., and Schmuki P. Solar RRL, 2022, 6, (6), 2101026 LINK [Google Scholar]
  53. Hu X., Song J., Luo J., Zhang H., Sun Z., Li C., Zheng S., and Liu Q. J. Energy Chem., 2021, 62, 1 LINK [Google Scholar]
  54. Piccolo L., Afanasiev P., Morfin F., Len T., Dessal C., Rousset J. L., Aouine M., Bourgain F., Aguilar-Tapia A., Proux O., Chen Y., Soler L., and Llorca J. ACS Catal., 2020, 10, (21), 12696 LINK [Google Scholar]
  55. Xu T., Zheng H., and Zhang P. J. Hazard. Mater., 2020, 388, 121746 LINK [Google Scholar]
  56. Chen Y., Ji S., Sun W., Lei Y., Wang Q., Li A., Chen W., Zhou G., Zhang Z., Wang Y., Zheng L., Zhang Q., Gu L., Han X., Wang D., and Li Y. Angew. Chem. Int. Ed., 2020, 59, (3), 1295 LINK [Google Scholar]
  57. Thang H. V., Pacchioni G., DeRita L., and Christopher P. J. Catal., 2018, 367, 104 LINK [Google Scholar]
  58. Sun N., Song J., Tao Q., Kan E., and Kuai L. Micropor. Mesopor. Mater., 2022, 337, 111949 LINK [Google Scholar]
  59. DeRita L., Dai S., Lopez-Zepeda K., Pham N., Graham G. W., Pan X., and Christopher P. J. Am. Chem. Soc., 2017, 139, (40), 14150 LINK [Google Scholar]
  60. Tian Z., Da Y., Wang M., Dou X., Cui X., Chen J., Jiang R., Xi S., Cui B., Luo Y., Yang H., Long Y., Xiao Y., and Chen W. Nat. Commun., 2023, 14, 142 LINK [Google Scholar]
  61. Komaguchi K., Maruoka T., Nakano H., Imae I., Ooyama Y., and Harima Y. J. Phys. Chem. C, 2010, 114, (2), 1240 LINK [Google Scholar]
  62. Carter E., Carley A. F., and Murphy D. M. J. Phys. Chem. C, 2007, 111, (28), 10630 LINK [Google Scholar]
  63. Bezerra C. A. G., Santos J. P. T. da S., Bessegato G. G., de Paiva e Silva Zanta C. L., Del Colle V., and Tremiliosi-Filho G. Electrochim. Acta, 2022, 404, 139712 LINK [Google Scholar]
  64. Zhao D., Zhang X., Wang W., Sui L., Guo C., Xu Y., Zhou X., Cheng X., Gao S., and Huo L. Sensors Actuators B: Chem., 2022, 370, 132423 LINK [Google Scholar]
  65. Hejazi S., Mohajernia S., Osuagwu B., Zoppellaro G., Andryskova P., Tomanec O., Kment S., Zbořil R., and Schmuki P. Adv. Mater., 2020, 32, (16), 1908505 LINK [Google Scholar]
  66. Fujishima A., and Honda K. Nature, 1972, 238, (5358), 37 LINK [Google Scholar]
  67. Low J., Yu J., Jaroniec M., Wageh S., and Al-Ghamdi A. A. Adv. Mater., 2017, 29, (20), 1601694 LINK [Google Scholar]
  68. Naldoni A., D’Arienzo M., Altomare M., Marelli M., Scotti R., Morazzoni F., Selli E., and Dal Santo V. Appl. Catal. B: Environ., 2013, 130131, 239 LINK [Google Scholar]
  69. Qin S., Will J., Kim H., Denisov N., Carl S., Spiecker E., and Schmuki P. ACS Energy Lett., 2023, 8, (2), 1209 LINK [Google Scholar]
  70. Xi J., Zhang X., Zhou X., Wu X., Wang S., Yu W., Yan N., Loh K. P., and Xu Q.-H. J. Colloid Interface Sci., 2022, 623, 799 LINK [Google Scholar]
  71. Matsumoto Y., Yoshikawa T., and Sato E. J. Electrochem. Soc., 1989, 136, (5), 1389 LINK [Google Scholar]
  72. Radecka M., Rekas M., Trenczek-Zajac A., and Zakrzewska K. J. Power Sources, 2008, 181, (1), 46 LINK [Google Scholar]
  73. Pan H., Wang X., Xiong Z., Sun M., Murugananthan M., and Zhang Y. Environ. Res., 2021, 198, 111176 LINK [Google Scholar]
  74. Li H., Song Q., Wan S., Tung C.-W., Liu C., Pan Y., Luo G.-Q., Chen H. M., Cao S., Yu J., and Zhang L.-M. Small, 2023, 19, (34), 2301711 LINK [Google Scholar]
  75. Mahmood A., Wang X., Xie X., and Sun J. ACS Appl. Nano Mater., 2021, 4, (4), 3799 LINK [Google Scholar]
  76. Zhou P., Chao Y., Lv F., Wang K., Zhang W., Zhou J., Chen H., Wang L., Li Y., Zhang Q., Gu L., and Guo S. ACS Catal., 2020, 10, (16), 9109 LINK [Google Scholar]
  77. Kerketta U., Tesler A. B., and Schmuki P. Catalysts, 2022, 12, (10), 1223 LINK [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error