Skip to content
1887
Volume 68 Number 2
  • ISSN: 2056-5135

Abstract

The photocatalytic effect of titania has long been studied with respect to water oxidation and hydrogen evolution. At present, the modification of this semiconducting material by platinum single atoms (Pt-SAs) represents an interesting approach that has been developed in the past decade and has given good results in the photocatalytic hydrogen evolution reaction (HER). Experimental studies have shown that the deposition of Pt-SAs on the titania surface, in aqueous systems, is a spontaneous process and can also be promoted by different reducing processes. Theoretical studies suggest that this deposition is a site-specific reaction, which occurs in oxygen vacancies on the titania surface. Under such conditions, the Pt-SAs are not in a metallic state, due to the interaction with neighbouring atoms of the substrate. This complex system can be probed using different advanced characterisation techniques, which provide a deeper understanding about the modified surface and how this modification improves the photocatalytic performance of titania.

Loading

Article metrics loading...

/content/journals/10.1595/205651324X17042087562424
2024-04-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/2/Alonso-Vante_16a_Imp.html?itemId=/content/journals/10.1595/205651324X17042087562424&mimeType=html&fmt=ahah

References

  1. Wang Y., He D., Chen H., and Wang D. J. Photochem. Photobiol. C: Photochem. Rev., 2019, 40, 117 LINK https://doi.org/10.1016/j.jphotochemrev.2019.02.002 [Google Scholar]
  2. Lan Y., Lu Y., and Ren Z. Nano Energy, 2013, 2, (5), 1031 LINK https://doi.org/10.1016/j.nanoen.2013.04.002 [Google Scholar]
  3. Shkol’nikov E. V. Russ. J. Phys. Chem. A, 2016, 90, (3), 567 LINK https://doi.org/10.1134/S0036024416030286 [Google Scholar]
  4. Reyes-Coronado D., Rodríguez-Gattorno G., Espinosa-Pesqueira M. E., Cab C., de Coss R., and Oskam G. Nanotechnology, 2008, 19, (14), 145605 LINK https://doi.org/10.1088/0957-4484/19/14/145605 [Google Scholar]
  5. Kumaravel V., Mathew S., Bartlett J., and Pillai S. C. Appl. Catal. B: Environ., 2019, 244, 1021 LINK https://doi.org/10.1016/j.apcatb.2018.11.080 [Google Scholar]
  6. Kibler L. A. ChemPhysChem, 2006, 7, (5), 985 LINK https://doi.org/10.1002/cphc.200500646 [Google Scholar]
  7. Ravi R., and Golder A. K. Coll. Surf. A: Physicochem. Eng. Asp., 2023, 663, 131034 LINK https://doi.org/10.1016/j.colsurfa.2023.131034 [Google Scholar]
  8. Shiraishi Y., Tsukamoto D., Sugano Y., Shiro A., Ichikawa S., Tanaka S., and Hirai T. ACS Catal., 2012, 2, (9), 1984 LINK https://doi.org/10.1021/cs300407e [Google Scholar]
  9. Cha G., Mazare A., Hwang I., Denisov N., Will J., Yokosawa T., Badura Z., Zoppellaro G., Tesler A. B., Spiecker E., and Schmuki P. Electrochim. Acta, 2022, 412, 140129 LINK https://doi.org/10.1016/j.electacta.2022.140129 [Google Scholar]
  10. Wu S.-M., Hwang I., Osuagwu B., Will J., Wu Z., Sarma B. B., Pu F.-F., Wang L.-Y., Badura Z., Zoppellaro G., Spiecker E., and Schmuki P. ACS Catal., 2023, 13, (1), 33 LINK https://doi.org/10.1021/acscatal.2c04481 [Google Scholar]
  11. Kuai L., Liu S., Cao S., Ren Y., Kan E., Zhao Y., Yu N., Li F., Li X., Wu Z., Wang X., and Geng B. Chem. Mater., 2018, 30, (16), 5534 LINK https://doi.org/10.1021/acs.chemmater.8b02144 [Google Scholar]
  12. Tao Q., Song J., Sun N., Ren Y., Xiang L., Liu S., and Kuai L. Inorg. Chem., 2022, 61, (30), 11932 LINK https://doi.org/10.1021/acs.inorgchem.2c01666 [Google Scholar]
  13. Dao V., Cipriano L. A., Ki S.-W., Yadav S., Wang W., Di Liberto G., Chen K., Son H., Yang J.-K., Pacchioni G., and Lee I.-H. Appl. Catal. B: Environ., 2023, 330, 122586 LINK https://doi.org/10.1016/j.apcatb.2023.122586 [Google Scholar]
  14. Chen L.-N., Hou K.-P., Liu Y.-S., Qi Z.-Y., Zheng Q., Lu Y.-H., Chen J.-Y., Chen J.-L., Pao C.-W., Wang S.-B., Li Y.-B., Xie S.-H., Liu F.-D., Prendergast D., Klebanoff L. E., Stavila V., Allendorf M. D., Guo J., Zheng L.-S., Su J., and Somorjai G. A. J. Am. Chem. Soc., 2019, 141, (45), 17995 LINK https://doi.org/10.1021/jacs.9b09431 [Google Scholar]
  15. Han B., Guo Y., Huang Y., Xi W., Xu J., Luo J., Qi H., Ren Y., Liu X., Qiao B., and Zhang T. Angew. Chem. Int. Ed., 2020, 59, (29), 11824 LINK https://doi.org/10.1002/anie.202003208 [Google Scholar]
  16. Chang T.-Y., Tanaka Y., Ishikawa R., Toyoura K., Matsunaga K., Ikuhara Y., and Shibata N. Nano Lett., 2014, 14, (1), 134 LINK https://doi.org/10.1021/nl403520c [Google Scholar]
  17. Wang T., Zhu Y., Luo Z., Li Y., Niu J., and Wang C. Environ. Chem. Lett., 2021, 19, (2), 1815 LINK https://doi.org/10.1007/s10311-020-01144-0 [Google Scholar]
  18. Ma X., Wang D., Wu J., Zhao B., and Chen F. ChemPhysChem, 2023, 24, (7), e 202200505 LINK https://doi.org/10.1002/cphc.202200505 [Google Scholar]
  19. Jones J., Xiong H., DeLaRiva A. T., Peterson E. J., Pham H., Challa S. R., Qi G., Oh S., Wiebenga M. H., Pereira Hernández X. I., Wang Y., and Datye A. K. Science, 2016, 353, (6295), 150 LINK https://doi.org/10.1126/science.aaf8800 [Google Scholar]
  20. Li X., Pereira-Hernández X. I., Chen Y., Xu J., Zhao J., Pao C.-W., Fang C.-Y., Zeng J., Wang Y., Gates B. C., and Liu J. Nature, 2022, 611, (7935), 284 LINK https://doi.org/10.1038/s41586-022-05251-6 [Google Scholar]
  21. Denisov N., Qin S., Will J., Vasiljevic B. N., Skorodumova N. V., Pašti I. A., Sarma B. B., Osuagwu B., Yokosawa T., Voss J., Wirth J., Spiecker E., and Schmuki P. Adv. Mater., 2023, 35, (5), 2206569 LINK https://doi.org/10.1002/adma.202206569 [Google Scholar]
  22. Liu L., Meira D. M., Arenal R., Concepcion P., Puga A. V., and Corma A. ACS Catal., 2019, 9, (12), 10626 LINK https://doi.org/10.1021/acscatal.9b04214 [Google Scholar]
  23. Wei T., Zhu Y., Wu Y., An X., and Liu L.-M. Langmuir, 2019, 35, (2), 391 LINK https://doi.org/10.1021/acs.langmuir.8b03488 [Google Scholar]
  24. Wei T., Ding P., Wang T., Liu L.-M., An X., and Yu X. ACS Catal., 2021, 11, (23), 14669 LINK https://doi.org/10.1021/acscatal.1c03703 [Google Scholar]
  25. Sui Y., Liu S., Li T., Liu Q., Jiang T., Guo Y., and Luo J.-L. J. Catal., 2017, 353, 250 LINK https://doi.org/10.1016/j.jcat.2017.07.024 [Google Scholar]
  26. Tachikawa T., Wang N., Yamashita S., Cui S.-C., and Majima T. Angew. Chem. Int. Ed., 2010, 49, (46), 8593 LINK https://doi.org/10.1002/anie.201004976 [Google Scholar]
  27. Chen J., Jiang M., Xu W., Chen J., Hong Z., and Jia H. Appl. Catal. B: Environ., 2019, 259, 118013 LINK https://doi.org/10.1016/j.apcatb.2019.118013 [Google Scholar]
  28. Wu H., Yang X., Zhao S., Zhai L., Wang G., Zhang B., and Qin Y. Chem. Commun., 2022, 58, (8), 1191 LINK https://doi.org/10.1039/D1CC06682J [Google Scholar]
  29. Qin S., Guo J., Chen X., Cao R., Denisov N., Song Y.-Y., and Schmuki P. J. Mater. Chem. A, 2023, 11, (33), 17759 LINK https://doi.org/10.1039/D3TA00996C [Google Scholar]
  30. Ayele A. A., Tsai M.-C., Adam D. B., Awoke Y. A., Huang W.-H., Chang C.-Y., Liao S.-C., Huang P.-Y., Chen J.-L., Pao C.-W., Su W.-N., and Hwang B. J. Appl. Catal. A: Gen., 2022, 646, 118861 LINK https://doi.org/10.1016/j.apcata.2022.118861 [Google Scholar]
  31. Lewera A., Timperman L., Roguska A., and Alonso-Vante N. J. Phys. Chem. C, 2011, 115, (41), 20153 LINK https://doi.org/10.1021/jp2068446 [Google Scholar]
  32. Timperman L., and Alonso-Vante N. Electrocatalysis, 2011, 2, (3), 181 LINK https://doi.org/10.1007/s12678-011-0052-3 [Google Scholar]
  33. DeRita L., Resasco J., Dai S., Boubnov A., Thang H. V., Hoffman A. S., Ro I., Graham G. W., Bare S. R., Pacchioni G., Pan X., and Christopher P. Nat. Mater., 2019, 18, (7), 746 LINK https://doi.org/10.1038/s41563-019-0349-9 [Google Scholar]
  34. Wang T., Qiu S., Dai Z., Hocking R., and Sun C. Appl. Surf. Sci., 2020, 533, 147362 LINK https://doi.org/10.1016/j.apsusc.2020.147362 [Google Scholar]
  35. Wang X., Zhang L., Bu Y., and Sun W. Appl. Surf. Sci., 2021, 540, (2), 148357 LINK https://doi.org/10.1016/j.apsusc.2020.148357 [Google Scholar]
  36. Humphrey N., Bac S., and Sharada S. M. J. Phys. Chem. C, 2020, 124, (44), 24187 LINK https://doi.org/10.1021/acs.jpcc.0c06771 [Google Scholar]
  37. Sombut P., Puntscher L., Atzmueller M., Jakub Z., Reticcioli M., Meier M., Parkinson G. S., and Franchini C. Top. Catal., 2022, 65, (17–18), 1620 LINK https://doi.org/10.1007/s11244-022-01651-0 [Google Scholar]
  38. Wen B., Yin W.-J., Selloni A., and Liu L.-M. Phys. Chem. Chem. Phys., 2020, 22, (19), 10455 LINK https://doi.org/10.1039/c9cp05097c [Google Scholar]
  39. Ammal S. C., and Heyden A. J. Phys. Chem. C, 2011, 115, (39), 19246 LINK https://doi.org/10.1021/jp2058723 [Google Scholar]
  40. Wang D., Liu Z.-P., and Yang W.-M. ACS Catal., 2018, 8, (8), 7270 LINK https://doi.org/10.1021/acscatal.8b01886 [Google Scholar]
  41. Aso R., Hojo H., Takahashi Y., Akashi T., Midoh Y., Ichihashi F., Nakajima H., Tamaoka T., Yubuta K., Nakanishi H., Einaga H., Tanigaki T., Shinada H., and Murakami Y. Science, 2022, 378, (6616), 202 LINK https://doi.org/10.1126/science.abq5868 [Google Scholar]
  42. Zhang Y., Wang Y., Su K., and Wang F. J. Mol. Model., 2022, 28, (6), 175 LINK https://doi.org/10.1007/s00894-022-05123-w [Google Scholar]
  43. Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., and Bahnemann D. W. Chem. Rev., 2014, 114, (19), 9919 LINK https://doi.org/10.1021/cr5001892 [Google Scholar]
  44. Mamedov D., Karazhanov S. Zh., and Alonso-Vante N. J. Electrochem. Soc., 2023, 170, (5), 056503 LINK https://doi.org/10.1149/1945-7111/acd1bd [Google Scholar]
  45. Haynes W. M., Lide D. R., and Bruno T. J. “CRC Handbook of Chemistry and Physics”, eds. Haynes W. M., 97th Edn., Taylor and Francis LLC, Boca Raton, USA, 2016, 2670 pp LINK https://doi.org/10.1201/9781315380476 [Google Scholar]
  46. Makivić N., Cho J.-Y., Harris K. D., Tarascon J.-M., Limoges B., and Balland V. Chem. Mater., 2021, 33, (9), 3436 LINK https://doi.org/10.1021/acs.chemmater.1c00840 [Google Scholar]
  47. He W., Zhang X., Zheng K., Wu C., Pan Y., Li H., Xu L., Xu R., Chen W., Liu Y., Wang C., Sun Z., and Wei S. Angew. Chemie Int. Ed., 2023, 62, (2), e 202213365 LINK https://doi.org/10.1002/anie.202213365 [Google Scholar]
  48. Weon S., Suh M.-J., Chu C., Huang D., Stavitski E., and Kim J.-H. ACS EST Engg., 2021, 1, (3), 512 LINK https://doi.org/10.1021/acsestengg.0c00210 [Google Scholar]
  49. Wu J., Ma X., Xu L., Zhao B., and Chen F. Appl. Surf. Sci., 2019, 489, 510 LINK https://doi.org/10.1016/j.apsusc.2019.05.304 [Google Scholar]
  50. Qin S., Denisov N., Sarma B. B., Hwang I., Doronkin D. E., Tomanec O., Kment S., and Schmuki P. Adv. Mater. Interfaces, 2022, 9, (22), 2200808 LINK https://doi.org/10.1002/admi.202200808 [Google Scholar]
  51. Wu Z., Hwang I., Cha G., Qin S., Tomanec O., Badura Z., Kment S., Zboril R., and Schmuki P. Small, 2022, 18, (2), 1, 2104892 LINK https://doi.org/10.1002/smll.202104892 [Google Scholar]
  52. Qin S., Denisov N., Will J., Kolařík J., Spiecker E., and Schmuki P. Solar RRL, 2022, 6, (6), 2101026 LINK https://doi.org/10.1002/solr.202101026 [Google Scholar]
  53. Hu X., Song J., Luo J., Zhang H., Sun Z., Li C., Zheng S., and Liu Q. J. Energy Chem., 2021, 62, 1 LINK https://doi.org/10.1016/j.jechem.2021.03.003 [Google Scholar]
  54. Piccolo L., Afanasiev P., Morfin F., Len T., Dessal C., Rousset J. L., Aouine M., Bourgain F., Aguilar-Tapia A., Proux O., Chen Y., Soler L., and Llorca J. ACS Catal., 2020, 10, (21), 12696 LINK https://doi.org/10.1021/acscatal.0c03464 [Google Scholar]
  55. Xu T., Zheng H., and Zhang P. J. Hazard. Mater., 2020, 388, 121746 LINK https://doi.org/10.1016/j.jhazmat.2019.121746 [Google Scholar]
  56. Chen Y., Ji S., Sun W., Lei Y., Wang Q., Li A., Chen W., Zhou G., Zhang Z., Wang Y., Zheng L., Zhang Q., Gu L., Han X., Wang D., and Li Y. Angew. Chem. Int. Ed., 2020, 59, (3), 1295 LINK https://doi.org/10.1002/anie.201912439 [Google Scholar]
  57. Thang H. V., Pacchioni G., DeRita L., and Christopher P. J. Catal., 2018, 367, 104 LINK https://doi.org/10.1016/j.jcat.2018.08.025 [Google Scholar]
  58. Sun N., Song J., Tao Q., Kan E., and Kuai L. Micropor. Mesopor. Mater., 2022, 337, 111949 LINK https://doi.org/10.1016/j.micromeso.2022.111949 [Google Scholar]
  59. DeRita L., Dai S., Lopez-Zepeda K., Pham N., Graham G. W., Pan X., and Christopher P. J. Am. Chem. Soc., 2017, 139, (40), 14150 LINK https://doi.org/10.1021/jacs.7b07093 [Google Scholar]
  60. Tian Z., Da Y., Wang M., Dou X., Cui X., Chen J., Jiang R., Xi S., Cui B., Luo Y., Yang H., Long Y., Xiao Y., and Chen W. Nat. Commun., 2023, 14, 142 LINK https://doi.org/10.1038/s41467-023-35875-9 [Google Scholar]
  61. Komaguchi K., Maruoka T., Nakano H., Imae I., Ooyama Y., and Harima Y. J. Phys. Chem. C, 2010, 114, (2), 1240 LINK https://doi.org/10.1021/jp909678e [Google Scholar]
  62. Carter E., Carley A. F., and Murphy D. M. J. Phys. Chem. C, 2007, 111, (28), 10630 LINK https://doi.org/10.1021/jp0729516 [Google Scholar]
  63. Bezerra C. A. G., Santos J. P. T. da S., Bessegato G. G., de Paiva e Silva Zanta C. L., Del Colle V., and Tremiliosi-Filho G. Electrochim. Acta, 2022, 404, 139712 LINK https://doi.org/10.1016/j.electacta.2021.139712 [Google Scholar]
  64. Zhao D., Zhang X., Wang W., Sui L., Guo C., Xu Y., Zhou X., Cheng X., Gao S., and Huo L. Sensors Actuators B: Chem., 2022, 370, 132423 LINK https://doi.org/10.1016/j.snb.2022.132423 [Google Scholar]
  65. Hejazi S., Mohajernia S., Osuagwu B., Zoppellaro G., Andryskova P., Tomanec O., Kment S., Zbořil R., and Schmuki P. Adv. Mater., 2020, 32, (16), 1908505 LINK https://doi.org/10.1002/adma.201908505 [Google Scholar]
  66. Fujishima A., and Honda K. Nature, 1972, 238, (5358), 37 LINK https://doi.org/10.1038/238037a0 [Google Scholar]
  67. Low J., Yu J., Jaroniec M., Wageh S., and Al-Ghamdi A. A. Adv. Mater., 2017, 29, (20), 1601694 LINK https://doi.org/10.1002/adma.201601694 [Google Scholar]
  68. Naldoni A., D’Arienzo M., Altomare M., Marelli M., Scotti R., Morazzoni F., Selli E., and Dal Santo V. Appl. Catal. B: Environ., 2013, 130131, 239 LINK https://doi.org/10.1016/j.apcatb.2012.11.006 [Google Scholar]
  69. Qin S., Will J., Kim H., Denisov N., Carl S., Spiecker E., and Schmuki P. ACS Energy Lett., 2023, 8, (2), 1209 LINK https://doi.org/10.1021/acsenergylett.2c02801 [Google Scholar]
  70. Xi J., Zhang X., Zhou X., Wu X., Wang S., Yu W., Yan N., Loh K. P., and Xu Q.-H. J. Colloid Interface Sci., 2022, 623, 799 LINK https://doi.org/10.1016/j.jcis.2022.05.108 [Google Scholar]
  71. Matsumoto Y., Yoshikawa T., and Sato E. J. Electrochem. Soc., 1989, 136, (5), 1389 LINK https://doi.org/10.1149/1.2096927 [Google Scholar]
  72. Radecka M., Rekas M., Trenczek-Zajac A., and Zakrzewska K. J. Power Sources, 2008, 181, (1), 46 LINK https://doi.org/10.1016/j.jpowsour.2007.10.082 [Google Scholar]
  73. Pan H., Wang X., Xiong Z., Sun M., Murugananthan M., and Zhang Y. Environ. Res., 2021, 198, 111176 LINK https://doi.org/10.1016/j.envres.2021.111176 [Google Scholar]
  74. Li H., Song Q., Wan S., Tung C.-W., Liu C., Pan Y., Luo G.-Q., Chen H. M., Cao S., Yu J., and Zhang L.-M. Small, 2023, 19, (34), 2301711 LINK https://doi.org/10.1002/smll.202301711 [Google Scholar]
  75. Mahmood A., Wang X., Xie X., and Sun J. ACS Appl. Nano Mater., 2021, 4, (4), 3799 LINK https://doi.org/10.1021/acsanm.1c00208 [Google Scholar]
  76. Zhou P., Chao Y., Lv F., Wang K., Zhang W., Zhou J., Chen H., Wang L., Li Y., Zhang Q., Gu L., and Guo S. ACS Catal., 2020, 10, (16), 9109 LINK https://doi.org/10.1021/acscatal.0c01192 [Google Scholar]
  77. Kerketta U., Tesler A. B., and Schmuki P. Catalysts, 2022, 12, (10), 1223 LINK https://doi.org/10.3390/catal12101223 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651324X17042087562424
Loading
/content/journals/10.1595/205651324X17042087562424
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error