Skip to content
1887
Volume 68, Issue 3
  • ISSN: 2056-5135

Abstract

Fossil fuel price continuous growth invites to look for alternative solutions to fuel for internal combustion engines. One of the most accepted options is biodiesel. In the present study, the multifrequency ultrasound-assisted synthesis of oil biodiesel has been tested. For this purpose, an ultrasonic probe working at 20 kHz and an ultrasonic reactor with interchangeable transducers of discrete frequencies (195 kHz, 578 kHz, 861 kHz and 1136 kHz) have been used. For the probe, a multi-response optimisation has been carried out, setting methanol-to-oil molar ratio at 5.5:1. Optimal results were provided by 1.42 percentage weight (wt%) of catalyst after approx. 10 min of ultrasonication. In case of transducers, oil-to-biodiesel conversion needed an ultrasonication time of 15 min. Overall, when ultrasound frequency increases, oil-to-biodiesel conversion slightly improves. In conclusion, this work provides a predictive method to produce biodiesel under ultrasonication conditions, at different frequencies, in batch mode. Resulting biodiesel meets European standard requirements.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17004922618615
2024-07-01
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/3/Dorado_16b_Imp.html?itemId=/content/journals/10.1595/205651324X17004922618615&mimeType=html&fmt=ahah

References

  1. M. P. Dorado, , S. Pinzi, , A. de Haro, , R. Font, , J. Garcia-Olmo, , Fuel, 2011, 90, (6), 2321 LINK https://doi.org/10.1016/j.fuel.2011.02.015
    [Google Scholar]
  2. I. B. Banković-Ilić, , O. S. Stamenković, , V. B. Veljković, , Renew. Sust. Energ. Rev., 2012, 16, (6), 3621 LINK https://doi.org/10.1016/j.rser.2012.03.002
    [Google Scholar]
  3. P. M. Mitrović, , O. S. Stamenković, , I. Banković-Ilić, , I. G. Djalović, , Z. B. Nježić, , M. Farooq, , K. H. M. Siddique, , V. B. Veljković, , Front. Plant Sci., 2020, 11, 299 LINK https://doi.org/10.3389/fpls.2020.00299
    [Google Scholar]
  4. R. Ecker, , Z. Yaniv, , Euphytica, 1993, 69, (1–2), 45 LINK https://doi.org/10.1007/bf00021724
    [Google Scholar]
  5. J. Sáez-Bastante, , P. Fernández-García, , M. Saavedra, , L. López-Bellido, , M. P. Dorado, , S. Pinzi, , Fuel, 2016, 184, 656 LINK https://doi.org/10.1016/j.fuel.2016.07.022
    [Google Scholar]
  6. T. Issariyakul, , A. Dalai, , P. Desai, , J. Am. Oil Chem. Soc., 2011, 88, (3), 391 LINK https://doi.org/10.1007/s11746-010-1679-6
    [Google Scholar]
  7. ‘Liquid Petroleum Products. Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications. Requirements and Test Methods’, BS EN 14214:2012+A2:2019, British Standards Institution, London, UK, 31st October, 2021
    [Google Scholar]
  8. M. M. Alam, , K. A. Rahman, , Int. J. Renew. Energy Dev., 2013, 2, (3), 141 LINK https://doi.org/10.14710/ijred.2.3.141-149
    [Google Scholar]
  9. C. Ciubota-Rosie, , M. Macoveanu, , C. M. Fernández, , M. J. Ramos, , A. Pérez, , A. Moreno, , Biomass Bioenergy, 2013, 51, 83 LINK https://doi.org/10.1016/j.biombioe.2013.01.008
    [Google Scholar]
  10. S. Sultana, , A. Khalid, , M. Ahmad, , A. A. Zuhairi, , L. K. Teong, , M. Zafar, , F. ul Hassan, , Int. J. Green Energy, 2014, 11, (3), 280 LINK https://doi.org/10.1080/15435075.2013.772520
    [Google Scholar]
  11. S. Tabtabaei, , D. G. B. Boocock, , L. L. Diosady, , J. Am. Oil Chem. Soc., 2015, 92, (8), 1205 LINK https://doi.org/10.1007/s11746-015-2677-5
    [Google Scholar]
  12. T. Issariyakul, , A. Dalai, , Can. J. Chem. Eng., 2012, 90, (2), 342 LINK https://doi.org/10.1002/cjce.20679
    [Google Scholar]
  13. O. A. Oshodi, , C. E. Chukwuneke, , O. Linus, , Eur. Chem. Bull., 2014, 3, (9), 946
    [Google Scholar]
  14. J. Nie, , S. Wang, , S. Emami, , K. Falk, , J. Shen, , M. J. T. Reaney, , Eur. J. Lipid Sci., Technol., 2016, 118, (10), 1486 LINK https://doi.org/10.1002/ejlt.201400500
    [Google Scholar]
  15. E. Govindaraj, , K. Muthu, , T. Lakshmanan, , D. Karthikeyan, , Int. J. Sci. Technol. Res., 2019, 8, (8), 872
    [Google Scholar]
  16. M. Ahmad, , M. Zafar, , S. Rashid, , S. Sultana, , H. Sadia, , M. A. Khan, , Int. J. Green Energy, 2013, 10, (4), 362 LINK https://doi.org/10.1080/15435075.2012.655352
    [Google Scholar]
  17. M. Ahmad, , M. A. Khan, , M. Zafar, , A. Hasan, , Z. Ahmad, , G. Akhter, , S. Gulzar, , S. Sultana, , Asian J. Chem., 2008, 20, (8), 6402 LINK https://asianpubs.org/index.php/ajchem/article/view/12989
    [Google Scholar]
  18. M. D. Kostić, , I. G. Djalović, , O. S. Stamenković, , P. M. Mitrović, , D. S. Adamović, , M. K. Kulina, , V. B. Veljković, , Fuel, 2018, 223, 125 LINK https://doi.org/10.1016/j.fuel.2018.03.023
    [Google Scholar]
  19. L. F. Chuah, , J. J. Klemeš, , S. Yusup, , A. Bokhari, , M. M. Akbar, , J. Clean. Prod., 2017, 146, 181 LINK https://doi.org/10.1016/j.jclepro.2016.05.017
    [Google Scholar]
  20. B. G. Pollet, , S. S. Kocha, , Johnson Matthey Technol. Rev., 2022, 66, (1), 61 LINK https://doi.org/10.1595/205651321x16196162869695
    [Google Scholar]
  21. E. Cako, , Z. Wang, , R. Castro-Muñoz, , M. P. Rayaroth, , G. Boczkaj, , Ultrason. Sonochem., 2022, 88, 106081 LINK https://doi.org/10.1016/j.ultsonch.2022.106081
    [Google Scholar]
  22. L. S. G. Teixeira, , J. C. R. Assis, , D. R. Mendonça, , I. T. V Santos, , P. R. B. Guimarães, , L. A. M. Pontes, , J. S. R. Teixeira, , Fuel Process. Technol., 2009, 90, (9), 1164 LINK https://doi.org/10.1016/j.fuproc.2009.05.008
    [Google Scholar]
  23. B. Xu, , S. M. R. Azam, , M. Feng, , B. Wu, , W. Yan, , C. Zhou, , H. Ma, , Ultrason. Sonochem., 2021, 81, 105855 LINK https://doi.org/10.1016/j.ultsonch.2021.105855
    [Google Scholar]
  24. S. Manickam, , V. N. D. Arigela, , P. R. Gogate, , Fuel Process. Technol., 2014, 128, 388 LINK https://doi.org/10.1016/j.fuproc.2014.08.002
    [Google Scholar]
  25. ‘Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter’, ASTM D240-19, ASTM International, West Conshohocken, USA, 5th December, 2019
    [Google Scholar]
  26. J. Sáez-Bastante, , M. Carmona-Cabello, , S. Pinzi, , M. P. Dorado, , Renew. Energy, 2020, 155, 1147 LINK https://doi.org/10.1016/j.renene.2020.04.045
    [Google Scholar]
  27. M. P. Dorado, , E. Ballesteros, , F. J. López, , M. Mittelbach, , Energy Fuels, 2004, 18, 77 LINK https://doi.org/10.1021/ef0340110
    [Google Scholar]
  28. J. Sáez-Bastante, , S. Pinzi, , I. Reyero, , F. Priego-Capote, , M. D. Luque de Castro, , M. P. Dorado, , Fuel, 2014, 131, 6 LINK https://doi.org/10.1016/j.fuel.2014.04.066
    [Google Scholar]
  29. J. Li, , J. Peng, , S. Guo, , L. Zhang, , J. Alloys Compd., 2013, 574, 504 LINK https://doi.org/10.1016/j.jallcom.2013.05.102
    [Google Scholar]
  30. R. Costa, , J. Lourenço, , Z. L. Pereira, , Chemometrics Intell. Lab. Syst., 2011, 107, (2), 234 LINK https://doi.org/10.1016/j.chemolab.2011.04.004
    [Google Scholar]
  31. N. Sánchez-Ávila, , J. M. Mata-Granados, , J. Ruiz-Jiménez, , M. D. Luque de Castro, , J. Chromatogr. A, 2009, 1216, (40), 6864 LINK https://doi.org/10.1016/j.chroma.2009.08.045
    [Google Scholar]
  32. ‘Fat and Oil Derivatives. Fatty Acid Methyl Esters (FAME). Determination of Ester and Linolenic Acid Methyl Ester Contents’, BS EN 14103:2020 - TC, British Standards Institution, London, UK, 29th February, 2020
    [Google Scholar]
  33. ‘Fat and Oil Derivatives. Fatty Acid Methyl Esters (FAME). Determination of Free and Total Glycerol and Mono-, Di-, Triglyceride Contents’, BS EN 14105:2020, British Standards Institution, London, UK, 31st December, 2020
    [Google Scholar]
  34. ‘Petroleum Products — Determination of Water — Coulometric Karl Fischer Titration Method’, ISO 12937:2000, International Organization for Standardization, Geneva, Switzerland, 2000
    [Google Scholar]
  35. ‘Petroleum Products — Determination of Carbon Residue — Micro Method’, ISO 10370:2014, International Organization for Standardization, Geneva, Switzerland, 2014
    [Google Scholar]
  36. ‘Determination of Flash Point — Pensky-Martens Closed Cup Method’, ISO 2719:2016, International Organization for Standardization, Geneva, Switzerland, 2016
    [Google Scholar]
  37. ‘Petroleum Products — Transparent and Opaque Liquids — Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity’ ISO 3104:2023, International Organization for Standardization, Geneva, Switzerland, 2023
    [Google Scholar]
  38. ‘Crude Petroleum and Liquid Petroleum Products — Laboratory Determination of Density — Hydrometer Method’, ISO 3675:1998, International Organization for Standardization, Geneva, Switzerland, 1998
    [Google Scholar]
/content/journals/10.1595/205651324X17004922618615
Loading
/content/journals/10.1595/205651324X17004922618615
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test