Skip to content
Volume 68, Issue 3
  • ISSN: 2056-5135


This experimental study investigates the palladium/rhodium based three-way catalyst (TWC) in a hydrogen-gasoline dual-fuel spark ignition (SI) engine under stoichiometric and lean conditions. The work focused on lean-burn engine operating conditions with the aim of reducing nitrogen oxides (NOx) emissions during the combustion process, where the TWC is not effective, while improving the thermal efficiency of the engine. Under these lean-burn engine conditions, the combustion promoting properties of hydrogen allowed for maintained engine combustion stability as determined by the cycle-to-cycle variation (COV) values even up to ultra lean conditions (λ= 2.0). It was found that by reducing the combustion temperature through the application of lean conditions, engine-out NOx emissions could be reduced or even eliminated, while under these conditions the TWC was effective in reducing engine-out carbon-based gaseous emissions.


Article metrics loading...

Loading full text...

Full text loading...



  1. Rietmann N., Hügler B., and Lieven T. J. Clean. Prod., 2020, 261, 121038 LINK [Google Scholar]
  2. Purayil S. T. P., Hamdan M. O., Al-Omari S. A. B., Selim M. Y. E., and Elnajjar E. Energy Rep., 2023, 9, 4547 LINK [Google Scholar]
  3. Su B., Wang Y., Xu Z., Han W., Jin H., and Wang H. Energy Convers. Manag., 2022, 270, 116199 LINK [Google Scholar]
  4. Scovell M. D. Int. J. Hydrogen Energy, 2022, 47, (19), 10441 LINK [Google Scholar]
  5. Rouleau L., Duffour F., Walter B., Kumar R., and Nowak L. SAE Technical Paper 2021-24-0060, SAE International, Warrendale, USA, 5th September, 2021 LINK [Google Scholar]
  6. Yang Z., Du Y., Geng Q., and He G. Energy Convers. Manag., 2022, 267, 115942 LINK [Google Scholar]
  7. Pan S., Wang J., and Huang Z. Int. J. Hydrogen Energy, 2022, 47, (57), 24069 LINK [Google Scholar]
  8. Shivaprasad K. V., Raviteja S., Chitragar P., and Kumar G. N. Proc. Technol., 2014, 14, 141 LINK [Google Scholar]
  9. Wang S., Ji C., and Zhang B. Int. J. Hydrogen Energy, 2011, 36, (7), 4461 LINK [Google Scholar]
  10. Du Y., Yu X., Wang J., Wu H., Dong W., and Gu J. Int. J. Hydrogen Energy, 2016, 41, (4), 3240 LINK [Google Scholar]
  11. Wang S., Ji C., Zhang B., and Zhou X. Energy Proc., 2014, 61, 323 LINK [Google Scholar]
  12. Suresh D., and Porpatham E. Int. J. Hydrogen Energy, 2023, 48, (38), 14433 LINK [Google Scholar]
  13. Wang L., Hong C., Li X., Yang Z., Guo S., and Li Q. Energy Rep., 2022, 8, 6480 LINK [Google Scholar]
  14. Elsemary I. M. M., Attia A. A. A., Elnagar K. H., and Elaraqy A. A. M. Appl. Therm. Eng., 2016, 106, 850 LINK [Google Scholar]
  15. Niu R., Yu X., Du Y., Xie H., Wu H., and Sun Y. Fuel, 2016, 186, 792 LINK [Google Scholar]
  16. Molina S., Ruiz S., Gomez-Soriano J., and Olcina-Girona M. Res. Eng., 2023, 17, 100799 LINK [Google Scholar]
  17. Suresh D., and Porpatham E. Int. J. Hydrogen Energy, 2023, 48, (38), 14433 LINK [Google Scholar]
  18. Karim G. A. J. KONES Power. Trans., 2007, 14, (4), 153 LINK [Google Scholar]
  19. Yilmaz I. T. Appl. Therm. Eng., 2021, 197, 117381 LINK [Google Scholar]
  20. Akcay M., Yilmaz I. T., and Feyzioglu A. Fuel Proc. Technol., 2021, 223, 106999 LINK [Google Scholar]
  21. Kim J., Chun K. M., Song S., Baek H.-K., and Lee S. W. Appl. Energy, 2018, 228, 1353 LINK [Google Scholar]
  22. Wang L., Liu J., Ji Q., Sun P., Li J., Wei M., and Liu S. Fuel, 2022, 314, 122726 LINK [Google Scholar]
  23. Chen L., Zhang X., Zhang R., Li J., Pan J., and Wei H. Int. J. Hydrogen Energy, 2022, 47, (77), 33082 LINK [Google Scholar]
  24. Nieman D. E., Morris A. P., Miwa J. T., and Denton B. D. SAE Technical Paper 2019-01-0032, SAE International, Warrendale, USA, 2019 LINK [Google Scholar]
  25. Gültekin N., and Ciniviz M. Int. J. Hydrogen Energy, 2023, 48, (66), 25984 LINK [Google Scholar]
  26. Battin-Leclerc F. Prog. Energy Combust. Sci., 2008, 34, (4), 440 LINK [Google Scholar]
  27. Fu Z., Li Y., Chen H., Du J., Li Y., and Gao W. ACS Omega, 2022, 7, (15), 13022 LINK [Google Scholar]
  28. Kärcher V., Hellier P., and Ladommatos N. SAE Technical Paper 2019-01–2329, SAE International, Warrendale, USA, 2019, 14 pp LINK [Google Scholar]
  29. Luo Q., Hu J.-B., Sun B., Liu F., Wang X., Li C., and Bao L. Int. J. Hydrogen Energy, 2019, 44, (11), 5573 LINK [Google Scholar]
  30. Alagumalai A., Jodat A., Mahian O., Ashok B., ‘NOx Formation Chemical Kinetics in IC Engines’, in “NOx Emission Control Technologies in Stationary, Automotive Internal Combustion Engines: Approaches Toward NOx Free Automobiles”, ed. and Ashok B. Elsevier Inc, Amsterdam, The Netherlands, 2022, pp. 3968 LINK [Google Scholar]
  31. Zeng F., and Hohn K. L. Appl. Catal. B: Environ., 2016, 182, 570 LINK [Google Scholar]
  32. Bao L., Sun B., Luo Q., Gao Y., Wang X., Liu F., and Li C. Int. J. Hydrogen Energy, 2020, 45, (39), 20491 LINK [Google Scholar]
  33. Farrauto R. J., Deeba M., and Alerasool S. Nat. Catal., 2019, 2, (7), 603 LINK [Google Scholar]
  34. Kang S. B., Nam S. B., Cho B. K., Nam I.-S., Kim C. H., and Oh S. H. Catal. Today, 2014, 231, 3 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
Keyword(s): aftertreatment; dual-fuel; hydrogen; lean burn; spark ignition engine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error