Skip to content
1887
Volume 68, Issue 3
  • ISSN: 2056-5135

Abstract

The evolution of three dimensional (3D) printed porous metallic biomaterials and their clinical applications are currently receiving much consideration. Many research works have been focused on the shaping by 3D printing of lightweight metal implants with improved mechanical properties. In the same way, the effect of surface finishes on roughness and porosity distribution on biological properties is still debated. Therefore, several factors need to be addressed and revisited in this context. This review focuses on the importance of porous metallic implant design and its relationship with biological and mechanical properties. First, the additive manufacturing (AM) techniques for bio-inert metals and alloys will be discussed. The review will then introduce the most efficient surface treatments and coating approaches for biomedical porous metals to enhance bone tissue regeneration, prevent corrosion, reduce revision surgery and improve implant lifetime. A critical study of the various parameters impacting the biological properties will also be carried out in this review.

Conflicts of Interests: There are no conflicts to declare. The authors alone are responsible for the content and writing of this review.
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17004970366027
2023-11-20
2024-07-16
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/3/ElMabrouk3_16b_Imp.html?itemId=/content/journals/10.1595/205651324X17004970366027&mimeType=html&fmt=ahah

References

  1. Vidal L., Kampleitner C., Á. Brennan M., Hoornaert A., and Layrolle P. Front. Bioeng. Biotechnol., 2020, 8, 61 LINK https://doi.org/10.3389/fbioe.2020.00061 [Google Scholar]
  2. Friedman S. M., and Mendelson D. A. Clin. Geriatr. Med., 2014, 30, (2), 175 LINK https://doi.org/10.1016/j.cger.2014.01.001 [Google Scholar]
  3. Masaeli R., Zandsalimi K., Rasoulianboroujeni M., and Tayebi L. Tissue Eng. Part B: Rev., 2019, 25, (5), 387 LINK https://doi.org/10.1089/ten.teb.2018.0381 [Google Scholar]
  4. Gilbert Triplett R., and Budinskaya O. Oral Maxillofac. Surg. Clin. North Am., 2017, 29, (1), 105 LINK https://doi.org/10.1016/j.coms.2016.08.011 [Google Scholar]
  5. Williams D. F. Biomaterials, 2009, 30, (30), 5897 LINK https://doi.org/10.1016/j.biomaterials.2009.07.027 [Google Scholar]
  6. “Definitions of Biomaterials for the Twenty-First Century”, Proceedings of a Consensus Conference, Chengdu, People’s Republic of China, 11th–12th June, 2018, eds. Williams D., and Zhang X. Z. Elsevier Inc, Amsterdam, The Netherlands, 2019 LINK https://doi.org/10.1016/b978-0-12-818291-8.00011-0 [Google Scholar]
  7. Jessop Z. M., Al-Sabah A., Gardiner M. D., Combellack E., Hawkins K., and Whitaker I. S. J. Plast. Reconstr. Aesthetic Surg., 2017, 70, (9), 1155 LINK https://doi.org/10.1016/j.bjps.2017.06.001 [Google Scholar]
  8. Wang X., Ao Q., Tian X., Fan J., Wei Y., Hou W., Tong H., and Bai S. Materials, 2016, 9, (10), 802 LINK https://doi.org/10.3390/ma9100802 [Google Scholar]
  9. Chirila T. V., Hong Y., ‘Chapter C2 The Vitreous Humor’, in “Handbook of Biomaterials Properties”, eds. Murphy W., Black J., and Hastings G. Springer Science and Business Media, New York, USA, 2016, pp. 125134 LINK https://doi.org/10.1007/978-1-4939-3305-1_12 [Google Scholar]
  10. Chen Q., and Thouas G. A. Mater. Sci. Eng. R: Rep., 2015, 87, 1 LINK https://doi.org/10.1016/j.mser.2014.10.001 [Google Scholar]
  11. Han X., Yang D., Yang C., Spintzyk S., Scheideler L., Li P., Li D., Geis-Gerstorfer J., and Rupp F. J. Clin. Med., 2019, 8, (2), 240 LINK https://doi.org/10.3390/jcm8020240 [Google Scholar]
  12. Chaikof E. L., Matthew H., Kohn J., Mikos A. G., Prestwich G. D., and Yip C. M. Ann. N. Y. Acad. Sci., 2002, 961, (1), 96 LINK https://doi.org/10.1111/j.1749-6632.2002.tb03057.x [Google Scholar]
  13. Griffith L. G. Ann. N. Y. Acad. Sci., 2002, 961, (1), 83 LINK https://doi.org/10.1111/j.1749-6632.2002.tb03056.x [Google Scholar]
  14. Karageorgiou V., and Kaplan D. Biomaterials, 2005, 26, (27), 5474 LINK https://doi.org/10.1016/j.biomaterials.2005.02.002 [Google Scholar]
  15. Bobbert F. S. L., and Zadpoor A. A. J. Mater. Chem. B, 2017, 5, (31), 6175 LINK https://doi.org/10.1039/c7tb00741h [Google Scholar]
  16. Nikolova M. P., and Chavali M. S. Bioact. Mater., 2019, 4, 271 LINK https://doi.org/10.1016/j.bioactmat.2019.10.005 [Google Scholar]
  17. Luo L., Jiang Z., Wei D., and He X. Adv. Mater. Res., 2014, 887–888, 1115 LINK https://doi.org/10.4028/www.scientific.net/AMR.887-888.1115 [Google Scholar]
  18. Dorozhkin S. V. Mater. Sci. Eng.: C, 2015, 55, 272 LINK https://doi.org/10.1016/j.msec.2015.05.033 [Google Scholar]
  19. Bricha M., Belmamouni Y., Essassi E. M., Ferreira J. M. F., and El Mabrouk K. J. Biomater. Tissue Eng., 2013, 3, (5), 570 LINK https://doi.org/10.1166/jbt.2013.1120 [Google Scholar]
  20. Belmamouni Y., Bricha M., El Essassi E., Ferreira J. M. F., and El Mabrouk K. J. Nanosci. Nanotechnol., 2014, 14, (6), 4409 LINK https://doi.org/10.1166/jnn.2014.8075 [Google Scholar]
  21. Sudarmadji N., Tan J. Y., Leong K. F., Chua C. K., and Loh Y. T. Acta Biomater., 2011, 7, (2), 530 LINK https://doi.org/10.1016/j.actbio.2010.09.024 [Google Scholar]
  22. Sing S. L., An J., Yeong W. Y., and Wiria F. E. J. Orthop. Res., 2016, 34, (3), 369 LINK https://doi.org/10.1002/jor.23075 [Google Scholar]
  23. Mirzaali M. J., Hedayati R., Vena P., Vergani L., Strano M., and Zadpoor A. A. Appl. Phys. Lett., 2017, 111, (5), 051903 LINK https://doi.org/10.1063/1.4989441 [Google Scholar]
  24. Bobbert F. S. L., Lietaert K., Eftekhari A. A., Pouran B., Ahmadi S. M., Weinans H., and Zadpoor A. A. Acta Biomater., 2017, 53, 572 LINK https://doi.org/10.1016/j.actbio.2017.02.024 [Google Scholar]
  25. Melchels F. P. W., Domingos M. A. N., Klein T. J., Malda J., Bartolo P. J., and Hutmacher D. W. Prog. Polym. Sci., 2012, 37, (8), 1079 LINK https://doi.org/10.1016/j.progpolymsci.2011.11.007 [Google Scholar]
  26. Wang X. Artif. Organs, 2012, 36, (11), 951 LINK https://doi.org/10.1111/j.1525-1594.2012.01499.x [Google Scholar]
  27. Ozbolat I. T., Moncal K. K., and Gudapati H. Addit. Manuf., 2017, 13, 179 LINK https://doi.org/10.1016/j.addma.2016.10.003 [Google Scholar]
  28. Loh G. H., Pei E., Harrison D., and Monzón M. D. Addit. Manuf., 2018, 23, 34 LINK https://doi.org/10.1016/j.addma.2018.06.023 [Google Scholar]
  29. Zadpoor A. A. J. Mater. Chem. B, 2019, 7, (26), 4088 LINK https://doi.org/10.1039/c9tb00420c [Google Scholar]
  30. Distefano F., Pasta S., and Epasto G. J. Funct. Biomater., 2023, 14, (3), 125 LINK https://doi.org/10.3390/jfb14030125 [Google Scholar]
  31. Yoo D. J. Biomaterials, 2011, 32, (31), 7741 LINK https://doi.org/10.1016/j.biomaterials.2011.07.019 [Google Scholar]
  32. Cheng A., Humayun A., Cohen D. J., Boyan B. D., and Schwartz Z. Biofabrication, 2014, 6, (4), 045007 LINK https://doi.org/10.1088/1758-5082/6/4/045007 [Google Scholar]
  33. Itälä A. I., Ylänen H. O., Ekholm C., Karlsson K. H., and Aro H. T. J. Biomed. Mater. Res., 2002, 58, (6), 679 LINK https://doi.org/10.1002/jbm.1069 [Google Scholar]
  34. Kuboki Y., Jin Q., and Takita H. J. Bone Joint Surg., 2001, 83, (1), LINK https://doi.org/10.2106/00004623-200100002-00005 [Google Scholar]
  35. Taniguchi N., Fujibayashi S., Takemoto M., Sasaki K., Otsuki B., Nakamura T., Matsushita T., Kokubo T., and Matsuda S. Mater. Sci. Eng.: C, 2016, 59, 690 LINK https://doi.org/10.1016/j.msec.2015.10.069 [Google Scholar]
  36. Krishna B. V., Bose S., and Bandyopadhyay A. Acta Biomater., 2007, 3, (6), 997 LINK https://doi.org/10.1016/j.actbio.2007.03.008 [Google Scholar]
  37. Dondani J. R., Iyer J., and Tran S. D. Biomolecules, 2023, 13, (3), 464 LINK https://doi.org/10.3390/biom13030464 [Google Scholar]
  38. Lv J., Jia Z., Li J., Wang Y., Yang J., Xiu P., Zhang K., Cai H., and Liu Z. Adv. Eng. Mater., 2015, 17, (9), 1391 LINK https://doi.org/10.1002/adem.201400508 [Google Scholar]
  39. Biemond J. E., Aquarius R., Verdonschot N., and Buma P. Arch. Orthop. Trauma Surg., 2011, 131, (5), 711 LINK https://doi.org/10.1007/s00402-010-1218-9 [Google Scholar]
  40. Van Bael S., Chai Y. C., Truscello S., Moesen M., Kerckhofs G., Van Oosterwyck H., Kruth J.-P., and Schrooten J. Acta Biomater., 2012, 8, (7), 2824 LINK https://doi.org/10.1016/j.actbio.2012.04.001 [Google Scholar]
  41. Jin Q. M., Takita H., Kohgo T., Atsumi K., Itoh H., and Kuboki Y. J. Biomed. Mater. Res., 2000, 51, (3), 491 LINK https://doi.org/10.1002/1097-4636(20000905)51:3<491::AID-JBM25>3.0.CO;2-1 [Google Scholar]
  42. Zadpoor A. A. Int. J. Mol. Sci., 2017, 18, (8), 1607 LINK https://doi.org/10.3390/ijms18081607 [Google Scholar]
  43. Kolken H. M. A., Lietaert K., van der Sloten T., Pouran B., Meynen A., Van Loock G., Weinans H., Scheys L., and Zadpoor A. A. J. Mech. Behav. Biomed. Mater., 2020, 104, 103658 LINK https://doi.org/10.1016/j.jmbbm.2020.103658 [Google Scholar]
  44. Yang N., Quan Z., Zhang D., and Tian Y. Comput. Aided Des., 2014, 56, 11 LINK https://doi.org/10.1016/j.cad.2014.06.006 [Google Scholar]
  45. Kadkhodapour J., Montazerian H., Darabi A. Ch., Anaraki A. P., Ahmadi S. M., Zadpoor A. A., and Schmauder S. J. Mech. Behav. Biomed. Mater., 2015, 50, 180 LINK https://doi.org/10.1016/j.jmbbm.2015.06.012 [Google Scholar]
  46. Yan C., Hao L., Hussein A., and Raymont D. Int. J. Mach. Tools Manuf., 2012, 62, 32 LINK https://doi.org/10.1016/j.ijmachtools.2012.06.002 [Google Scholar]
  47. Zadpoor A. A., and Hedayati R. J. Biomed. Mater. Res. Part A, 2016, 104, (12), 3164 LINK https://doi.org/10.1002/jbm.a.35855 [Google Scholar]
  48. Zadpoor A. A. J. Mater. Chem. B, 2019, 7, (26), 4088 LINK https://doi.org/10.1039/c9tb00420c [Google Scholar]
  49. Balla V. K., Bose S., and Bandyopadhyay A. Philos. Mag., 2010, 90, (22), 3081 LINK https://doi.org/10.1080/14786431003800891 [Google Scholar]
  50. Ashby M. F. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2006, 364, (1838), 15 LINK https://doi.org/10.1098/rsta.2005.1678 [Google Scholar]
  51. Gibson I. J., and Ashby M. F. Proc. R. Soc. A Math. Phys. Eng. Sci., 1982, 382, (1782), 43 LINK https://doi.org/10.1098/rspa.1982.0088 [Google Scholar]
  52. Parthasarathy J., Starly B., Raman S., and Christensen A. J. Mech. Behav. Biomed. Mater., 2010, 3, (3), 249 LINK https://doi.org/10.1016/j.jmbbm.2009.10.006 [Google Scholar]
  53. Zhao S., Li S. J., Hou W. T., Hao Y. L., Yang R., and Misra R. D. K. J. Mech. Behav. Biomed. Mater., 2016, 59, 251 LINK https://doi.org/10.1016/j.jmbbm.2016.01.034 [Google Scholar]
  54. Ahmadi S. M., Hedayati R., Li Y., Lietaert K., Tümer N., Fatemi A., Rans C. D., Pouran B., Weinans H., and Zadpoor A. A. Acta Biomater., 2018, 65, 292 LINK https://doi.org/10.1016/j.actbio.2017.11.014 [Google Scholar]
  55. Balla V. K., Bodhak S., Bose S., and Bandyopadhyay A. Acta Biomater., 2010, 6, (8), 3349 LINK https://doi.org/10.1016/j.actbio.2010.01.046 [Google Scholar]
  56. Li Y., Zhou J., Pavanram P., Leeflang M. A., Fockaert L. I., Pouran B., Tümer N., Schröder K.-U., Mol J. M. C., Weinans H., Jahr H., and Zadpoor A. A. Acta Biomater., 2018, 67, 378 LINK https://doi.org/10.1016/j.actbio.2017.12.008 [Google Scholar]
  57. Li Y., Li W., Bobbert F. S. L., Lietaert K., Dong J. H., Leeflang M. A., Zhou J., and Zadpoor A. A. Acta Biomater., 2020, 106, 439 LINK https://doi.org/10.1016/j.actbio.2020.02.001 [Google Scholar]
  58. Li Y., Jahr H., Lietaert K., Pavanram P., Yilmaz A., Fockaert L. I., Leeflang M. A., Pouran B., Gonzalez-Garcia Y., Weinans H., Mol J. M. C., Zhou J., and Zadpoor A. A. Acta Biomater., 2018, 77, 380 LINK https://doi.org/10.1016/j.actbio.2018.07.011 [Google Scholar]
  59. Pattanayak D. K., Fukuda A., Matsushita T., Takemoto M., Fujibayashi S., Sasaki K., Nishida N., Nakamura T., and Kokubo T. Acta Biomater., 2011, 7, (3), 1398 LINK https://doi.org/10.1016/j.actbio.2010.09.034 [Google Scholar]
  60. Guo Y., Wu J., Xie K., Tan J., Yang Y., Zhao S., Wang L., Jiang W., and Hao Y. ACS Biomater. Sci. Eng., 2019, 5, (12), 6463 LINK https://doi.org/10.1021/acsbiomaterials.9b00909 [Google Scholar]
  61. Li X., Wang C., Zhang W., and Li Y. Mater. Lett., 2009, 63, (3–4), 403 LINK https://doi.org/10.1016/j.matlet.2008.10.065 [Google Scholar]
  62. Genovese K., Leeflang S., and Zadpoor A. A. J. Mech. Behav. Biomed. Mater., 2017, 69, 327 LINK https://doi.org/10.1016/j.jmbbm.2017.01.010 [Google Scholar]
  63. Hedayati R., Sadighi M., Mohammadi-Aghdam M., and Zadpoor A. A. Mater. Sci. Eng.: C, 2016, 60, 163 LINK https://doi.org/10.1016/j.msec.2015.11.001 [Google Scholar]
  64. Amin Yavari S., Ahmadi S. M., Wauthle R., Pouran B., Schrooten J., Weinans H., and Zadpoor A. A. J. Mech. Behav. Biomed. Mater., 2015, 43, 91 LINK https://doi.org/10.1016/j.jmbbm.2014.12.015 [Google Scholar]
  65. Yavari S. A., Wauthle R., van der Stok J., Riemslag A. C., Janssen M., Mulier M., Kruth J. P., Schrooten J., Weinans H., and Zadpoor A. A. Mater. Sci. Eng.: C, 2013, 33, (8), 4849 LINK https://doi.org/10.1016/j.msec.2013.08.006 [Google Scholar]
  66. Zadpoor A. A. J. Mech. Behav. Biomed. Mater., 2017, 70, 1 LINK https://doi.org/10.1016/j.jmbbm.2017.03.018 [Google Scholar]
  67. Wang F., Wang L., Feng Y., Yang X., Ma Z., Shi L., Ma X., Wang J., Ma T., Yang Z., Wen X., Zhang Y., and Lei W. Sci. Rep., 2018, 8, 8927 LINK https://doi.org/10.1038/s41598-018-27182-x [Google Scholar]
  68. Dallago M., Fontanari V., Torresani E., Leoni M., Pederzolli C., Potrich C., and Benedetti M. J. Mech. Behav. Biomed. Mater., 2018, 78, 381 LINK https://doi.org/10.1016/j.jmbbm.2017.11.044 [Google Scholar]
  69. Zhao S., Li S. J., Hou W. T., Hao Y. L., Yang R., and Misra R. D. K. J. Mech. Behav. Biomed. Mater., 2016, 59, 251 LINK https://doi.org/10.1016/j.jmbbm.2016.01.034 [Google Scholar]
  70. Zhao D., Huang Y., Ao Y., Han C., Wang Q., Li Y., Liu J., Wei Q., and Zhang Z. J. Mech. Behav. Biomed. Mater., 2018, 88, 478 LINK https://doi.org/10.1016/j.jmbbm.2018.08.048 [Google Scholar]
  71. Kelly C. N., Evans N. T., Irvin C. W., Chapman S. C., Gall K., and Safranski D. L. Mater. Sci. Eng.: C, 2019, 98, 726 LINK https://doi.org/10.1016/j.msec.2019.01.024 [Google Scholar]
  72. van Hooreweder B., Apers Y., Lietaert K., and Kruth J.-P. Acta Biomater., 2017, 47, 193 LINK https://doi.org/10.1016/j.actbio.2016.10.005 [Google Scholar]
  73. Wu M.-W., Chen J.-K., Lin B.-H., and Chiang P.-H. Mater. Des., 2017, 134, 163 LINK https://doi.org/10.1016/j.matdes.2017.08.048 [Google Scholar]
  74. Hashemi S. M. H., Babic U., Hadikhani P., and Psaltis D. Curr. Opin. Electrochem., 2020, 20, 54 LINK https://doi.org/10.1016/j.coelec.2020.02.008 [Google Scholar]
  75. Cao Y., Bai P., Liu F., Hou X., and Guo Y. Materials, 2020, 13, (2), 340 LINK https://doi.org/10.3390/ma13020340 [Google Scholar]
  76. Ni J., Ling H., Zhang S., Wang Z., Peng Z., Benyshek C., Zan R., Miri A. K., Li Z., Zhang X., Lee J., Lee K.-J., Kim H.-J., Tebon P., Hoffman T., Dokmeci M. R., Ashammakhi N., Li X., and Khademhosseini A. Mater. Today Bio, 2019, 3, 100024 LINK https://doi.org/10.1016/j.mtbio.2019.100024 [Google Scholar]
  77. Munsch M., ‘Laser Additive Manufacturing of Customized Prosthetics and Implants for Biomedical Applications’, in “Laser Additive Manufacturing: Materials, Design, Technologies, and Applications”, and Brandt ed. M. Elsevier Ltd, Duxford, UK, 2017, pp 399420 LINK https://doi.org/10.1016/B978-0-08-100433-3.00015-4 [Google Scholar]
  78. Suska F., Kjeller G., Tarnow P., Hryha E., Nyborg L., Snis A., and Palmquist A. Surg. Oncol. Reconstruct., 2016, 74, (8), 1706.E1 LINK https://doi.org/10.1016/j.joms.2016.03.046 [Google Scholar]
  79. Singh H., Singh S., Prakash C., ‘Current Trends in Biomaterials, Bio-Manufacturing’, in “Biomanufacturing”, eds. Prakash C., Singh R., Pabla B. S., Uddin M. S., Singh S., Ramakrishna S., and Puri S. Springer Nature, Cham, Switzerland, 2019, pp. 134 LINK https://doi.org/10.1007/978-3-030-13951-3_1 [Google Scholar]
  80. Gao C., Wang C., Jin H., Wang Z., Li Z., Shi C., Leng Y., Yang F., Liu H., and Wang J. RSC Adv., 2018, 8, (44), 25210 LINK https://doi.org/10.1039/c8ra04815k [Google Scholar]
  81. Frazier W. E. J. Mater. Eng. Perform., 2014, 23, (6), 1917 LINK https://doi.org/10.1007/s11665-014-0958-z [Google Scholar]
  82. Yakout M., Elbestawi M. A., and Veldhuis S. C. Solid State Phenom., 2018, 278, 1 LINK https://doi.org/10.4028/www.scientific.net/SSP.278.1 [Google Scholar]
  83. Lewandowski J. J., and Seifi M. Annu. Rev. Mater. Res., 2016, 46, 151 LINK https://doi.org/10.1146/annurev-matsci-070115-032024 [Google Scholar]
  84. Yap C. Y., Chua C. K., Dong Z. L., Liu Z. H., Zhang D. Q., Loh L. E., and Sing S. L. Appl. Phys. Rev., 2015, 2, (4), 041101 LINK https://doi.org/10.1063/1.4935926 [Google Scholar]
  85. Wysocki B., Maj P., Sitek R., Buhagiar J., Kurzydłowski K. J., and Święszkowski W. Appl. Sci., 2017, 7, (7), 657 LINK https://doi.org/10.3390/app7070657 [Google Scholar]
  86. Yuan L., Ding S., and Wen C. Bioact. Mater., 2019, 4, 56 LINK https://doi.org/10.1016/j.bioactmat.2018.12.003 [Google Scholar]
  87. Murr L. E., Gaytan S. M., Ramirez D. A., Martinez E., Hernandez J., Amato K. N., Shindo P. W., Medina F. R., and Wicker R. B. J. Mater. Sci. Technol., 2012, 28, (1), 1 LINK https://doi.org/10.1016/S1005-0302(12)60016-4 [Google Scholar]
  88. Murr L. E. J. Mech. Behav. Biomed. Mater., 2017, 76, 164 LINK https://doi.org/10.1016/j.jmbbm.2017.02.019 [Google Scholar]
  89. Herderick E. ‘Processing, Product Manufacturing: Additive Manufacturing of Metals: A Review’, Materials Science & Technology Conference, Exhibition (MS&T 11), Columbus, USA, 16th–20th October, 2011, Association for Iron & Steel Technology, Warrendale, USA, 2011, pp. 14131425 [Google Scholar]
  90. Chia H. N., and Wu B. M. J. Biol. Eng., 2015, 9, 4 LINK https://doi.org/10.1186/s13036-015-0001-4 [Google Scholar]
  91. Yadroitsev I., Shishkovsky I., Bertrand P., and Smurov I. Appl. Surf. Sci., 2009, 255, (10), 5523 LINK https://doi.org/10.1016/j.apsusc.2008.07.154 [Google Scholar]
  92. Warnke P. H., Douglas T., Wollny P., Sherry E., Steiner M., Galonska S., Becker S. T., Springer I. N., Wiltfang J., and Sivananthan S. Tissue Eng. Part C: Methods, 2009, 15, (2), 115 LINK https://doi.org/10.1089/ten.tec.2008.0288 [Google Scholar]
  93. Wang Y., Shen Y., Wang Z., Yang J., Liu N., and Huang W. Mater. Lett., 2010, 64, (6), 674 LINK https://doi.org/10.1016/j.matlet.2009.12.035 [Google Scholar]
  94. Liu J., Jin F., Zheng M.-L., Wang S., Fan S.-Q., Li P., and Duan X.-M. ACS Appl. Bio Mater., 2019, 2, (2), 697 LINK https://doi.org/10.1021/acsabm.8b00550 [Google Scholar]
  95. Ataee A., Li Y., Fraser D., Song G., and Wen C. Mater. Des., 2018, 137, 345 LINK https://doi.org/10.1016/j.matdes.2017.10.040 [Google Scholar]
  96. Shipley H., McDonnell D., Culleton M., Coull R., Lupoi R., O’Donnell G., and Trimble D. Int. J. Mach. Tools Manuf., 2018, 128, 1 LINK https://doi.org/10.1016/j.ijmachtools.2018.01.003 [Google Scholar]
  97. Chaijaruwanich A. Chiang Mai Univ. J. Nat. Sci., 2011, 10, (1), 39 LINK https://www.thaiscience.info/journals/Article/CMUJ/10887606.pdf [Google Scholar]
  98. Dehghanghadikolaei A., and Fotovvati B. Materials, 2019, 12, (11), 1795 LINK https://doi.org/10.3390/ma12111795 [Google Scholar]
  99. Oliver J. N., Su Y., Lu X., Kuo P.-H., Du J., and Zhu D. Bioact. Mater., 2019, 4, 261 LINK https://doi.org/10.1016/j.bioactmat.2019.09.002 [Google Scholar]
  100. Tabia Z., Bricha M., El Mabrouk K., and Vaudreuil S. J. Mater. Sci., 2021, 56, (2), 1658 LINK https://doi.org/10.1007/s10853-020-05370-3 [Google Scholar]
  101. Liu Y., Rath B., Tingart M., and Eschweiler J. J. Biomed. Mater. Res. Part A, 2020, 108, (3), 470 LINK https://doi.org/10.1002/jbm.a.36829 [Google Scholar]
  102. Bose S., Banerjee D., Shivaram A., Tarafder S., and Bandyopadhyay A. Mater. Des., 2018, 151, (2018), 102 LINK https://doi.org/10.1016/j.matdes.2018.04.049 [Google Scholar]
  103. Sidane D., Khireddine H., Yala S., Ziani S., Bir F., and Chicot D. Metall. Mater. Trans. B, 2015, 46, (5), 2340 LINK https://doi.org/10.1007/s11663-015-0397-8 [Google Scholar]
  104. Dobbenga S., Fratila-Apachitei L. E., and Zadpoor A. A. Acta Biomater., 2016, 46, 3 LINK https://doi.org/10.1016/j.actbio.2016.09.031 [Google Scholar]
  105. Yang K., Jung K., Ko E., Kim J., Park K. I., Kim J., and Cho S.-W. ACS Appl. Mater. Interfaces, 2013, 5, (21), 10529 LINK https://doi.org/10.1021/am402156f [Google Scholar]
  106. Teo B. K. K., Wong S. T., Lim C. K., Kung T. Y. S., Yap C. H., Ramagopal Y., Romer L. H., and Yim E. K. F. ACS Nano., 2013, 7, (6), 4785 LINK https://doi.org/10.1021/nn304966z [Google Scholar]
  107. Li X., Gao P., Wan P., Pei Y., Shi L., Fan B., Shen C., Xiao X., Yang K., and Guo Z. Sci Rep., 2017, 7, 40755 LINK https://doi.org/10.1038/srep40755 [Google Scholar]
  108. Civantos A., Martínez-Campos E., Ramos V., Elvira C., Gallardo A., and Abarrategi A. ACS Biomater. Sci. Eng., 2017, 3, (7), 1245 LINK https://doi.org/10.1021/acsbiomaterials.6b00604 [Google Scholar]
  109. Li Y., Yang W., Li X., Zhang X., Wang C., Meng X., Pei Y., Fan X., Lan P., Wang C., Li X., and Guo Z. ACS Appl. Mater. Interfaces, 2015, 7, (10), 5715 LINK https://doi.org/10.1021/acsami.5b00331 [Google Scholar]
  110. de Wild M., Zimmermann S., Rüegg J., Schumacher R., Fleischmann T., Ghayor C., and Weber F. E. 3D Print. Add. Manufactur., 2016, 3, (3), 143 LINK https://doi.org/10.1089/3dp.2016.0004 [Google Scholar]
  111. de Wild M., Schumacher R., Mayer K., Schkommodau E., Thoma D., Bredell M., Gujer A. K., Grätz K. W., and Weber F. E. Tissue Eng. Part A., 2013, 19, (23–24), 2645 LINK https://doi.org/10.1089/ten.tea.2012.0753 [Google Scholar]
  112. Shirokova A. G., Bogdanova E. A., Skachkov V. M., Pasechnik L. A., Borisov S. V, and Sabirzyanov N. A. J. Surf. Investig.: X-ray, Synchr., Neut. Tech., 2017, 11, (1), 107 LINK https://doi.org/10.1134/s1027451016050608 [Google Scholar]
  113. Wang S., Li R., Li D., Zhang Z.-Y., Liu G., Liang H., Qin Y., Yu J., and Li Y. J. Mater. Chem. B, 2018, 6, (20), 3254 LINK https://doi.org/10.1039/c8tb00328a [Google Scholar]
  114. Vladescu A., Vranceanu D. M., Kulesza S., Ivanov A. N., Bramowicz M., Fedonnikov A. S., Braic M., Norkin I. A., Koptyug A., Kurtukova M. O., Dinu M., Pana I., Surmeneva M. A., Surmenev R. A., and Cotrut C. M. Sci. Rep., 2017, 7, 16819 LINK https://doi.org/10.1038/s41598-017-16985-z [Google Scholar]
  115. Mumith A., Cheong V. S., Fromme P., Coathup M. J., and Blunn G. W. PLoS ONE, 2020, 15, (1), 0227232 LINK https://doi.org/10.1371/journal.pone.0227232 [Google Scholar]
  116. Mokabber T., Cao H. T., Norouzi N., van Rijn P., and Pei Y. T. ACS Appl. Mater. Interfaces, 2020, 12, (5), 5531 LINK https://doi.org/10.1021/acsami.9b20158 [Google Scholar]
  117. Roy M., Bandyopadhyay A., and Bose S. Mater. Sci. Eng. C, 2009, 29, (6), 1965 LINK https://doi.org/10.1016/j.msec.2009.03.009 [Google Scholar]
  118. Gasik M., Braem A., Chaudhari A., Duyck J., and Vleugels J. Mater. Sci. Eng.: C, 2015, 49, 152 LINK https://doi.org/10.1016/j.msec.2014.12.074 [Google Scholar]
  119. Geraci A. J. Biochip. Tissue Chips, 2012, 2, e108 LINK https://doi.org/10.4172/2153-0777.1000e108 [Google Scholar]
  120. Hashemi P. M., Borhani E., and Nourbakhsh M. S. Nanomed. J., 2016, 3, (4), 202 LINK https://doi.org/10.22038/nmj.2016.7574 [Google Scholar]
  121. Balla V. K., Banerjee S., Bose S., and Bandyopadhyay A. Acta Biomater., 2010, 6, (6), 2329 LINK https://doi.org/10.1016/j.actbio.2009.11.021 [Google Scholar]
  122. Sungail C., and Abid A. D. Powder Rep., 2020, 75, (1), 28 LINK https://doi.org/10.1016/j.mprp.2019.03.001 [Google Scholar]
  123. Wauthle R., van der Stok J., Amin Yavari S., Van Humbeeck J., Kruth J.-P., Zadpoor A. A., Weinans H., Mulier M., and Schrooten J. Acta Biomater., 2015, 14, 217 LINK https://doi.org/10.1016/j.actbio.2014.12.003 [Google Scholar]
  124. Guo Y., Xie K., Jiang W., Wang L., Li G., Zhao S., Wu W., and Hao Y. ACS Biomater. Sci. Eng., 2019, 5, (2), 1123 LINK https://doi.org/10.1021/acsbiomaterials.8b01094 [Google Scholar]
  125. Kim H.-M., Kaneko H., Kokubo T., Miyazaki T., and Nakamura T. Key Eng. Mater., 2003, 240–242, 11 LINK https://doi.org/10.4028/www.scientific.net/kem.240-242.11 [Google Scholar]
  126. Barrère F., van der Valk C. M., Dalmeijer R. A. J., Meijer G., van Blitterswijk C. A., de Groot K., and Layrolle P. J. Biomed. Mater. Res. Part A, 2003, 66A, (4), 779 LINK https://doi.org/10.1002/jbm.a.10454 [Google Scholar]
  127. Barrère F., van der Valk C. M., Meijer G., Dalmeijer R. A. J., de Groot K., and Layrolle P. J. Biomed. Mater. Res. Part B: Appl. Biomater., 2003, 67B, (1), 655 LINK https://doi.org/10.1002/jbm.b.10057 [Google Scholar]
  128. Mitra I., Bose S., Dernell W. S., Dasgupta N., Eckstrand C., Herrick J., Yaszemski M. J., Goodman S. B., and Bandyopadhyay A. Mater. Today, 2021, 45, 20 LINK https://doi.org/10.1016/J.MATTOD.2020.11.021 [Google Scholar]
  129. Putra N. E., Borg K. G. N., Diaz-Payno P. J., Leeflang M. A., Klimopoulou M., Taheri P., Mol J. M. C., Fratila-Apachitei L. E., Huan Z., Chang J., Zhou J., and Zadpoor A. A. Acta Biomater., 2022, 148, 355 LINK https://doi.org/10.1016/j.actbio.2022.06.009 [Google Scholar]
  130. Putra N. E., Leeflang M. A., Klimopoulou M., Dong J., Taheri P., Huan Z., Fratila-Apachitei L. E., Mol J. M. C., Chang J., Zhou J., and Zadpoor A. A. Acta Biomater., 2023, 162, 182 LINK https://doi.org/10.1016/j.actbio.2023.03.033 [Google Scholar]
  131. Putra N. E., Leeflang M. A., Taheri P., Fratila-Apachitei L. E., Mol J. M. C., Zhou J., and Zadpoor A. A. Acta Biomater., 2021, 134, 774 LINK https://doi.org/10.1016/j.actbio.2021.07.042 [Google Scholar]
  132. Dong J., Lin P., Putra N. E., Tümer N., Leeflang M. A., Huan Z., Fratila-Apachitei L. E., Chang J., Zadpoor A. A., and Zhou J. Acta Biomater., 2022, 151, 628 LINK https://doi.org/10.1016/j.actbio.2022.08.002 [Google Scholar]
  133. Putra N. E., Leeflang M. A., Ducret V., Patrulea V., Fratila-Apachitei L. E., Perron K., Ye H., Zhou J., Apachitei I., and Zadpoor A. A. Int. J. Mol. Sci., 2022, 23, (21), 13239 LINK https://doi.org/10.3390/ijms232113239 [Google Scholar]
  134. van Hengel I. A. J., Putra N. E., Tierolf M. W. A. M., Minneboo M., Fluit A. C., Fratila-Apachitei L. E., Apachitei I., and Zadpoor A. A. Acta Biomater., 2020, 107, 325 LINK https://doi.org/10.1016/j.actbio.2020.02.044 [Google Scholar]
  135. Levingstone T. J., ‘Head Start : Graduate Level Resources in Materials Engineering: Ceramics for Medical Applications’, ed. and Looney L. Dublin City University, Dublin, Republic of Ireland, March, 2008, 58 pp LINK https://doras.dcu.ie/20730/1/Ceramics_for_Medical_Applications.pdf [Google Scholar]
  136. Dinesh K. R., and Hatti G. IOSR J. Mech. Civil Eng., 2018, 15, (6), 39 LINK https://www.iosrjournals.org/iosr-jmce/papers/vol15-issue6/Version-2/E1506023944.pdf [Google Scholar]
  137. Tathe A., Ghodke M., and Nikalje A. P. Int. J. Pharm. Pharm. Sci., 2010, 2, (Suppl. 4), 19 LINK https://www.innovareacademics.in/journal/ijpps/Vol2Suppl4/800.pdf [Google Scholar]
  138. Wahab I. F., Razak S. I. A., ‘Polysaccharides as Composite Biomaterials’, in “Composites from Renewable and Sustainable Materials”, ed. and Poletto M. IntechOpen Ltd, London, UK, 2016, pp. 6484 LINK https://doi.org/10.5772/65263 [Google Scholar]
  139. Liang H., Yang Y., Xie D., Li L., Mao N., Wang C., Tian Z., Jiang Q., and Shen L. J. Mater. Sci. Technol., 2019, 35, (7), 1284 LINK https://doi.org/10.1016/j.jmst.2019.01.012 [Google Scholar]
  140. Cheng A., Cohen D. J., Kahn A., Clohessy R. M., Sahingur K., Newton J. B., Hyzy S. L., Boyan B. D., and Schwartz Z. Ann. Biomed. Eng., 2017, 45, (8), 2025 LINK https://doi.org/10.1007/s10439-017-1831-7 [Google Scholar]
  141. Cheng A., Humayun A., Boyan B. D., and Schwartz Z. 3D Print. Addit. Manuf., 2016, 3, (1), 10 LINK https://doi.org/10.1089/3dp.2015.0038 [Google Scholar]
  142. Lv J., Xiu P., Tan J., Jia Z., Cai H., and Liu Z. Biomed. Mater., 2015, 10, (3), 035013 LINK https://doi.org/10.1088/1748-6041/10/3/035013 [Google Scholar]
  143. Ran Q., Yang W., Hu Y., Shen X., Yu Y., Xiang Y., and Cai K. J. Mech. Behav. Biomed. Mater., 2018, 84, 1 LINK https://doi.org/10.1016/j.jmbbm.2018.04.010 [Google Scholar]
  144. Hara D., Nakashima Y., Sato T., Hirata M., Kanazawa M., Kohno Y., Yoshimoto K., Yoshihara Y., Nakamura A., Nakao Y., and Iwamoto Y. Mater. Sci. Eng.: C, 2016, 59, 1047 LINK https://doi.org/10.1016/j.msec.2015.11.025 [Google Scholar]
  145. Zhang X.-Y., Fang G., Xing L.-L., Liu W., and Zhou J. Mater. Des., 2018, 157, 523 LINK https://doi.org/10.1016/j.matdes.2018.07.064 [Google Scholar]
  146. Wally Z. J., Haque A. M., Feteira A., Claeyssens F., Goodall R., and Reilly G. C. J. Mech. Behav. Biomed. Mater., 2019, 90, 20 LINK https://doi.org/10.1016/j.jmbbm.2018.08.047 [Google Scholar]
  147. Wang S., Liu L., Li K., Zhu L., Chen J., and Hao Y. Mater. Des., 2019, 168, 107643 LINK https://doi.org/10.1016/j.matdes.2019.107643 [Google Scholar]
  148. Ouyang P., Dong H., He X., Cai X., Wang Y., Li J., Li H., and Jin Z. Mater. Des., 2019, 183, 108151 LINK https://doi.org/10.1016/j.matdes.2019.108151 [Google Scholar]
  149. Takemoto M., Fujibayashi S., Neo M., Suzuki J., Kokubo T., and Nakamura T. Biomaterials, 2005, 26, (30), 6014 LINK https://doi.org/10.1016/j.biomaterials.2005.03.019 [Google Scholar]
  150. Hedberg Y. S., Qian B., Shen Z., Virtanen S., and Wallinder I. O. Dent. Mater., 2014, 30, (5), 525 LINK https://doi.org/10.1016/j.dental.2014.02.008 [Google Scholar]
  151. Hedayati R., Amin Yavari S., and Zadpoor A. A. Mater. Sci. Eng.: C, 2017, 76, 457 LINK https://doi.org/10.1016/j.msec.2017.03.091 [Google Scholar]
  152. Bayati P., Jahadakbar A., Barati M., Nematollahi M., Saint-sulpice L., Haghshenas M., Chirani S. A., Mahtabi M. J., and Elahinia M. Int. J. Mech. Sci., 2020, 185, 105878 LINK https://doi.org/10.1016/j.ijmecsci.2020.105878 [Google Scholar]
/content/journals/10.1595/205651324X17004970366027
Loading
/content/journals/10.1595/205651324X17004970366027
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error