Skip to content
1887
Volume 68, Issue 4
  • ISSN: 2056-5135
  • oa Advanced Electron Microscopy Characterisation of Aluminium-Oxygen Coordination in Catalyst Supports

    Performance of alumina-supported catalyst systems

  • Authors: Trung D. Tran1, Norman Macleod2, Tamsin Bell3, Angela Zheng4, Maria Elena Rivas5 and Dogan Ozkaya6
  • Affiliations: 1 Johnson Matthey, Blounts Court, Sonning Common, Reading, RG4 9NH, UK; Johnson Matthey Microscopy Group, Electron Physical Science Imaging Centre (ePSIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK 2 Johnson Matthey, Billingham, TS23 1LB, UK 3 Johnson Matthey, Blounts Court, Sonning Common, Reading, RG4 9NH, UK 4 Johnson Matthey, Devon, Wayne, USA 5 Johnson Matthey, Blounts Court, Sonning Common, Reading, RG4 9NH, UK 6 Johnson Matthey, Blounts Court, Sonning Common, Reading, RG4 9NH, UK; Johnson Matthey Microscopy Group, Electron Physical Science Imaging Centre (ePSIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
    *[email protected]
  • Source: Johnson Matthey Technology Review, Volume 68, Issue 4, Oct 2024, p. 583 - 592
  • DOI: https://doi.org/10.1595/205651324X17043853773473
    • Received: 26 Oct 2023
    • Accepted: 04 Jan 2024

Abstract

Performance of alumina-supported catalyst systems are significantly affected by how the tetrahedral (Al-O) and octahedral (Al-O) coordination are mixed and blended with each other. Characterisation of aluminium-oxygen coordination is thus important to understand how catalysts interact with alumina at the microscopic level. Here we report the application of two advanced electron microscopy techniques on aluminium-oxygen coordination. The first technique is electron energy loss spectroscopy (EELS) that can reveal detailed electronic structure profile of aluminium valence band to analyse how aluminium is coordinated by oxygen. The second technique is pair distribution function (PDF) based on electron diffraction (ED), employed to measure aluminium-oxygen bond lengths associated with the coordination geometry.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17043853773473
2024-10-01
2025-02-05
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/4/Tran_16b_Imp.html?itemId=/content/journals/10.1595/205651324X17043853773473&mimeType=html&fmt=ahah

References

  1. Z. Wang, Y. Jiang, O. Lafon, J. Trébosc, K. D. Kim, C. Stampfl, A. Baiker, J.-P. Amoureux, J. Huang, Nat. Commun., 2016, 7, 13820 LINK https://doi.org/10.1038/ncomms13820
    [Google Scholar]
  2. M. Wu, W. Li, X. Zhang, F. Xue, T. Yang, L. Yuan, ChemCatChem, 2021, 13, (15), 3490 LINK https://doi.org/10.1002/cctc.202100668
    [Google Scholar]
  3. R. F. Egerton, “Electron Energy-Loss Spectroscopy in the Electron Microscope”, 3rd Edn., Springer Science and Business Media, New York, USA, 2011 LINK https://doi.org/10.1007/978-1-4419-9583-4
    [Google Scholar]
  4. “Electron Diffraction Techniques”, ed. J. M. Cowley, IUCr Monographs on Crystallography, Oxford University Press, Oxford, UK, 1993
    [Google Scholar]
  5. R. Brydson, B. G. Williams, W. Engel, Th. Lindner, M. Muhler, R. Schlögl, E. Zeitler, J. M. Thomas, J. Chem. Soc. Faraday Trans. 1, 1988, 84, (2), 631 LINK https://doi.org/10.1039/F19888400631
    [Google Scholar]
  6. K. Suenaga, D. Bouchet, C. Colliex, A. Thorel, D. G. Brandon, J. Eur. Ceram. Soc., 1998, 18, (10), 1453 LINK https://doi.org/10.1016/s0955-2219(98)00026-0
    [Google Scholar]
  7. K. Kimoto, K. Ishizuka, T. Mizoguchi, I. Tanaka, Y. Matsui, J. Electron Microsc., 2003, 52, (3), 299 LINK https://doi.org/10.1093/jmicro/52.3.299
    [Google Scholar]
  8. D. Bouchet, C. Colliex, Ultramicroscopy, 2003, 96, (2), 139 LINK https://doi.org/10.1016/s0304-3991(02)00437-0
    [Google Scholar]
  9. G. P. Thomson, Proc. R. Soc. London, 1928, 117, (778), 600 LINK https://doi.org/10.1098/rspa.1928.0022
    [Google Scholar]
  10. E. Ruska, M. Knoll, Z. Techn. Physik, 1931, 12, 389
    [Google Scholar]
  11. D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Phys. Rev. Lett., 1984, 53, (20), 1951 LINK https://doi.org/10.1103/physrevlett.53.1951
    [Google Scholar]
  12. P. S. Santos, H. S. Santos, S. P. Toledo, Mater. Res., 2000, 3, (4), 104 LINK https://doi.org/10.1590/s1516-14392000000400003
    [Google Scholar]
  13. W. H. Bragg, W. L. Bragg, Proc. R. Soc. London, 1913, 88, (605), 428 LINK https://doi.org/10.1098/rspa.1913.0040
    [Google Scholar]
  14. T. Egami, S. J. L. Billinge, “Underneath the Bragg Peaks: Structural Analysis of Complex Materials”, ed. R. W. Cahn, Elsevier Ltd, Oxford, UK, 2003
    [Google Scholar]
  15. T. Takagi, T. Ohkubo, Y. Hirotsu, B. S. Murty, K. Hono, D. Shindo, Appl. Phys. Lett., 2001, 79, (4), 485 LINK https://doi.org/10.1063/1.1383055
    [Google Scholar]
  16. W. McBride, D. J. H. Cockayne, J. Non. Cryst. Solids, 2003, 318, (3), 233 LINK https://doi.org/10.1016/s0022-3093(02)01908-7
    [Google Scholar]
  17. D. Ozkaya, W. McBride, D. J. H. Cockayne, Interface Sci., 2004, 12, (2-3), 321 LINK https://doi.org/10.1023/b:ints.0000028661.55083.0f
    [Google Scholar]
  18. A. M. M. Abeykoon, C. D. Malliakas, P. Juhás, E. S. Bozin, M. G. Kanatzidis, S. J. L. Billinge, Z. Krist.– Cryst. Mater., 2012, 227, (5), 248 LINK https://doi.org/10.1524/zkri.2012.1510
    [Google Scholar]
  19. L. Zeng, D. T. Tran, C.-W. Tai, G. Svensson, E. Olsson, Sci. Rep., 2016, 6, 29679 LINK https://doi.org/10.1038/srep29679
    [Google Scholar]
  20. D. T. Tran, G. Svensson, C.-W. Tai, J. Appl. Crystallogr., 2017, 50, (1), 304 LINK https://doi.org/10.1107/S160057671601863X
    [Google Scholar]
  21. J. Shanmugam, K. B. Borisenko, Y.-J. Chou, A. I. Kirkland, SoftwareX, 2017, 6, 185 LINK https://doi.org/10.1016/j.softx.2017.07.001
    [Google Scholar]
  22. H. Liu, K. Nomoto, A. V. Ceguerra, J. J. Kruzic, J. Cairney, S. P. Ringer, J. Appl. Crystallogr., 2023, 56, (3), 889 LINK https://doi.org/10.1107/S1600576723004053
    [Google Scholar]
  23. T. Isobe, T. Watanabe, J. B. d’Espinose de la Caillerie, A. P. Legrand, D. Massiot, J. Colloid Interface Sci., 2003, 261, (2), 320 LINK https://doi.org/10.1016/s0021-9797(03)00144-9
    [Google Scholar]
  24. H. Saalfeld, Z. Krist.–Cryst. Mater., 1964, 120, (1–6), 476 LINK https://doi.org/10.1524/zkri.1964.120.16.476
    [Google Scholar]
  25. A. N. Christensen, M. S. Lehmann, P. Convert, Acta Chem. Scandi., 1982, 36a, 303 LINK https://doi.org/10.3891/acta.chem.scand.36a-0303
    [Google Scholar]
  26. E. J. W. Verwey, Z. Krist.–Cryst. Mater., 1935, 91, (1–6), 317 LINK https://doi.org/10.1524/zkri.1935.91.1.317
    [Google Scholar]
  27. A. Kirfel, K. Eichhorn, Acta Cryst., 1990, 46, (4), 271 LINK https://doi.org/10.1107/s0108767389012596
    [Google Scholar]
  28. I. J. Drake, Y. Zhang, M. K. Gilles, C. N. Teris Liu, P. Nachimuthu, R. C. C. Perera, H. Wakita, A. T. Bell, J. Phys. Chem. B, 2006, 110, (24), 11665 LINK https://doi.org/10.1021/jp058244z
    [Google Scholar]
  29. Y. Muraoka, K. Kihara, Phys. Chem. Miner., 1997, 24, (4), 243 LINK https://doi.org/10.1007/s002690050036
    [Google Scholar]
  30. L. Kovarik, M. Bowden, J. Szanyi, J. Catal., 2021, 393, 357 LINK https://doi.org/10.1016/j.jcat.2020.10.009
    [Google Scholar]
  31. T. Tsukada, H. Segawa, A. Yasumori, K. Okada, J. Mater. Chem., 1999, 9, (2), 549 LINK https://doi.org/10.1039/a806728g
    [Google Scholar]
  32. N. E. Tsakoumis, J. C. Walmsley, M. Rønning, W. van Beek, E. Rytter, A. Holmen, J. Am. Chem. Soc., 2017, 139, (10), 3706 LINK https://doi.org/10.1021/jacs.6b11872
    [Google Scholar]
  33. O-S. Joo, D. K-Jung, Bull. Korean Chem. Soc., 2003, 24, (1), 86 LINK https://doi.org/10.5012/bkcs.2003.24.1.086
    [Google Scholar]
  34. A. Ye, Z. Li, J. Ding, W. Xiong, W. Huang, ACS Catal., 2021, 11, (15), 10014 LINK https://doi.org/10.1021/acscatal.1c02742
    [Google Scholar]
/content/journals/10.1595/205651324X17043853773473
Loading
/content/journals/10.1595/205651324X17043853773473
Loading

Data & Media loading...

Supplements

Supplementary Material 

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test