Skip to content
1887
Volume 68, Issue 4
  • ISSN: 2056-5135

Abstract

This article reviews recent work undertaken at the beamline B22 of the Diamond Light Source using infrared (IR) microspectroscopy to characterise zeolite catalysts and to study their reactivity in real time. The advantage of vibrational microspectroscopic analysis when linked to the brightness and spectral bandwidth of synchrotron IR light are illustrated. The high spatial resolution means that the uniformity of acid site concentrations within individual large crystals of zeolites and between different crystals can be readily checked and changes to acid site concentrations within crystals resulting from steam treatment mapped. When an reaction cell is coupled with mass spectrometric analysis of evolved gases the rapid time response of the method has provided new insight into the initial stages of the conversion of methanol to hydrocarbons over ZSM-5 and SAPO-34 single crystals. Future prospects for applying the method to other types of zeolite catalysed reactions with improved reaction cell design are also discussed.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17048925195038
2024-10-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/4/Howe_13a_Imp.html?itemId=/content/journals/10.1595/205651324X17048925195038&mimeType=html&fmt=ahah

References

  1. S. Bordiga, , C. Lamberti, , F. Bonino, , A. Travert, , F. Thibault-Starzyk, , Chem. Soc. Rev., 2015, 44, (20), 7262 LINK https://doi.org/10.1039/c5cs00396b
    [Google Scholar]
  2. F. Zaera, , J. Catal., 2021, 404, 900 LINK https://doi.org/10.1016/j.jcat.2021.08.013
    [Google Scholar]
  3. F. C. Meunier, , React. Chem. Eng., 2016, 1, (2), 134 LINK https://doi.org/10.1039/c5re00018a
    [Google Scholar]
  4. A. Vimont, , F. Thibault-Starzyk, , M. Daturi, , Chem. Soc. Rev., 2010, 39, (12), 4928 LINK https://doi.org/10.1039/b919543m
    [Google Scholar]
  5. J. J. Bravo-Suárez, , P. D. Srinivasan, , Catal. Rev., 2017, 59, (4), 295 LINK https://doi.org/10.1080/01614940.2017.1360071
    [Google Scholar]
  6. M. Nowotny, , J. A. Lercher, , H. Kessler, , Zeolites, 1991, 11, (5), 454 LINK https://doi.org/10.1016/s0144-2449(05)80117-4
    [Google Scholar]
  7. F. Schueth, , J. Phys. Chem., 1992, 96, (19), 7493 LINK https://doi.org/10.1021/j100198a003
    [Google Scholar]
  8. F. Schueth, , D. Demuth, , B. Zibrowius, , J. Kornatowski, , G. Finger, , J. Am. Chem. Soc., 1994, 116, (3), 1090 LINK https://doi.org/10.1021/ja00082a035
    [Google Scholar]
  9. F. Marlow, , D. Demuth, , G. Stucky, , F. Schueth, , J. Phys. Chem., 1995, 99, (4), 1306 LINK https://doi.org/10.1021/j100004a034
    [Google Scholar]
  10. S. C. Popescu, , S. Thomson, , R. F. Howe, , Phys. Chem. Chem. Phys., 2001, 3, (1), 111 LINK https://doi.org/10.1039/b003224g
    [Google Scholar]
  11. E. R. Geus, , J. C. Jansen, , H. van Bekkum, , Zeolites, 1994, 14, (2), 82 LINK https://doi.org/10.1016/0144-2449(94)90001-9
    [Google Scholar]
  12. E. Stavitski, , M. H. F. Kox, , I. Swart, , F. M. F. de Groot, , B. M. Weckhuysen, , Angew. Chem. Int. Ed., 2008, 47, (19), 3543 LINK https://doi.org/10.1002/anie.200705562
    [Google Scholar]
  13. M. H. F. Kox, , K. F. Domke, , J. P. R. Day, , G. Rago, , E. Stavitski, , M. Bonn, , B. M. Weckhuysen, , Angew. Chem. Int. Ed., 2009, 48, (47), 8990 LINK https://doi.org/10.1002/anie.200904282
    [Google Scholar]
  14. Q. Qian, , J. Ruiz-Martínez, , M. Mokhtar, , A. M. Asiri, , S. A. Al-Thabaiti, , S. N. Basahel, , H. E. van der Bij, , J. Kornatowski, , B. M. Weckhuysen, , Chem. Eur. J., 2013, 19, (34), 11204 LINK https://doi.org/10.1002/chem.201300540
    [Google Scholar]
  15. Q. Qian, , J. Ruiz-Martínez, , M. Mokhtar, , A. M. Asiri, , S. A. Al-Thabaiti, , S. N. Basahel, , B. M. Weckhuysen, , ChemCatChem, 2014, 6, (3), 772 LINK https://doi.org/10.1002/cctc.201300962
    [Google Scholar]
  16. G. Cinque, , M. Frogley, , K. Wehbe, , J. Filik, , J. Pijanka, , Synchrotron Radiat. News, 2011, 24, (5), 24 LINK https://doi.org/10.1080/08940886.2011.618093
    [Google Scholar]
  17. A. Zecchina, , F. Geobaldo, , G. Spoto, , S. Bordiga, , G. Ricchiardi, , R. Buzzoni, , G. Petrini, , J. Phys. Chem., 1996, 100, (41), 16584 LINK https://doi.org/10.1021/jp960433h
    [Google Scholar]
  18. I. B. Minova, , S. K. Matam, , A. Greenaway, , C. R. A. Catlow, , M. D. Frogley, , G. Cinque, , P. A. Wright, , R. F. Howe, , Phys. Chem. Chem. Phys., 2020, 22, (34), 18849 LINK https://doi.org/10.1039/d0cp00704h
    [Google Scholar]
  19. Z. Ristanović, , J. P. Hofmann, , U. Deka, , T. U. Schülli, , M. Rohnke, , A. M. Beale, , B. M. Weckhuysen, , Angew. Chem. Int. Ed., 2013, 52, (50), 13382 LINK https://doi.org/10.1002/anie.201306370
    [Google Scholar]
  20. I. B. Minova, , S. K. Matam, , A. Greenaway, , C. R. A. Catlow, , M. D. Frogley, , G. Cinque, , P. A. Wright, , R. F. Howe, , ACS Catal., 2019, 9, (7), 6564 LINK https://doi.org/10.1021/acscatal.9b01820
    [Google Scholar]
  21. I. B. Minova, , M. Bühl, , S. K. Matam, , C. R. A. Catlow, , M. D. Frogley, , G. Cinque, , P. A. Wright, , R. F. Howe, , Catal. Sci. Technol., 2022, 12, (7), 2289 LINK https://doi.org/10.1039/d1cy02361f
    [Google Scholar]
  22. I. Yarulina, , A. D. Chowdhury, , F. Meirer, , B. M. Weckhuysen, , J. Gascon, , Nat. Catal., 2018, 1, (6), 398 LINK https://doi.org/10.1038/s41929-018-0078-5
    [Google Scholar]
  23. W. Song, , Y. Wei, , Z. Liu, , ‘Chemistry of the Methanol to Olefin Conversion’, in “Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications”, eds. F.-S. Xiao, , X. Meng, , Green Chemistry and Sustainable Technology Series, Springer-Verlag, Berlin, Germany, 2016, pp. 299346 LINK https://doi.org/10.1007/978-3-662-47395-5_9
    [Google Scholar]
  24. W. Dai, , G. Wu, , L. Li, , N. Guan, , M. Hunger, , ACS Catal., 2013, 3, (4), 588 LINK https://doi.org/10.1021/cs400007v
    [Google Scholar]
  25. J. Zhou, , J. Zhang, , Y. Zhi, , J. Zhao, , T. Zhang, , M. Ye, , Z. Liu, , Ind. Eng. Chem. Res., 2018, 57, (51), 17338 LINK https://doi.org/10.1021/acs.iecr.8b04181
    [Google Scholar]
  26. I. B. Minova, , N. S. Barrow, , A. C. Sauerwein, , A. B. Naden, , D. B. Cordes, , A. M. Z. Slawin, , S. J. Schuyten, , P. A. Wright, , J. Catal., 2021, 395, 425 LINK https://doi.org/10.1016/j.jcat.2021.01.012
    [Google Scholar]
  27. A. Turrina, , E. C. V. Eschenroeder, , B. E. Bode, , J. E. Collier, , D. C. Apperley, , P. A. Cox, , J. L. Casci, , P. A. Wright, , Microporous Mesoporous Mater., 2015, 215, 154 LINK https://doi.org/10.1016/j.micromeso.2015.05.038
    [Google Scholar]
  28. M. D. Frogley, , G. Cinque, , in preparation
  29. A. F. Möslein, , J.-C. Tan, , J. Phys. Chem. Lett., 2022, 13, (12), 2838 LINK https://doi.org/10.1021/acs.jpclett.2c00081
    [Google Scholar]
  30. D. Fu, , K. Park, , G. Delen, , Ö. Attila, , F. Meirer, , D. Nowak, , S. Park, , J. E. Schmidt, , B. M. Weckhuysen, , Chem. Commun., 2017, 53, (97), 13012 LINK https://doi.org/10.1039/c7cc06832h
    [Google Scholar]
/content/journals/10.1595/205651324X17048925195038
Loading
/content/journals/10.1595/205651324X17048925195038
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test