Skip to content
1887
Volume 68, Issue 4
  • ISSN: 2056-5135

Abstract

When platinum-containing diesel oxidation catalysts (DOC) are exposed to high temperatures under lean conditions, the platinum nanoparticles form volatile platinum dioxide on the catalyst surface. The exhaust flow carries the volatile platinum dioxide to the downstream aftertreatment catalyst, such as the selective catalytic reduction (SCR) catalyst, that is responsible for reducing the nitrogen oxides (NOx) emissions and can negatively impact its performance, by promoting the parasitic oxidation of ammonia. Here we investigate the factors such as exposure time, temperature and DOC design characteristics for their impact on the platinum dioxide migration, by characterising the amount of platinum deposited on the SCR catalyst at very low levels (<5 ppm), using inductively coupled plasma optical emission spectroscopy (ICP-OES) fire assay technique. Our results indicate that well-dispersed platinum, not associated with palladium, is most prone to platinum dioxide migration. We also compare several methods to suppress the platinum dioxide migration from the DOC, such as sintering of the platinum nanoparticles, stabilising the platinum nanoparticles interaction with palladium or covering the platinum nanoparticles with a high surface area capture layer to trap the volatile platinum dioxide.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17079270636806
2024-10-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/4/Mulla_13a_Imp.html?itemId=/content/journals/10.1595/205651324X17079270636806&mimeType=html&fmt=ahah

References

  1. J. C. Chaston, , Platinum Met. Rev., 1975, 19, (4), 135 LINK https://doi.org/10.1595/003214075x194135140
    [Google Scholar]
  2. C. B. Alcock, and G.W. Hooper, , Proc. R. Soc. Lond., 1960, 254, (1279), 551 LINK https://doi.org/10.1098/rspa.1960.0040
    [Google Scholar]
  3. G. Bayer, and H. G. Wiedemann, , Thermochim. Acta, 1975, 11, (1), 79 LINK https://doi.org/10.1016/0040-6031(75)80040-2
    [Google Scholar]
  4. M. Peuckert, , J. Phys. Chem., 1985, 89, (12), 2481 LINK https://doi.org/10.1021/j100258a012
    [Google Scholar]
  5. E. Raub, and W. Plate, , Int. J. Mater. Res., 1957, 48, (8), 444 LINK https://doi.org/10.1515/ijmr-1957-480804
    [Google Scholar]
  6. H. Jehn, , J. Less Common Met., 1984, 100, 321 LINK https://doi.org/10.1016/0022-5088(84)90072-9
    [Google Scholar]
  7. H. Shinjoh, , H. Muraki, , Y. Fujitani, , ‘Effect of Severe Thermal Aging on Noble Metal Catalysts’, in “Catalysis and Automotive Pollution Control II”, ed. A. Crucq, , Studies in Surface Science and Catalysis Series, Vol. 71, Elsevier BV, Amsterdam, The Netherlands, 1991 pp. 617628 LINK https://doi.org/10.1016/s0167-2991(08)63006-2
    [Google Scholar]
  8. J. W. Arblaster, , Platinum Met. Rev., 2007, 51, (3), 130 LINK https://doi.org/10.1595/147106707x213830
    [Google Scholar]
  9. G. Cavataio, , H.-W. Jen, , J. W. Girard, , D. Dobson, , J. R. Warner, , C. K. Lambert, , SAE Int. J. Fuels Lubr., 2009, 2, (1), 204 LINK https://doi.org/10.4271/2009-01-0627
    [Google Scholar]
  10. K. Leistner, , C. Gonzalez Braga, , A. Kumar, , K. Kamasamudram, , L. Olsson, , Appl. Catal. B: Environ., 2019, 241, 338 LINK https://doi.org/10.1016/j.apcatb.2018.09.022
    [Google Scholar]
  11. E. Hruby, , S. Huang, , R. Duddukuri, , D. Dou, , SAE Technical Paper 2019-01-0740, SAE International, Warrendale, USA, 2019, 12 pp LINK https://doi.org/10.4271/2019-01-0740
  12. X. Chen, , N. Currier, , A. Yezerets, . K. Kamasamudram, , SAE Int. J. Engines, 2013, 6, (2), 856 LINK https://doi.org/10.4271/2013-01-1065
    [Google Scholar]
  13. H.-W. Jen, , J. W. Girard, , G. Cavataio, , M. J. Jagner, , SAE Int. J. Fuels Lubr., 2008, 1, (1), 1553 LINK https://doi.org/10.4271/2008-01-2488
    [Google Scholar]
  14. T. Yu, , M. Xu, , Y. Huang, , J. Wang, , J. Wang, , L. Lv, , G. Qi, , W. Li, , M. Shen, , Appl. Catal. B: Environ., 2017, 204, 525 LINK https://doi.org/10.1016/j.apcatb.2016.12.007
    [Google Scholar]
  15. H. Zhao, , L. Han, , Y. Wang, , J. Zheng, , Catalysts, 2021, 11, (7), 796 LINK https://doi.org/10.3390/catal11070796
    [Google Scholar]
  16. L. Bencs, , K. Ravindra, , R. Van Grieken, , Spectrochim. Acta Part B: At. Spectrosc., 2003, 58, (10), 1723 LINK https://doi.org/10.1016/s0584-8547(03)00162-9
    [Google Scholar]
  17. C. Carrillo, , A. DeLaRiva, , H. Xiong, , E. J. Peterson, , M. N. Spilde, , D. Kunwar, , R. S. Goeke, , M. Wiebenga, , S. H. Oh, , G. Qi, , S. R. Challa, and A. K. Datye, , Appl. Catal. B: Environ., 2017, 218, 581 LINK https://doi.org/10.1016/j.apcatb.2017.06.085
    [Google Scholar]
  18. J. B. Darby, , K. M. Myles, , Metall. Trans., 1972, 3, (3), 653 LINK https://doi.org/10.1007/bf02642747
    [Google Scholar]
  19. T. R. Johns, , R. S. Goeke, , V. Ashbacher, , P. C. Thüne, , J. W. Niemantsverdriet, , B. Kiefer, , C. H. Kim, , M. P. Balogh, , A. K. Datye, , J. Catal., 2015, 328, 151 LINK https://doi.org/10.1016/j.jcat.2015.03.016
    [Google Scholar]
  20. S. Porter, , A. Ghosh, , C. H. Liu, , D. Kunwar, , C. Thompson, , R. Alcala, , D. P. Dean, , J. T. Miller, , A. DeLaRiva, , H. Pham, , E. Peterson, , A. Brearley, , J. Watt, , E. A. Kyriakidou, , A. K. Datye, , ACS Catal., 2023, 13, (8), 5456 LINK https://doi.org/10.1021/acscatal.3c00360
    [Google Scholar]
  21. S. Compernolle, , D. Wambeke, , I. De Raedt, , K. Kimpe, , F. Vanhaecke, , J. Anal. At. Spectrom., 2011, 26, (8), 1679 LINK https://doi.org/10.1039/c1ja10079c
    [Google Scholar]
  22. G. C. Fryburg, , H. M. Petrus, , J. Electrochem. Soc., 1961, 108, (6), 496 LINK https://doi.org/10.1149/1.2428123
    [Google Scholar]
  23. H. Jehn, , J. Less Common Met., 1981, 78, (2), 33 LINK https://doi.org/10.1016/0022-5088(81)90141-7
    [Google Scholar]
  24. D. Kunwar, , C. Carrillo, , H. Xiong, , E. Peterson, , A. DeLaRiva, , A. Ghosh, , G. Qi, , M. Yang, , M. Wiebenga, , S. Oh, , W. Li, , A. K. Datye, , Appl. Catal. B: Environ., 2020, 266, 118598 LINK https://doi.org/10.1016/j.apcatb.2020.118598
    [Google Scholar]
  25. O. Kröcher, , M. Elsener, , Ind. Eng. Chem. Res., 2008, 47, (22), 8588 LINK https://doi.org/10.1021/ie800951a
    [Google Scholar]
  26. D. Chan, , S. Tischer, , J. Heck, , C. Diehm, , O. Deutschmann, , Appl. Catal. B: Environ., 2014, 156–157, 153 LINK https://doi.org/10.1016/j.apcatb.2014.03.009
    [Google Scholar]
  27. M. Kaneeda, , H. Iizuka, , T. Hiratsuka, , N. Shinotsuka, , M. Arai, , Appl. Catal. B: Environ., 2009, 90, (3–4), 564 LINK https://doi.org/10.1016/j.apcatb.2009.04.011
    [Google Scholar]
  28. C. Carrillo, , T. R. Johns, , H. Xiong, , A. DeLaRiva, , S. R. Challa, , R. S. Goeke, , K. Artyushkova, , W. Li, , C. H. Kim, , A. K. Datye, , J. Phys. Chem. Lett., 2014, 5, (12), 2089 LINK https://doi.org/10.1021/jz5009483
    [Google Scholar]
  29. H. Xiong, , E. Peterson, , G. Qi, , A. K. Datye, , Catal. Today, 2016, 272, 80 LINK https://doi.org/10.1016/j.cattod.2016.01.022
    [Google Scholar]
/content/journals/10.1595/205651324X17079270636806
Loading
/content/journals/10.1595/205651324X17079270636806
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test