Skip to content
1887
Volume 69, Issue 1
  • ISSN: 2056-5135

Graphical Abstract

The study of copper on zinc oxide surfaces is a topic of ongoing research due to the importance of copper as a promoter in the low-temperature synthesis of methanol, the water-gas shift process and methanol steam reforming. The role of zinc oxide in supporting the stabilisation of the copper atoms and promoting the CO hydrogenation reaction is multifaceted and involves a range of physical and chemical factors. In this work, we used density functional theory (DFT) calculations to investigate the copper adsorption on zinc oxide surfaces on different sites. Bader charge analysis, adsorption energy and phonon inelastic neutron scattering (INS) associated with most stable systems were calculated and compared with previous theoretical and experimental results. We found that atomic copper adsorption on hollow site of ZnO(111) is the most stable and favourable site for copper adsorption compared to other zinc oxide surfaces. This is due to the strong metal-oxygen interaction between copper and the zinc oxide surface. We concluded that further studies are needed to investigate the catalytic activity of this catalyst under realistic reaction conditions with realistic models of copper supported on zinc oxide.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17138745351501
2025-01-01
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/1/Alsalmi3_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17138745351501&mimeType=html&fmt=ahah

References

  1. C. Wöll, Prog. Surf. Sci., 2007, 82, (2–3), 55 LINK https://doi.org/10.1016/j.progsurf.2006.12.002
    [Google Scholar]
  2. A. R. Lubinsky, C. B. Duke, S. C. Chang, B. W. Lee, P. Mark, J. Vac. Sci. Technol., 1976, 13, (1), 189 LINK https://doi.org/10.1116/1.568823
    [Google Scholar]
  3. S.-C. Chang, P. Mark, Surf. Sci., 1974, 46, (1), 293 LINK https://doi.org/10.1016/0039-6028(74)90256-8
    [Google Scholar]
  4. S. Akhter, K. Lui, H. H. Kung, J. Phys. Chem., 1985, 89, (10), 1958 LINK https://doi.org/10.1021/j100256a029
    [Google Scholar]
  5. R. Boppella, K. Anjaneyulu, P. Basak, S. V Manorama, J. Phys. Chem. C, 2013, 117, (9), 4597 LINK https://doi.org/10.1021/jp311443s
    [Google Scholar]
  6. M. Montero-Muñoz, J. E. Ramos-Ibarra, J. E. Rodríguez-Páez, G. E. Marques, M. D. Teodoro, J. A. H. Coaquira, Phys. Chem. Chem. Phys., 2020, 22, (14), 7329 LINK https://doi.org/10.1039/c9cp06744b
    [Google Scholar]
  7. M. Huang, Y. Yan, W. Feng, S. Weng, Z. Zheng, X. Fu, P. Liu, Cryst. Growth Des., 2014, 14, (5), 2179 LINK https://doi.org/10.1021/cg401676r
    [Google Scholar]
  8. R. M. Agny, C. G. Takoudis, Ind. Eng. Chem. Prod. Res. Dev., 1985, 24, (1), 50 LINK https://doi.org/10.1021/i300017a010
    [Google Scholar]
  9. R. Eischens, W. A. Pliskin, M. J. D. Low, J. Catal., 1962, 1, (2), 180 LINK https://doi.org/10.1016/0021-9517(62)90022-2
    [Google Scholar]
  10. M. Bowker, H. Houghton, K. C. Waugh, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 1981, 77, (12), 3023 LINK https://doi.org/10.1039/f19817703023
    [Google Scholar]
  11. E. Lam, G. Noh, K. Larmier, O. V Safonova, C. Copéret, J. Catal., 2021, 394, 266 LINK https://doi.org/10.1016/j.jcat.2020.04.028
    [Google Scholar]
  12. Y. Wang, W. Gao, K. Li, Y. Zheng, Z. Xie, W. Na, J. G. Chen, H. Wang, Chem, 2020, 6, (2), 419 LINK https://doi.org/10.1016/j.chempr.2019.10.023
    [Google Scholar]
  13. Q.-L. Tang, X.-X. Duan, B. Liu, A.-Q. Wei, S.-L. Liu, Q. Wang, Y.-P. Liang, X.-H. Ma, Appl. Surf. Sci., 2016, 363, 128 LINK https://doi.org/10.1016/j.apsusc.2015.12.007
    [Google Scholar]
  14. J. Niu, H. Liu, Y. Jin, B. Fan, W. Qi, J. Ran, Int. J. Hydrogen Energy, 2022, 47, (15), 9183 LINK https://doi.org/10.1016/j.ijhydene.2022.01.021
    [Google Scholar]
  15. K. Li, J. G. Chen, ACS Catal., 2019, 9, (9), 7840 LINK https://doi.org/10.1021/acscatal.9b01943
    [Google Scholar]
  16. U. J. Etim, R. Semiat, Z. Zhong, Am. J. Chem. Eng., 2021, 9, (3), 53 LINK https://doi.org/10.11648/j.ajche.20210903.12
    [Google Scholar]
  17. D. Li, F. Xu, X. Tang, S. Dai, T. Pu, X. Liu, P. Tian, F. Xuan, Z. Xu, I. E. Wachs, M. Zhu, Nat. Catal., 2022, 5, (2), 99 LINK https://doi.org/10.1038/s41929-021-00729-4
    [Google Scholar]
  18. J. Strunk, K. Kähler, X. Xia, M. Muhler, Surf. Sci., 2009, 603, (10–12), 1776 LINK https://doi.org/10.1016/j.susc.2008.09.063
    [Google Scholar]
  19. A. Wang, Y. Zhang, P. Fu, Q. Zheng, Q. Fan, P. Wei, L. Zheng, J. Environ. Chem. Eng., 2022, 10, (3), 107676 LINK https://doi.org/10.1016/j.jece.2022.107676
    [Google Scholar]
  20. A. Beltrán, J. Andrés, M. Calatayud, J. B. L. Martins, Chem. Phys. Lett., 2001, 338, (4–6), 224 LINK https://doi.org/10.1016/s0009-2614(01)00238-x
    [Google Scholar]
  21. X.-Q. Dai, H.-J. Yan, J.-L. Wang, Y.-M. Liu, Z. Yang, M. H. Xie, J. Phys. Condens. Matter, 2008, 20, (9), 095002 LINK https://doi.org/10.1088/0953-8984/20/9/095002
    [Google Scholar]
  22. N. Talebian, S. M. Amininezhad, M. Doudi, J. Photochem. Photobiol. B: Biol., 2013, 120, 66 LINK https://doi.org/10.1016/j.jphotobiol.2013.01.004
    [Google Scholar]
  23. C.-L. Hsu, S.-J. Chang, Small, 2014, 10, (22), 4562 LINK https://doi.org/10.1002/smll.201401580
    [Google Scholar]
  24. Y. Zhang, Y. Yang, H. Han, M. Yang, L. Wang, Y. Zhang, Z. Jiang, C. Li, Appl. Catal. B: Environ., 2012, 119–120, 13 LINK https://doi.org/10.1016/j.apcatb.2012.02.004
    [Google Scholar]
  25. M. J. S. Spencer, I. Yarovsky, J. Phys. Chem. C, 2010, 114, (24), 10881 LINK https://doi.org/10.1021/jp1016938
    [Google Scholar]
  26. N. S. Pesika, Z. Hu, K. J. Stebe, P. C. Searson, J. Phys. Chem. B, 2002, 106, (28), 6985 LINK https://doi.org/10.1021/jp0144606
    [Google Scholar]
  27. X. Gonze, Z. Krist. Cryst. Mater., 2005, 220, (5–6), 558 LINK https://doi.org/10.1524/zkri.220.5.558.65066
    [Google Scholar]
  28. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, D. C. Allan, Comput. Mater. Sci., 2002, 25, (3), 478 LINK https://doi.org/10.1016/s0927-0256(02)00325-7
    [Google Scholar]
  29. K. Dymkowski, S. F. Parker, F. Fernandez-Alonso, S. Mukhopadhyay, Phys. B: Condens. Matter, 2018, 551, 443 LINK https://doi.org/10.1016/j.physb.2018.02.034
    [Google Scholar]
  30. C. Jeong, Y.-W. Suh, Appl. Chem. Eng., 2016, 27, (6), 555 LINK https://doi.org/10.14478/ace.2016.1109
    [Google Scholar]
  31. C. Tan, D. Sun, D. Xu, X. Tian, Y. Huang, Ceram. Int., 2016, 42, (9), 10997 LINK https://doi.org/10.1016/j.ceramint.2016.03.238
    [Google Scholar]
  32. M. Al Salmi, Johnson Matthey Technol. Rev., 2024, 68, (4), 465 LINK https://doi.org/10.1595/205651324x17104276393919
    [Google Scholar]
  33. M. Al Salmi, Johnson Matthey Technol. Rev., 2024, 68, (2), 184 LINK https://doi.org/10.1595/205651324x16980703569747
    [Google Scholar]
  34. N. F. Sulaiman, S. L. Lee, S. Toemen, W. A. W. A. Bakar, Renew. Energy, 2020, 156, 142 LINK https://doi.org/10.1016/j.renene.2020.04.021
    [Google Scholar]
  35. Z. Sun, Y. Tian, P. Zhang, G. Yang, N. Tsubaki, T. Abe, A. Taguchi, J. Zhang, L. Zheng, X. Li, Ind. Eng. Chem. Res., 2019, 58, (17), 7085 LINK https://doi.org/10.1021/acs.iecr.9b01214
    [Google Scholar]
  36. F. Zhang, X. Xu, Z. Qiu, B. Feng, Y. Liu, A. Xing, M. Fan, Green Energy Environ., 2022, 7, (4), 772 LINK https://doi.org/10.1016/j.gee.2020.11.027
    [Google Scholar]
  37. R. Hoffmann, Angew. Chem. Int. Ed., 1987, 26, (9), 846 LINK https://doi.org/10.1002/anie.198708461
    [Google Scholar]
  38. K. F. Brennan, “The Physics of Semiconductors: With Applications to Optoelectronic Devices”, Cambridge University Press, Cambridge, UK, 1999 LINK https://doi.org/10.1017/cbo9781139164214
    [Google Scholar]
  39. T. Rangel, G.-M. Rignanese, V. Olevano, Beilstein J. Nanotechnol., 2015, 6, 1247 LINK https://doi.org/10.3762/bjnano.6.128
    [Google Scholar]
  40. S. Wang, Q. Li, Y. Xin, S. Hu, X. Guo, Y. Zhang, L. Zhang, B. Chen, W. Zhang, L. Wang, Nanoscale, 2023, 15, (15), 6999 LINK https://doi.org/10.1039/d2nr05874j
    [Google Scholar]
  41. X. Nie, X. Jiang, H. Wang, W. Luo, M. J. Janik, Y. Chen, X. Guo, C. Song, ACS Catal., 2018, 8, (6), 4873 LINK https://doi.org/10.1021/acscatal.7b04150
    [Google Scholar]
  42. Y.-X. Wang, G.-C. Wang, ACS Catal., 2019, 9, (3), 2261 LINK https://doi.org/10.1021/acscatal.8b04427
    [Google Scholar]
  43. M. A. Lahmer, J. Phys. Chem. Solids, 2016, 89, 89 LINK https://doi.org/10.1016/j.jpcs.2015.10.021
    [Google Scholar]
  44. W. Jiang, Y. Xia, A. Pan, Y. Luo, Y. Su, S. Zhao, T. Wang, L. Zhao, Chemosensors, 2022, 10, (10), 436 LINK https://doi.org/10.3390/chemosensors10100436
    [Google Scholar]
  45. J. Hafner, J. Comput. Chem., 2008, 29, (13), 2044 LINK https://doi.org/10.1002/jcc.21057
    [Google Scholar]
  46. G. Y. Yoo, W. R. Lee, H. Jo, J. Park, J. H. Song, K. S. Lim, D. Moon, H. Jung, J. Lim, S. S. Han, Y. Jung, C. S. Hong, Chem. Eur. J., 2016, 22, (22), 7444 LINK https://doi.org/10.1002/chem.201600189
    [Google Scholar]
  47. R. M. Pashley, J. Colloid Interface Sci., 1981, 83, (2), 531 LINK https://doi.org/10.1016/0021-9797(81)90348-9
    [Google Scholar]
  48. C. Barrales-Martínez, R. Durán, P. Jaque, Inorg. Chem. Front., 2023, 10, (8), 2344 LINK https://doi.org/10.1039/d3qi00128h
    [Google Scholar]
  49. E. Sanville, S. D. Kenny, R. Smith, G. Henkelman, J. Comput. Chem., 2007, 28, (5), 899 LINK https://doi.org/10.1002/jcc.20575
    [Google Scholar]
  50. W. Tang, E. Sanville, G. Henkelman, J. Phys. Condens. Matter, 2009, 21, (8), 084204 LINK https://doi.org/10.1088/0953-8984/21/8/084204
    [Google Scholar]
  51. G. C. Chinchen, P. J. Denny, D. G. Parker, M. S. Spencer, D. A. Whan, Appl. Catal., 1987, 30, (2), 333 LINK https://doi.org/10.1016/s0166-9834(00)84123-8
    [Google Scholar]
  52. R. Burch, S. E. Golunski, M. S. Spencer, J. Chem. Soc. Faraday Trans., 1990, 86, (15), 2683 LINK https://doi.org/10.1039/ft9908602683
    [Google Scholar]
  53. M. M. Günter, T. Ressler, B. Bems, C. Büscher, T. Genger, O. Hinrichsen, M. Muhler, R. Schlögl, Catal. Letters, 2001, 71, 37 LINK https://doi.org/10.1023/a:1016696022840
    [Google Scholar]
  54. S. C. Kang, K.-W. Jun, Y.-J. Lee, Energy Fuels, 2013, 27, (11), 6377 LINK https://doi.org/10.1021/ef401177k
    [Google Scholar]
  55. F. H. P. M. Habraken, G. A. Bootsma, P. Hofmann, S. Hachicha, A. M. Bradshaw, Surf. Sci., 1979, 88, (2–3), 285 LINK https://doi.org/10.1016/0039-6028(79)90076-1
    [Google Scholar]
  56. A. Chutia, I. P. Silverwood, M. R. Farrow, D. O. Scanlon, P. P. Wells, M. Bowker, S. F. Parker, C. R. A. Catlow, Surf. Sci., 2016, 653, 45 LINK https://doi.org/10.1016/j.susc.2016.05.002
    [Google Scholar]
  57. K. M. Wong, S. M. Alay-e-Abbas, A. Shaukat, Y. Fang, Y. Lei, J. Appl. Phys., 2013, 113, (1), 014304 LINK https://doi.org/10.1063/1.4772647
    [Google Scholar]
  58. B. Meyer, D. Marx, Phys. Rev. B, 2003, 67, 035403 LINK https://doi.org/10.1103/physrevb.67.035403
    [Google Scholar]
  59. F. Arena, G. Italiano, K. Barbera, S. Bordiga, G. Bonura, L. Spadaro, F. Frusteri, Appl. Catal. A: Gen., 2008, 350, (1), 16 LINK https://doi.org/10.1016/j.apcata.2008.07.028
    [Google Scholar]
  60. J. Shah, M. R. Jan, F. Khitab, Process Saf. Environ. Prot., 2018, 116, 149 LINK https://doi.org/10.1016/j.psep.2018.01.008
    [Google Scholar]
  61. D. B. Rasmussen, T. V. W. Janssens, B. Temel, T. Bligaard, B. Hinnemann, S. Helveg, J. Sehested, J. Catal., 2012, 293, 205 LINK https://doi.org/10.1016/j.jcat.2012.07.001
    [Google Scholar]
  62. S. Ren, W. R. Shoemaker, X. Wang, Z. Shang, N. Klinghoffer, S. Li, M. Yu, X. He, T. A. White, X. Liang, Fuel, 2019, 239, 1125 LINK https://doi.org/10.1016/j.fuel.2018.11.105
    [Google Scholar]
  63. G. Weirum, G. Barcaro, A. Fortunelli, F. Weber, R. Schennach, S. Surnev, F. P. Netzer, J. Phys. Chem. C, 2010, 114, (36), 15432 LINK https://doi.org/10.1021/jp104620n
    [Google Scholar]
  64. Y. Yang, J. Evans, J. A. Rodriguez, M. G. White, P. Liu, Phys. Chem. Chem. Phys., 2010, 12, (33), 9909 LINK https://doi.org/10.1039/c001484b
    [Google Scholar]
  65. K. Mondal, Megha, A. Banerjee, A. Fortunelli, M. Walter, M. Moseler, J. Phys. Chem. C, 2022, 126, (1), 764 LINK https://doi.org/10.1021/acs.jpcc.1c09170
    [Google Scholar]
  66. M. Topsakal, S. Cahangirov, E. Bekaroglu, S. Ciraci, Phys. Rev. B, 2009, 80, (23), 235119 LINK https://doi.org/10.1103/physrevb.80.235119
    [Google Scholar]
  67. X. F. Li, J. Zhang, B. Xu, K. L. Yao, J. Magn. Magn. Mater., 2012, 324, (4), 584 LINK https://doi.org/10.1016/j.jmmm.2011.08.042
    [Google Scholar]
  68. G. H. Lee, T. Kawazoe, M. Ohtsu, Solid State Commun., 2002, 124, (5–6), 163 LINK https://doi.org/10.1016/s0038-1098(02)00537-9
    [Google Scholar]
  69. V. N. Jafarova, G. S. Orudzhev, Solid State Commun., 2021, 325, 114166 LINK https://doi.org/10.1016/j.ssc.2020.114166
    [Google Scholar]
  70. A. Wander, N. M. Harrison, J. Phys. Chem. B, 2001, 105, (26), 6191 LINK https://doi.org/10.1021/jp004627f
    [Google Scholar]
  71. K. Wang, D. Liu, L. Liu, J. Liu, X. Hu, P. Li, M. Li, A. S. Vasenko, C. Xiao, S. Ding, eScience, 2022, 2, (5), 518 LINK https://doi.org/10.1016/j.esci.2022.08.002
    [Google Scholar]
  72. U. J. Etim, Y. Song, Z. Zhong, Front. Energy Res., 2020, 8 LINK https://doi.org/10.3389/fenrg.2020.545431
    [Google Scholar]
  73. S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, Science, 2017, 355, (6331), 1296 LINK https://doi.org/10.1126/science.aal3573
    [Google Scholar]
/content/journals/10.1595/205651325X17138745351501
Loading
/content/journals/10.1595/205651325X17138745351501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test