Skip to content
1887
Volume 69, Issue 1
  • ISSN: 2056-5135

Abstract

The paper presents a mathematical model to describe thermogravimetric curves of the growth of scale with its simultaneous sublimation during oxidation of the surface of a metal or alloy. For alloys iron-chromium and iron-chromium-aluminium, a decrease in the effective reaction area as a result of the formation of the oxide of the alloying element lanthanum or yttrium (together with the formation of the main oxide: chromia or alumina) is considered. For metals, the case of increasing this area is also considered. During the oxidation of the chromia-forming alloy, another secondary process is added: the evaporation of chromia. Therefore, the equations describing the kinetics of changes in mass of these alloys are different. Equations are also considered that make it possible to describe the kinetics of the oxidation process taking into account the initial non-isothermal heating. The formal equations of the oxidation process with an increase in the reaction surface as a result of crushing metal powder are also considered. The resulting equations are used to describe the kinetic curves of changes in the mass of the samples under study. The given equations can be considered as a more accurate approximation to describe the experimental data than the formulas known so far.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17092245149521
2025-01-01
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/1/Nakhutsrishvili_13a_Imp.html?itemId=/content/journals/10.1595/205651324X17092245149521&mimeType=html&fmt=ahah

References

  1. W. H. Sharp, SAE Trans., 1966, 74, 323 LINK https://www.jstor.org/stable/44554216
    [Google Scholar]
  2. W. D. Klopp, JOM, 1969, 21, (11), 23 LINK https://doi.org/10.1007/bf03378794
    [Google Scholar]
  3. S. Bell, M. Sarvghad, T.-C. Ong, D. Naylor, X. Wang, Y. Yin, R. Rumman, G. Andersson, G. Will, D. A. Lewis, T. Steinberg, Solar Energy Mater. Solar Cells, 2023, 256, 112317 LINK https://doi.org/10.1016/j.solmat.2023.112317
    [Google Scholar]
  4. K. Ma, T. Blackburn, J. P. Magnussen, M. Kerbstadt, P. A. Ferreirós, T. Pinomaa, C. Hofer, D. G. Hopkinson, S. J. Day, P. A. J. Bagot, M. P. Moody, M. C. Galetz, A. J. Knowles, Acta Mater., 2023, 257, 119183 LINK https://doi.org/10.1016/j.actamat.2023.119183
    [Google Scholar]
  5. Z. Li, W. Zhao, D. Zhang, Q. Shan, F. Zhang, X. Wang, Mater. Res. Express, 2021, 8, (3), 036512 LINK https://doi.org/10.1088/2053-1591/abdf10
    [Google Scholar]
  6. N. K. Othman, A. Jalar, N. Othman, D. J. Young, Adv. Mater. Res., 2010, 97–101, 1212 LINK https://doi.org/10.4028/www.scientific.net/amr.97-101.1212
    [Google Scholar]
  7. Z. Shi, W. Shao, L. Rao, T. Hu, X. Xing, Y. Zhou, S. Liu, Q. Yang, J. Alloys Compd., 2021, 850, 156656 LINK https://doi.org/10.1016/j.jallcom.2020.156656
    [Google Scholar]
  8. Z. Wu, G. Wen, Y. Han, Ann. Chim. Sci. Matér., 2020, 44, (1), 29 LINK https://doi.org/10.18280/acsm.440104
    [Google Scholar]
  9. Y. Liu, D. Chabane, O. Elkedim, J. Energy Storage, 2023, 67, 107638 LINK https://doi.org/10.1016/j.est.2023.107638
    [Google Scholar]
  10. Y. Qin, J. Yuan, Y. Zhuang, B. Ma, L. Luo, Y. Wu, Coatings, 2023, 13, (2), 273 LINK https://doi.org/10.3390/coatings13020273
    [Google Scholar]
  11. V. Milyutin, Z. Birčáková, M. Fáberová, R. Bureš, P. Kollár, J. Füzer, Mater. Sci. Forum, 2023, 1081, 149 LINK https://doi.org/10.4028/p-97z6qj
    [Google Scholar]
  12. R. Wang, X. Tian, Z. Yao, X. Zhao, H. Hao, J. Rare Earths, 2022, 40, (3), 451 LINK https://doi.org/10.1016/j.jre.2020.12.009
    [Google Scholar]
  13. X. Tian, K. Zhang, C. Tan, E. Guo, Crystals, 2018, 8, (6), 247 LINK https://doi.org/10.3390/cryst8060247
    [Google Scholar]
  14. R. S. Silva, F. Cunha, P. Barrozo, Solid State Commun., 2021, 333, 114346 LINK https://doi.org/10.1016/j.ssc.2021.114346
    [Google Scholar]
  15. A. N. L. Jara, J. F. Carvalho, A. F. Júnior, L. J. Q. Maia, R. C. Santana, Phys. B: Condens. Matter, 2018, 546, 67 LINK https://doi.org/10.1016/j.physb.2018.07.026
    [Google Scholar]
  16. U. R. Evans, “An Introduction to Metallic Corrosion”, 3rd Edn., Edward Arnold Ltd, London, UK, 1981, 302 pp
    [Google Scholar]
  17. I. Nakhutsrishvili, G. Mikadze, Bull. Georgian Acad. Sci., 2023, 17, (1), 57
    [Google Scholar]
  18. O. Mikadze, I. Nakhutsrishvili, A. Kandelaki, Bull. Georgian Acad. Sci., 2011, 5, (2), 73
    [Google Scholar]
  19. I. Nakhutsrishvili, O. Tkeshelashvili, A. Chanishvili, J. Tech. Sci. Technol., 2016, 5, (1), 35 LINK https://doi.org/10.31578/jtst.v5i1.100
    [Google Scholar]
  20. J. Wang, K. Yan, W. Huang, Z. Lu, Appl. Surf. Sci., 2024, 644, 158782 LINK https://doi.org/10.1016/j.apsusc.2023.158782
    [Google Scholar]
  21. Y. Wang, B. Wang, L. Luo, J. P. Oliveira, B. Li, H. Yan, T. Liu, J. Zhao, L. Wang, Y. Su, J. Guo, D. Chen, Mater. Sci. Eng.: A, 2023, 882, 145438 LINK https://doi.org/10.1016/j.msea.2023.145438
    [Google Scholar]
  22. D. Hoelzer, D. Heidel, Y. Yamamoto, C. Massey, “High-Temperature Creep Behavior of Thin-Walled FeCrAl Alloy Tubes”, Report No. ORNL/LTR-2023/2888, US Department of Energy, Washington, DC, USA, 31st May, 2023, 37 pp LINK https://doi.org/10.2172/1976011
    [Google Scholar]
  23. H. Jiang, X. Zhao, D. Wang, Q. Zhu, T. Li, Y. Lei, Coatings, 2022, 12, (11), 1759 LINK https://doi.org/10.3390/coatings12111759
    [Google Scholar]
  24. Y. Saito, ‘Effects of Rare Earth Elements on the High Temperature Oxidation of Heat-Resisting Alloys’, in “Selected Topics in High Temperature Chemistry: Defect Chemistry of Solids”, Studies in Inorganic Chemistry Book Series, Vol. 9, Elsevier Science Publishers BV, Amsterdam, The Netherlands, 1989, pp. 227262 LINK https://doi.org/10.1016/B978-0-444-88534-0.50014-X
    [Google Scholar]
  25. K. Ishii, M. Kohno, S. Ishikawa, S. Satoh, Mater. Trans. JIM, 1997, 38, (9), 787 LINK https://doi.org/10.2320/matertrans1989.38.787
    [Google Scholar]
  26. P. Y. Hou, Mater. Sci. Forum, 2011, 696, 39 LINK https://doi.org/10.4028/www.scientific.net/msf.696.39
    [Google Scholar]
  27. M. Ozawa, K. Araki, Surf. Coatings Technol., 2015, 271, 80 LINK https://doi.org/10.1016/j.surfcoat.2015.01.010
    [Google Scholar]
  28. Y. Xu, S. Pirou, P. Zielke, S. B. Simonsen, P. Norby, P. V. Hendriksen, R. Kiebach, Ind. Eng. Chem. Res., 2018, 57, (6), 2123 LINK https://doi.org/10.1021/acs.iecr.7b04390
    [Google Scholar]
  29. A. Nakatsuka, O. Ohtaka, H. Arima, N. Nakayama, T. Mizota, Acta Cryst., 2005, E61, (8), i148 LINK https://doi.org/10.1107/s1600536805020441
    [Google Scholar]
  30. A. Boudali, F. Saadaoui, M. Zemouli, M. D. Khodja, K. Amara, Adv. Mater. Phys. Chem., 2013, 03, (2), 146 LINK https://doi.org/10.4236/ampc.2013.32020
    [Google Scholar]
  31. Z. Liu, W. Gao, Y. He, Oxid. Met., 2000, 53, (3–4), 341 LINK https://doi.org/10.1023/a:1004545421739
    [Google Scholar]
  32. C. Badini, F. Laurella, Surf. Coat. Technol., 2001, 135, (2–3), 291 LINK https://doi.org/10.1016/s0257-8972(00)00989-0
    [Google Scholar]
  33. Z. G. Zhang, F. Gesmundo, P. Y. Hou, Y. Niu, Corros. Sci., 2006, 48, (3), 741 LINK https://doi.org/10.1016/j.corsci.2005.01.012
    [Google Scholar]
  34. D. J. Young, D. Naumenko, L. Niewolak, E. Wessel, L. Singheiser, W. J. Quadakkers, Mater. Corros., 2010, 61, (10), 838 LINK https://doi.org/10.1002/maco.200905432
    [Google Scholar]
  35. N. K. Othman, J. Zhang, D. J. Young, Oxid. Met., 2009, 72, (1–2), 337 LINK https://doi.org/10.1007/s11085-009-9183-9
    [Google Scholar]
  36. D. J. Tallman, B. Anasori, M. W. Barsoum, Mater. Res. Lett., 2013, 1, (3), 115 LINK https://doi.org/10.1080/21663831.2013.806364
    [Google Scholar]
  37. K. Hellström, N. Israelsson, N. Mortazavi, S. Canovic, M. Halvarsson, J.-E. Svensson, L.-G. Johansson, Oxid. Met., 2015, 83, (5–6), 533 LINK https://doi.org/10.1007/s11085-015-9534-7
    [Google Scholar]
  38. W. J. Quadakkers, D. Naumenko, E. Wessel, V. Kochubey, L. Singheiser, Oxid. Met., 2004, 61, (1–2), 17 LINK https://doi.org/10.1023/b:oxid.0000016274.78642.ae
    [Google Scholar]
  39. J. Krejčí, V. Vrtílková, J. Kabátová, A. Přibyl, P. Gajdoš, D. Rada, J. Šustr, Nucl. Technol., 2018, 201, (1), 52 LINK https://doi.org/10.1080/00295450.2017.1389595
    [Google Scholar]
  40. J. Eklund, A. Persdotter, I. Hanif, S. Bigdeli, T. Jonsson, Corros. Sci., 2021, 189, 109584 LINK https://doi.org/10.1016/j.corsci.2021.109584
    [Google Scholar]
  41. S. Taniguchi, A. Andoh, Oxid. Met., 2002, 58, (5–6), 545 LINK https://doi.org/10.1023/a:1020577107126
    [Google Scholar]
  42. I. M. Wolff, L. E. Iorio, T. Rumpf, P. V. T. Scheers, J. H. Potgieter, Mater. Sci. Eng.: A, 1998, 241, (1–2), 264 LINK https://doi.org/10.1016/s0921-5093(97)00500-5
    [Google Scholar]
  43. B. A. Pint, J. Am. Ceram. Soc., 2003, 86, (4), 686 LINK https://doi.org/10.1111/j.1151-2916.2003.tb03358.x
    [Google Scholar]
  44. S. P. du Preez, T. P. M. van Kaam, E. Ringdalen, M. Tangstad, K. Morita, D. G. Bessarabov, P. G. van Zyl, J. P. Beukes, Minerals, 2023, 13, (6), 809 LINK https://doi.org/10.3390/min13060809
    [Google Scholar]
  45. W. Wang, Q. Pan, X. Wang, Y. Sun, J. Ye, G. Lin, S. Liu, Z. Huang, S. Xiang, X. Wang, Y. Liu, J. Alloys Compd., 2020, 845, 156286 LINK https://doi.org/10.1016/j.jallcom.2020.156286
    [Google Scholar]
  46. P. Sharma, S. Kainth, K. Singh, R. L. Mahajan, O. P. Pandey, J. Alloys Compd., 2023, 959, 170488 LINK https://doi.org/10.1016/j.jallcom.2023.170488
    [Google Scholar]
  47. J. Yang, H. Liu, T. Zeng, S. Li, Z. Liu, T. Wu, D. Gu, Materials, 2023, 16, (11), 3921 LINK https://doi.org/10.3390/ma16113921
    [Google Scholar]
  48. P. Ouyang, G. Mi, P. Li, L. He, J. Cao, X. Huang, Materials, 2019, 12, (13), 2114 LINK https://doi.org/10.3390/ma12132114
    [Google Scholar]
  49. I. Nakhutsrishvili, O. Mikadze, G. Mikadze, Proc. Georgian Acad. Sci. Chem. Ser., 2007, 33, (1), 60
    [Google Scholar]
  50. M. F. Pillis, O. V. Correa, L. V. Ramanathan, Mater. Res., 2016, 19, (3), 611 LINK https://doi.org/10.1590/1980-5373-mr-2015-0393
    [Google Scholar]
  51. S. Fontana, M. Vuksa, S. Chevalier, G. Caboche, P. Piccardo, Mater. Sci. Forum, 2008, 595–598, 753 LINK https://doi.org/10.4028/www.scientific.net/msf.595-598.753
    [Google Scholar]
  52. Y. Saito, B. Önay, T. Maruyama, J. Phys. IV, 1993, 03, (C9), 217 LINK https://doi.org/10.1051/jp4:1993920
    [Google Scholar]
  53. S. Molin, Å. H. Persson, T. L. Skafte, A. L. Smitshuysen, S. H. Jensen, K. B. Andersen, H. Xu, M. Chen, P. V. Hendriksen, J. Power Sources, 2019, 440, 226814 LINK https://doi.org/10.1016/j.jpowsour.2019.226814
    [Google Scholar]
  54. S. Yoneda, S. Hayashi, S. Ukai, Oxid. Met., 2018, 89, (1–2), 81 LINK https://doi.org/10.1007/s11085-017-9778-5
    [Google Scholar]
  55. M. F. Pillis, L. V. Ramanathan, Mater. Res., 2004, 7, (1), 97 LINK https://doi.org/10.1590/s1516-14392004000100014
    [Google Scholar]
  56. T. Gheno, D. Monceau, D. J. Young, Corros. Sci., 2013, 77, 246 LINK https://doi.org/10.1016/j.corsci.2013.08.008
    [Google Scholar]
  57. I. G. Wright, R. Peraldi, High Temp. Corros. Mater., 2023, 99, (3–4), 183 LINK https://doi.org/10.1007/s11085-023-10150-w
    [Google Scholar]
  58. S. Ma, Q. Ding, X. Wei, Z. Zhang, H. Bei, Materials, 2022, 15, (20), 7352 LINK https://doi.org/10.3390/ma15207352
    [Google Scholar]
  59. B. Jönsson, A. Westerlund, Oxid. Met., 2017, 88, (3–4), 315 LINK https://doi.org/10.1007/s11085-016-9710-4
    [Google Scholar]
  60. C. Cheng, X. Li, Q. Le, R. Guo, Q. Lan, J. Cui, J. Magnes. Alloy., 2020, 8, (4), 1281 LINK https://doi.org/10.1016/j.jma.2019.09.013
    [Google Scholar]
  61. D. Zemlyanov, B. Klötzer, H. Gabasch, A. Smeltz, F. H. Ribeiro, S. Zafeiratos, D. Teschner, P. Schnörch, E. Vass, M. Hävecker, A. Knop-Gericke, R. Schlögl, Top. Catal., 2013, 56, (11), 885 LINK https://doi.org/10.1007/s11244-013-0052-z
    [Google Scholar]
  62. C. Gasparrini, R. J. Chater, D. Horlait, L. Vandeperre, W. E. Lee, J. Am. Ceram. Soc., 2018, 101, (6), 2638 LINK https://doi.org/10.1111/jace.15479
    [Google Scholar]
  63. K.-C. Lo, Y.-J. Chang, H. Murakami, J.-W. Yeh, A.-C. Yeh, Sci. Rep., 2019, 9, 7266 LINK https://doi.org/10.1038/s41598-019-43819-x
    [Google Scholar]
  64. A. T. Motta, M. J. Gomes da Silva, A. Yilmazbayhan, R. J. Comstock, Z. Cai, B. Lai, J. ASTM Int., 2008, 5, (3), 1 LINK https://doi.org/10.1520/jai101257
    [Google Scholar]
  65. J.-C. Labbe, F. Dushez, M. Billy, Compt. Rend. Acad. Sci. Paris, 1971, 273, 1750
    [Google Scholar]
  66. M. E. Brown, Thermochim. Acta, 1997, 300, (1–2), 93 LINK https://doi.org/10.1016/S0040-6031(96)03119-X
    [Google Scholar]
/content/journals/10.1595/205651324X17092245149521
Loading
/content/journals/10.1595/205651324X17092245149521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test