Skip to content
1887
Volume 69, Issue 1
  • ISSN: 2056-5135

Abstract

The present work adopts friction stir processing to process stainless steel (SS304) with cobalt-chromium-iron-copper-titanium and aluminium-silicon-beryllium-titanium-vanadium high entropy alloy and analyse its erosion performance. The processed samples with cobalt-chromium-iron-copper-titanium and aluminium-silicon-beryllium-titanium-vanadium display refined grain structure with uniform distribution of the reinforced high entropy alloys. The microhardness for the sample with cobalt-chromium-iron-copper-titanium is 22.1% better than the aluminium-silicon-beryllium-titanium-vanadium. The slurry jet erosion test conducted through different process parameters revealed 90° impingement angle and 10 m s−1 impact velocity with 10 wt% slurry concentration on the processed sample with cobalt-chromium-iron-copper-titanium offered better erosion resistance. Oblique angle endured high erosion rate due to the ploughing effect of abrasive erodent than normal angle deforming the surface. Increasing velocity increased the erosion rate by increased material removal. Slurry concentration forms a cloud-like layer at higher concentrations lowering the erosion rate. The subsequent microstructural evaluation showed the failure mode through the formation of platelets, micro-cuts, ploughing and plastic deformation.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17151565612542
2025-01-01
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/1/Radhika_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17151565612542&mimeType=html&fmt=ahah

References

  1. M. A. Chowdhury, U. K. Debnath, D. M. Nuruzzaman, M. Islam, J. Bio- Tribo-Corros., 2017, 3, (3), 34 LINK https://doi.org/10.1007/s40735-017-0094-z
    [Google Scholar]
  2. C.-O. A. Olsson, ‘Wet Corrosion of Stainless Steels and Other Chromium-Bearing Alloys’, in “Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry: Corrosion and Passivation”, ed. K. Wandelt, Elsevier Inc, Amsterdam, The Netherlands, 2018, pp. 535542 LINK https://doi.org/10.1016/b978-0-12-409547-2.13583-8
    [Google Scholar]
  3. M. Sathish, N. Radhika, B. Saleh, Compos. Part B: Eng., 2021, 225, 109278 LINK https://doi.org/10.1016/j.compositesb.2021.109278
    [Google Scholar]
  4. R. Fathi, H. Wei, B. Saleh, N. Radhika, J. Jiang, A. Ma, M. H. Ahmed, Q. Li, K. K. Ostrikov, Appl. Mater. Today, 2022, 26, 101373 LINK https://doi.org/10.1016/j.apmt.2022.101373
    [Google Scholar]
  5. S. A. Krishna, N. Noble, N. Radhika, B. Saleh, J. Manuf. Process., 2024, 109, 583 LINK https://doi.org/10.1016/j.jmapro.2023.12.039
    [Google Scholar]
  6. S. Bharti, N. D. Ghetiya, K. M. Patel, Mater. Manuf. Process., 2021, 36, (2), 135 LINK https://doi.org/10.1080/10426914.2020.1813897
    [Google Scholar]
  7. N. Merah, M. A. Azeem, H. M. Abubaker, F. Al-Badour, J. Albinmousa, A. A. Sorour, Materials, 2021, 14, (17), 5023 LINK https://doi.org/10.3390/ma14175023
    [Google Scholar]
  8. M. K. Gupta, SN Appl. Sci., 2020, 2, (4), 1, 532 LINK https://doi.org/10.1007/s42452-020-2330-2
    [Google Scholar]
  9. S. Kumar, A. Mahajan, S. Kumar, H. Singh, Mater. Today Proc., 2022, 56, (5), 3051 LINK https://doi.org/10.1016/j.matpr.2021.12.097
    [Google Scholar]
  10. N. Radhika, S. A. Krishna, A. K. Basak, A. A. Adediran, Sci. Rep., 2024, 14, 3662 LINK https://doi.org/10.1038/s41598-024-54267-7
    [Google Scholar]
  11. B. Fotovvati, N. Namdari, A. Dehghanghadikolaei, J. Manuf. Mater. Process., 2019, 3, (1), 28 LINK https://doi.org/10.3390/jmmp3010028
    [Google Scholar]
  12. M. Awang, A. A. Khalili, S. R. Pedapati, Metals, 2020, 10, (1), 42 LINK https://doi.org/10.3390/met10010042
    [Google Scholar]
  13. O. O. Tinubu, S. Das, A. Dutt, J. E. Mogonye, V. Ageh, R. Xu, J. Forsdike, R. S. Mishra, T. W. Scharf, Wear, 2016, 356–357, 94 LINK https://doi.org/10.1016/j.wear.2016.03.018
    [Google Scholar]
  14. C. Y. Ma, L. Zhou, R. X. Zhang, D. G. Li, F. Y. Shu, X. G. Song, Y. Q. Zhao, J. Mater. Res. Technol., 2020, 9, (4), 8296 LINK https://doi.org/10.1016/j.jmrt.2020.05.057
    [Google Scholar]
  15. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, J. Alloys Compd., 2018, 760, 15 LINK https://doi.org/10.1016/j.jallcom.2018.05.067
    [Google Scholar]
  16. M.-H. Tsai, J.-W. Yeh, Mater. Res. Lett., 2014, 2, (3), 107 LINK https://doi.org/10.1080/21663831.2014.912690
    [Google Scholar]
  17. Z. U. Arif, M. Y. Khalid, E. ur Rehman, S. Ullah, M. Atif, A. Tariq, J. Manuf. Process., 2021, 68, (B), 225 LINK https://doi.org/10.1016/j.jmapro.2021.06.041
    [Google Scholar]
  18. Y. A. Alshataif, S. Sivasankaran, F. A. Al-Mufadi, A. S. Alaboodi, H. R. Ammar, Met. Mater. Int., 2019, 26, (8), 1099 LINK https://doi.org/10.1007/s12540-019-00565-z
    [Google Scholar]
  19. A. Fourmont, S. Le Gallet, O. Politano, C. Desgranges, F. Baras, J. Alloys Compd., 2020, 820, 153448 LINK https://doi.org/10.1016/j.jallcom.2019.153448
    [Google Scholar]
  20. K. Selvam, A. Ayyagari, H. S. Grewal, S. Mukherjee, H. S. Arora, Wear, 2017, 386–387, 129 LINK https://doi.org/10.1016/j.wear.2017.06.009
    [Google Scholar]
  21. T. Peat, A. Galloway, A. Toumpis, R. Steel, W. Zhu, N. Iqbal, Mater. Des., 2017, 120, 22 LINK https://doi.org/10.1016/j.matdes.2017.01.099
    [Google Scholar]
  22. Q. B. Nguyen, C. Y. H. Lim, V. B. Nguyen, Y. M. Wan, B. Nai, Y. W. Zhang, M. Gupta, Tribol. Int., 2014, 79, 1 LINK https://doi.org/10.1016/j.triboint.2014.05.014
    [Google Scholar]
  23. G. T. Burstein, K. Sasaki, Wear, 2000, 240, (1–2), 80 LINK https://doi.org/10.1016/s0043-1648(00)00344-6
    [Google Scholar]
  24. ‘Standard Test Method for Microindentation Hardness of Materials’, ASTM E384-22, ASTM International, West Conshohocken, USA, 8th November, 2022 https://doi.org/10.1520/E0384-22
    [Google Scholar]
  25. ‘Standard Test Method for Liquid Impingement Erosion Using Rotating Apparatus’ ASTM G73-10(2021), ASTM International, West Conshohocken, USA, 6th December, 2021 https://doi.org/10.1520/G0073-10R21
    [Google Scholar]
  26. V. Javaheri, D. Porter, V.-T. Kuokkala, Wear, 2018, 408–409, 248 LINK https://doi.org/10.1016/j.wear.2018.05.010
    [Google Scholar]
  27. N. Noble, N. Radhika, M. Sathishkumar, A. K. Basak, Trans. IMF, 2024, 102, (3), 161 LINK https://doi.org/10.1080/00202967.2023.2291907
    [Google Scholar]
  28. M. Vaidya, G. M. Muralikrishna, B. S. Murty, J. Mater. Res., 2019, 34, (5), 664 LINK https://doi.org/10.1557/jmr.2019.37
    [Google Scholar]
  29. H. Wang, K. Wang, W. Wang, L. Huang, P. Peng, H. Yu, Mater. Charact., 2019, 155, 109803 LINK https://doi.org/10.1016/j.matchar.2019.109803
    [Google Scholar]
  30. V. Patel, W. Li, X. Liu, Q. Wen, Y. Su, J. Shen, B. Fu, Mater. Sci. Eng.: A, 2020, 784, 139322 LINK https://doi.org/10.1016/j.msea.2020.139322
    [Google Scholar]
  31. V. V. Patel, V. Badheka, A. Kumar, J. Mater. Process. Technol., 2017, 240, 68 LINK https://doi.org/10.1016/j.jmatprotec.2016.09.009
    [Google Scholar]
  32. N. Noble, N. Radhika, M. Sathishkumar, B. Saleh, Tribol. Int., 2023, 185, 108525 LINK https://doi.org/10.1016/j.triboint.2023.108525
    [Google Scholar]
  33. C. Gunter, M. P. Miles, F. C. Liu, T. W. Nelson, J. Mater. Sci. Technol., 2018, 34, (1), 140 LINK https://doi.org/10.1016/j.jmst.2017.10.023
    [Google Scholar]
  34. S. Ragunath, N. Radhika, S. A. Krishna, N. Jeyaprakash, Tribol. Int., 2023, 188, 108840 LINK https://doi.org/10.1016/j.triboint.2023.108840
    [Google Scholar]
  35. S. A. Krishna, N. Radhika, B. Saleh, S. Manivannan, J. Alloys Compd., 2023, 953, 170153 LINK https://doi.org/10.1016/j.jallcom.2023.170153
    [Google Scholar]
  36. R. B. Nair, H. S. Arora, A. V Boyana, P. Saiteja, H. S. Grewal, Wear, 2019, 436–437, 203028 LINK https://doi.org/10.1016/j.wear.2019.203028
    [Google Scholar]
  37. P. Senapati, H. Sutar, M. R. Pal, ‘Slurry Erosion Behaviour of AISI 304 Stainless Steel Under Laboratory Conditions’, in “Current Advances in Mechanical Engineering: Select Proceedings of ICRAMERD 2020”, eds. S. K. Acharya, D. P. Mishra, Springer Nature Singapore Pte Ltd, Singapore, 2021, pp. 858868 LINK https://doi.org/10.1007/978-981-33-4795-3_79
    [Google Scholar]
  38. M. Patel, D. Patel, S. Sekar, P. B. Tailor, P. V Ramana, Proc. Technol., 2016, 23, 288 LINK https://doi.org/10.1016/j.protcy.2016.03.029
    [Google Scholar]
  39. J. Wang, Y. Chen, Y. Zhang, W. Dai, Q. Xu, W. Li, Y. Liu, Mater. Des., 2021, 212, 110277 LINK https://doi.org/10.1016/j.matdes.2021.110277
    [Google Scholar]
  40. J. Lu, Z. Wang, W. Wang, K. Zhou, F. He, Z. Wang, Acta Metall. Sin. (Eng. Lett.), 2020, 33, (8), 1111 LINK https://doi.org/10.1007/s40195-020-01070-8
    [Google Scholar]
  41. T. Alam, M. A. Islam, Z. N. Farhat, J. Tribol., 2016, 138, (2), 021604 LINK https://doi.org/10.1115/1.4031599
    [Google Scholar]
  42. C. Li, G. Bin, J. Li, Z. Liu, Tribol. Int., 2021, 163, 107197 LINK https://doi.org/10.1016/j.triboint.2021.107197
    [Google Scholar]
  43. B. Hong, Y. Li, X. Li, G. Li, A. Huang, S. Ji, W. Li, J. Gong, J. Guo, Petrol. Sci., 2022, 19, (3), 1347 LINK https://doi.org/10.1016/j.petsci.2022.01.011
    [Google Scholar]
  44. H. S. Grewal, A. Agrawal, H. Singh, Tribol. Lett., 2013, 52, (2), 287 LINK https://doi.org/10.1007/s11249-013-0213-z
    [Google Scholar]
  45. R. B. Nair, K. Selvam, H. S. Arora, S. Mukherjee, H. Singh, H. S. Grewal, Wear, 2017, 386–387, 230 LINK https://doi.org/10.1016/j.wear.2017.01.020
    [Google Scholar]
  46. C. L. Wu, S. Zhang, C. H. Zhang, H. Zhang, S. Y. Dong, J. Alloys Compd., 2017, 698, 761 LINK https://doi.org/10.1016/j.jallcom.2016.12.196
    [Google Scholar]
  47. G. R. Desale, B. K. Gandhi, S. C. Jain, Wear, 2006, 261, (7–8), 914 LINK https://doi.org/10.1016/j.wear.2006.01.035
    [Google Scholar]
  48. T. Alam, Z. N. Farhat, Eng. Fail. Anal., 2018, 90, 116 LINK https://doi.org/10.1016/j.engfailanal.2018.03.019
    [Google Scholar]
  49. A. Vyas, J. Menghani, P. Patel, S. More, C. P. Paul, A. Patnaik, S. P. Ingole, Trans. Indian Inst. Met., 2021, 74, (4), 839 LINK https://doi.org/10.1007/s12666-020-02169-3
    [Google Scholar]
  50. W. Chailad, L. Yang, V. Coveney, C. Bowen, A. Bickley, Wear, 2022, 488–489, 204125 LINK https://doi.org/10.1016/j.wear.2021.204125
    [Google Scholar]
/content/journals/10.1595/205651325X17151565612542
Loading
/content/journals/10.1595/205651325X17151565612542
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test