Skip to content
1887
Volume 69, Issue 2
  • ISSN: 2056-5135
  • oa Effectiveness Evaluation of Pyrometallurgy and Hydrometallurgy Methods in The Recycling Process of Neodymium-Iron-Boron Permanent Magnet and Rare Earth Metals Recovery: A Review

    Circular economy of critical raw materials

  • Authors: Lucky Darmawan1, Azwar Manaf2, Erik Prasetyo3, Fajar Nurjaman4, Anton Sapto Handoko4, Ulin Herliana4, Diah Sustanti5, Rikson Siburian6 and Fathan Bahfie7
  • Affiliations: 1 Department of Physics, Faculty of Mathematics and Science, University of Indonesia, F Building, Campus of UI, Depok, West Java, 16424, Indonesia; Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, Lampung 35361, Indonesia 2 Department of Physics, Faculty of Mathematics and Science, University of Indonesia, F Building, Campus of UI, Depok, West Java, 16424, Indonesia 3 Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, Lampung 35361, Indonesia; Department of Chemical Engineering, Norwegian University of Science and Technology, Kjemi 4, Gløshaugen, N-7491, Trondheim, Norway 4 Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, Lampung 35361, Indonesia 5 Metallurgical and Material Engineering Department, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Building MT 2nd Floor, Kampus ITS Sukolilo, Surabaya, East Java, 60111, Indonesia 6 Chemistry Department, Universitas Sumatera Utara; Carbon Research Center, Universitas Sumatera Utara, Jl. Dr. T. Mansur No. 9, Padang Bulan Campus, Medan, North Sumatera, 20155, Indonesia 7 Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, Lampung 35361, Indonesia
    *[email protected] §[email protected]
  • Source: Johnson Matthey Technology Review, Volume 69, Issue 2, Apr 2025, p. 214 - 232
  • DOI: https://doi.org/10.1595/205651325X17153497888451
    • Received: 01 Feb 2024
    • Accepted: 10 May 2024

Abstract

Neodymium-iron-boron is a rare earth element (REE)-based permanent magnet material. Its main magnetic phase is NdFeB and it has minor phase neodymium-rich or α-iron. The neodymium-iron-boron permanent magnet has a remarkable maximum energy product ((BH)) reaching 474 kJ m−3 or nearly 60 mega-gauss-oersteds (MGOe), making neodymium-iron-boron magnets highly suitable for wide use in various technological applications. A commercial neodymium-iron-boron magnet contains 22–32 wt% of REEs such as neodymium, dysprosium, praseodymium and lanthanum. As a result of increasing demand for these materials, the availability of REE from natural resources are decreasing and several REEs such as neodymium, dysprosium and praseodymium are in the critical category. Recycling neodymium-iron-boron magnet waste to recover the REEs is one possible solution to provide raw materials for the permanent magnet industry while minimising electronic device waste. Pyrometallurgical and hydrometallurgical metal extraction processes are commonly used for REE recovery. These two methods are excellent for REE recovery and relatively easy to conduct, allowing pyrometallurgical and hydrometallurgical methods to be adopted on industrial scale to benefit the availability of raw materials for the neodymium-iron-boron magnet industry.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17153497888451
2025-04-01
2025-03-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/2/Darmawan2_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17153497888451&mimeType=html&fmt=ahah

References

  1. J. F. Herbst, J. J. Croat, W. B. Yelon, J. Appl. Phys., 1985, 57, (8), 4086 LINK https://doi.org/10.1063/1.334680
    [Google Scholar]
  2. M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura, J. Appl. Phys., 1984, 55, (6), 2083 LINK https://doi.org/10.1063/1.333572
    [Google Scholar]
  3. A. Manaf, R. A. Buckley, H. A. Davies, J. Magn. Magn. Mater., 1993, 128, (3), 302 LINK https://doi.org/10.1016/0304-8853(93)90475-h
    [Google Scholar]
  4. R. W. Lee, Appl. Phys. Lett., 1985, 46, (8), 790 LINK https://doi.org/10.1063/1.95884
    [Google Scholar]
  5. I. A. Shah, T. Abbas, Z. Ullah, N. Hassan, A. Rauf, K. Ullah, Z. Naseem, Armenian J. Phys., 2015, 8, (4), 185 LINK https://arar.sci.am/Content/23412/file_0.pdf
    [Google Scholar]
  6. T. G. Woodcock, Y. Zhang, G. Hrkac, G. Ciuta, N. M. Dempsey, T. Schrefl, O. Gutfleisch, D. Givord, Scr. Mater., 2012, 67, (6), 536 LINK https://doi.org/10.1016/j.scriptamat.2012.05.038
    [Google Scholar]
  7. F. Bahfie, N. O. Br Kaban, S. Suprihatin, F. Nurjaman, E. Prasetyo, D. Susanti, Prog. Phys. Met., 2023, 24, (1), 157 LINK https://doi.org/10.15407/ufm.24.01.157
    [Google Scholar]
  8. E. Wyslocka, R. Ulewicz, ‘Magnets: History, the Current State and the Future’, Metal 2015, Brno, Czech Republic, 3rd–5th June, 2015, Tanger Ltd, Ostrava-Zabreh, Czech Republic, 2015 LINK https://www.confer.cz/metal/2015/read/2307-magnets-history-the-current-state-and-the-future.pdf
    [Google Scholar]
  9. M. A. Rahman, IEEE Ind. Appl. Mag., 2013, 19, (1), 10 LINK https://doi.org/10.1109/mias.2012.2221996
    [Google Scholar]
  10. H. Sepehri-Amin, S. Hirosawa, K. Hono, ‘Advances in Nd-Fe-B Based Permanent Magnets’, “Handbook of Magnetic Materials”, ch. 4, Vol. 27, Elsevier BV, Amsterdam, The Netherlands, 2018, pp. 269372 LINK https://doi.org/10.1016/bs.hmm.2018.08.003
    [Google Scholar]
  11. A. Lixandru, P. Venkatesan, C. Jönsson, I. Poenaru, B. Hall, Y. Yang, A. Walton, K. Güth, R. Gauß, O. Gutfleisch, Waste Manag., 2017, 68, 482 LINK https://doi.org/10.1016/j.wasman.2017.07.028
    [Google Scholar]
  12. K. Smith Stegen, Energy Policy, 2015, 79, 1 LINK https://doi.org/10.1016/j.enpol.2014.12.015
    [Google Scholar]
  13. S. Van Loy, M. A. R. Önal, K. Binnemans, T. Van Gerven, Hydrometallurgy, 2020, 191, 105154 LINK https://doi.org/10.1016/j.hydromet.2019.105154
    [Google Scholar]
  14. D. Dutta, R. Rautela, L. K. S. Gujjala, D. Kundu, P. Sharma, M. Tembhare, S. Kumar, Sci. Total Environ., 2023, 859, (2), 160391 LINK https://doi.org/10.1016/j.scitotenv.2022.160391
    [Google Scholar]
  15. A. Kumari, M. K. Sinha, S. Pramanik, S. K. Sahu, Waste Manag., 2018, 75, 486 LINK https://doi.org/10.1016/j.wasman.2018.01.033
    [Google Scholar]
  16. A. C. Ni’am, Y.-F. Wang, S.-W. Chen, S.-J. You, J. Taiwan Inst. Chem. Eng., 2019, 97, 137 LINK https://doi.org/10.1016/j.jtice.2019.01.006
    [Google Scholar]
  17. N. Faris, R. Ram, J. Tardio, S. Bhargava, S. McMaster, M. I. Pownceby, Miner. Eng., 2017, 110, 20 LINK https://doi.org/10.1016/j.mineng.2017.04.005
    [Google Scholar]
  18. X. Wan, Z. Dou, J. Hao, K. Jiang, T. Zhang, K. Wang, J. Environ. Chem. Eng., 2023, 11, (3), 109868 LINK https://doi.org/10.1016/j.jece.2023.109868
    [Google Scholar]
  19. A. S. Leão, D. L. Medeiros, M. A. Santiago, A. O. do Carmo Tavares, H. L. Maranduba, E. dos S. Almeida, Sustain. Mater. Technol., 2023, 36, e00607 LINK https://doi.org/10.1016/j.susmat.2023.e00607
    [Google Scholar]
  20. F. Xiao, W. Hu, J. Zhao, H. Zhu, Metals, 2023, 13, (4), 779 LINK https://doi.org/10.3390/met13040779
    [Google Scholar]
  21. E. G. Polyakov, A. S. Sibilev, Metallurgist, 2015, 59, (5–6), 368 LINK https://doi.org/10.1007/s11015-015-0111-8
    [Google Scholar]
  22. T. Akahori, Y. Miyamoto, T. Saeki, M. Okamoto, T. H. Okabe, J. Alloys Compd., 2017, 703, 337 LINK https://doi.org/10.1016/j.jallcom.2017.01.211
    [Google Scholar]
  23. M. Sun, X. Hu, L. Peng, P. Fu, W. Ding, Y. Peng, J. Mater. Process. Technol., 2015, 218, 57 LINK https://doi.org/10.1016/j.jmatprotec.2014.11.036
    [Google Scholar]
  24. O. Takeda, T. H. Okabe, Y. Umetsu, J. Alloys Compd., 2006, 408–412, 387 LINK https://doi.org/10.1016/j.jallcom.2005.04.094
    [Google Scholar]
  25. M.-A. Van Ende, I.-H. Jung, Y.-H. Kim, T.-S. Kim, Green Chem., 2015, 17, (4), 2246 LINK https://doi.org/10.1039/c4gc02232g
    [Google Scholar]
  26. M. Moore, A. Gebert, M. Stoica, M. Uhlemann, W. Löser, J. Alloys Compd., 2015, 647, 997 LINK https://doi.org/10.1016/j.jallcom.2015.05.238
    [Google Scholar]
  27. O. Takeda, T. H. Okabe, Y. Umetsu, J. Alloys Compd., 2004, 379, (1–2), 305 LINK https://doi.org/10.1016/j.jallcom.2004.02.038
    [Google Scholar]
  28. S. Stopic, B. Polat, H. Chung, E. Emil-Kaya, S. Smiljanić, S. Gürmen, B. Friedrich, Metals, 2022, 12, (9), 1464 LINK https://doi.org/10.3390/met12091464
    [Google Scholar]
  29. T. G. Ambaye, M. Vaccari, F. D. Castro, S. Prasad, S. Rtimi, Environ. Sci. Pollut. Res., 2020, 27, (29), 36052 LINK https://doi.org/10.1007/s11356-020-09630-2
    [Google Scholar]
  30. T. Yin, Y. Xue, Y. Yan, Z. Ma, F. Ma, M. Zhang, G. Wang, M. Qiu, Int. J. Miner. Metall. Mater., 2021, 28, (6), 899 LINK https://doi.org/10.1007/s12613-020-2228-4
    [Google Scholar]
  31. Z. Hua, J. Wang, L. Wang, Z. Zhao, X. Li, Y. Xiao, Y. Yang, ACS Sustain. Chem. Eng., 2014, 2, (11), 2536 LINK https://doi.org/10.1021/sc5004456
    [Google Scholar]
  32. M. Itoh, K. Miura, K. Machida, J. Alloys Compd., 2009, 477, (1–2), 484 LINK https://doi.org/10.1016/j.jallcom.2008.10.036
    [Google Scholar]
  33. S. Shirayama, T. H. Okabe, Metall. Mater. Trans. B, 2018, 49, (3), 1067 LINK https://doi.org/10.1007/s11663-018-1176-0
    [Google Scholar]
  34. R. Schulze, A. Abbasalizadeh, W. Bulach, L. Schebek, M. Buchert, J. Sustain. Metall., 2018, 4, (4), 493 LINK https://doi.org/10.1007/s40831-018-0198-9
    [Google Scholar]
  35. H. Chung, L. Prasakti, S. R. Stopic, D. Feldhaus, V. S. Cvetković, B. Friedrich, Metals, 2023, 13, (3), 559 LINK https://doi.org/10.3390/met13030559
    [Google Scholar]
  36. M. Firdaus, M. A. Rhamdhani, Y. Durandet, W. J. Rankin, K. McGregor, J. Sustain. Metall., 2016, 2, (4), 276 LINK https://doi.org/10.1007/s40831-016-0045-9
    [Google Scholar]
  37. H. Chung, S. Stopic, E. Emil-Kaya, S. Gürmen, B. Friedrich, Metals, 2022, 12, (10), 1615 LINK https://doi.org/10.3390/met12101615
    [Google Scholar]
  38. E. Emil-Kaya, B. Polat, S. Stopic, S. Gürmen, B. Friedrich, RSC Adv., 2023, 13, (2), 1320 LINK https://doi.org/10.1039/d2ra06883d
    [Google Scholar]
  39. Y.-Y. Bian, S.-Q. Guo, Y.-L. Xu, K. Tang, X.-G. Lu, W.-Z. Ding, Rare Met., 2015, 41, (5), 1697 LINK https://doi.org/10.1007/s12598-015-0554-x
    [Google Scholar]
  40. Y. Bian, S. Guo, L. Jiang, J. Liu, K. Tang, W. Ding, ACS Sustain. Chem. Eng., 2016, 4, (3), 810 LINK https://doi.org/10.1021/acssuschemeng.5b00852
    [Google Scholar]
  41. Y. Li, H. E. Evans, I. R. Harris, I. P. Jones, Oxid. Met., 2003, 59, (1–2), 167 LINK https://doi.org/10.1023/a:1023078218047
    [Google Scholar]
  42. K. Miura, M. Itoh, K.-I. Machida, J. Alloys Compd., 2008, 466, (1–2), 228 LINK https://doi.org/10.1016/j.jallcom.2007.11.013
    [Google Scholar]
  43. Y. Bian, K. Tang, G. Tranell, Calphad, 2015, 51, 206 LINK https://doi.org/10.1016/j.calphad.2015.10.001
    [Google Scholar]
  44. M. Nakamoto, K. Kubo, Y. Katayama, T. Tanaka, T. Yamamoto, Metall. Mater. Trans. B, 2012, 43, (3), 468 LINK https://doi.org/10.1007/s11663-011-9618-y
    [Google Scholar]
  45. T. Saito, H. Sato, S. Ozawa, J. Yu, T. Motegi, J. Alloys Compd., 2003, 353, (1–2), 189 LINK https://doi.org/10.1016/s0925-8388(02)01202-1
    [Google Scholar]
  46. T. Saito, H. Sato, T. Motegi, J. Alloys Compd., 2005, 387, (1–2), 274 LINK https://doi.org/10.1016/j.jallcom.2004.02.064
    [Google Scholar]
  47. K. Tang, A. Ciftja, A. M. Martinez, C. van der Eijk, Y. Bian, S. Guo, W. Ding, ‘Recycling the Rare Earth Elements from Waste NiMH Batteries and Magnet Scraps by Pyrometallurgical Processes’, The First International Symposium on Development of Rare Earths, Baotou, China, 15th–20th July, SINTEF, Norway, 2014, 8 pp LINK https://doi.org/10.13140/2.1.4500.6723
    [Google Scholar]
  48. L. Jia, J. Huang, Z. Ma, X. Liu, X. Chen, J. Li, L. He, Z. Zhao, Trans. Nonferrous Met. Soc. China, 2020, 30, (11), 3147 LINK https://doi.org/10.1016/s1003-6326(20)65450-4
    [Google Scholar]
  49. D. Dupont, K. Binnemans, Green Chem., 2015, 17, (4), 2150 LINK https://doi.org/10.1039/c5gc00155b
    [Google Scholar]
  50. S. Sukmara, Suyanti, W. A. Adi, A. Manaf, J. Mater. Res. Technol., 2022, 17, 3384 LINK https://doi.org/10.1016/j.jmrt.2022.02.005
    [Google Scholar]
  51. Y. Zhang, F. Gu, Z. Su, S. Liu, C. Anderson, T. Jiang, Metals, 2020, 10, (6), 841 LINK https://doi.org/10.3390/met10060841
    [Google Scholar]
  52. X. Chen, L. Cao, D. Kang, J. Li, S. Li, X. Wu, ‘Hydrometallurgical Processes for Valuable Metals Recycling from Spent Lithium-Ion Batteries’, ‘Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts’, ed. L. An, Springer Nature Switzerland AG, Cham, Switzerland, 2019, pp. 93139 LINK https://doi.org/10.1007/978-3-030-31834-5_5
    [Google Scholar]
  53. L. He, Q. Xu, W. Li, Q. Dong, W. Sun, J. Rare Earths, 2022, 40, (2), 338 LINK https://doi.org/10.1016/j.jre.2021.01.003
    [Google Scholar]
  54. I. Trisnawati, G. Prameswara, P. Mulyono, A. Prasetya, H. T. B. M. Petrus, Int. J. Technol., 2020, 11, (4), 804 LINK https://doi.org/10.14716/ijtech.v11i4.4037
    [Google Scholar]
  55. J. Liu, Z. Dou, T. Zhang, Miner. Eng., 2020, 145, 106052 LINK https://doi.org/10.1016/j.mineng.2019.106052
    [Google Scholar]
  56. F. Mao, N. Zhu, W. Zhu, B. Liu, P. Wu, Z. Dang, Environ. Sci. Pollut. Res., 2022, 29, (17), 25532 LINK https://doi.org/10.1007/s11356-021-17761-3
    [Google Scholar]
  57. M. Gergoric, C. Ravaux, B.-M. Steenari, F. Espegren, T. Retegan, Metals, 2018, 8, (9), 721 LINK https://doi.org/10.3390/met8090721
    [Google Scholar]
  58. J. Niskanen, M. Lahtinen, S. Perämäki, Clean. Eng. Technol., 2022, 10, 100544 LINK https://doi.org/10.1016/j.clet.2022.100544
    [Google Scholar]
  59. R. T. Stein, A. C. Kasper, H. M. Veit, Minerals, 2022, 12, (6), 668 LINK https://doi.org/10.3390/min12060668
    [Google Scholar]
  60. G. Reisdörfer, D. Bertuol, E. H. Tanabe, Miner. Eng., 2019, 143, 105938 LINK https://doi.org/10.1016/j.mineng.2019.105938
    [Google Scholar]
  61. S. Belfqueh, A. Seron, S. Chapron, G. Arrachart, N. Menad, J. Rare Earths, 2023, 41, (4), 621 LINK https://doi.org/10.1016/j.jre.2022.04.027
    [Google Scholar]
  62. Y. Liu, F. Gao, T. Chen, C. Wang, K. Hu, C. Zhang, Z. Huang, X. Li, Y. Wan, Sep. Purif. Technol., 2023, 316, 123832 LINK https://doi.org/10.1016/j.seppur.2023.123832
    [Google Scholar]
  63. S. Van Loy, K. Binnemans, T. Van Gerven, Engineering, 2018, 4, (3), 398 LINK https://doi.org/10.1016/j.eng.2018.05.015
    [Google Scholar]
  64. M. A. R. Önal, C. R. Borra, M. Guo, B. Blanpain, T. Van Gerven, J. Sustain. Metall., 2015, 1, (3), 199 LINK https://doi.org/10.1007/s40831-015-0021-9
    [Google Scholar]
  65. E. E. Kaya, O. Kaya, S. Stopic, S. Gürmen, B. Friedrich, Metals, 2021, 11, (5), 716 LINK https://doi.org/10.3390/met11050716
    [Google Scholar]
  66. A. Habibzadeh, M. A. Kucuker, M. Gökelma, ACS Omega, 2023, 8, (20), 17431 LINK https://doi.org/10.1021/acsomega.3c00299
    [Google Scholar]
/content/journals/10.1595/205651325X17153497888451
Loading
/content/journals/10.1595/205651325X17153497888451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test