Skip to content
1887
Volume 69, Issue 2
  • ISSN: 2056-5135
  • oa Review of Recovery and Purification Processes of Rare Earth Elements from Nickel-Metal Hydride Spent Batteries

    Circular economy for renewable resources

  • Authors: M Widya Aryani1, Azwar Manaf2, Erik Prasetyo3, Diah Susanti4, Anton Sapto Handoko5, Fajar Nurjaman5, Ulin Herlina5, Rikson Siburian6 and Fathan Bahfie7
  • Affiliations: 1 Postgraduate Programme of Materials Science, Department of Physics, Building F, Faculty of Mathematics and Natural Sciences, Depok Campus, University of Indonesia, West Java, Depok, 16424, Indonesia; Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, Lampung, 35361, Indonesia 2 Postgraduate Programme of Materials Science, Department of Physics, Building F, Faculty of Mathematics and Natural Sciences, Depok Campus, University of Indonesia, West Java, Depok, 16424, Indonesia 3 Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, Lampung, 35361, Indonesia;, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway 4 Metallurgical and Material Engineering Department, Faculty of Industrial Technology and Systems Engineering, Sepuluh Nopember Institute of Technology, Building MT 2nd Floor, ITS Sukolilo Campus, Surabaya, 60111, Indonesia 5 Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, Lampung, 35361, Indonesia 6 Chemistry Department, Universitas Sumatera Utara, Jl. Dr. T. Mansur No. 9, Padang Bulan Campus, Medan, North Sumatera, 20155, Indonesia; Carbon Research Centre, Universitas Sumatera Utara, Jl. Dr. T. Mansur No. 9, Padang Bulan Campus, Medan, North Sumatera, 20155, Indonesia 7 Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, Lampung, 35361, Indonesia
    Email: *[email protected] §[email protected]
  • Source: Johnson Matthey Technology Review, Volume 69, Issue 2, Apr 2025, p. 158 - 169
  • DOI: https://doi.org/10.1595/205651325X17170604890774
    • Received: 21 Apr 2024
    • Accepted: 28 May 2024

Abstract

The concept of a circular economy for rare earth elements (REEs) is being developed. The circular economy involves optimising the lifecycle of products to achieve sustainable and efficient consumption. REEs are considered critical elements of high economic value. Considering limited rare earth reserves, secondary source REEs are very important to sustainable use. Spent nickel-metal hydride (Ni-MH) batteries are electronic waste containing valuable REEs. Ni-MH batteries that have reached their age limit, if thrown away, will become hazardous waste. Recycling Ni-MH battery waste efficiently enables REEs to be recovered and reused. The REE recovery process has challenges that must be considered such as efficiency, low REE concentration, environmental concerns and scalability, thus requiring the development of new, efficient recovery methods and processes for REE. Currently the hydrometallurgical method is preferred for REE recovery from Ni-MH batteries because it has high yields, low energy requirements, ease of separation from base metals and low greenhouse gas emissions. One such REE recovery using hydrochloric acid on a pilot scale yielded 91.6% lanthanum.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17170604890774
2025-04-01
2025-03-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/2/Aryani_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17170604890774&mimeType=html&fmt=ahah

References

  1. A. Yuksekdag, B. Kose-Mutlu, A. F. Siddiqui, M. R. Wiesner, I. Koyuncu, Chemosphere, 2022, 293, 133620 LINK https://doi.org/10.1016/j.chemosphere.2022.133620
    [Google Scholar]
  2. G. Bressanelli, N. Saccani, D. C. A. Pigosso, M. Perona, Sustain. Prod. Consum., 2020, 23, 174 LINK https://doi.org/10.1016/j.spc.2020.05.007
    [Google Scholar]
  3. P. Meshram, B. D. Pandey, T. R. Mankhand, Hydrometallurgy, 2015, 158, 172 LINK https://doi.org/10.1016/j.hydromet.2015.10.028
    [Google Scholar]
  4. P. Nowakowski, B. Mrówczyńska, Resour. Conserv. Recycl., 2018, 135, 93 LINK https://doi.org/10.1016/j.resconrec.2017.12.016
    [Google Scholar]
  5. B. C. McLellan, G. D. Corder, A. Golev, S. H. Ali, Procedia Environ. Sci., 2014, 20, 280 LINK https://doi.org/10.1016/j.proenv.2014.03.035
    [Google Scholar]
  6. V. Balaram, Geosci. Front., 2019, 10, (4), 1285 LINK https://doi.org/10.1016/j.gsf.2018.12.005
    [Google Scholar]
  7. “Mineral Commodity Summaries 2020”, US Geological Survey, Reston, USA, 2000, 200 pp LINK https://doi.org/10.3133/mcs2020
    [Google Scholar]
  8. R. K. Jyothi, T. Thenepalli, J. W. Ahn, P. K. Parhi, K. W. Chung, J.-Y. Lee, J. Cleaner Prod., 2020, 267, 122048 LINK https://doi.org/10.1016/j.jclepro.2020.122048
    [Google Scholar]
  9. C. Ramprasad, W. Gwenzi, N. Chaukura, N. I. W. Azelee, A. U. Rajapaksha, M. Naushad, S. Rangabhashiyam, Chem. Eng. J., 2022, 442, (1), 135992 LINK https://doi.org/10.1016/j.cej.2022.135992
    [Google Scholar]
  10. J. Chen, X. Zhu, G. Liu, W. Chen, D. Yang, Resour. Conserv. Recycl., 2018, 132, 139 LINK https://doi.org/10.1016/j.resconrec.2018.01.011
    [Google Scholar]
  11. F. Bahfie, D. U. Murti, A. Nuryaman, W. Astuti, F. Nurjaman, E. Prasetyo, S. Sudibyo, D. Susanti, Prog. Phys. Met., 2022, 23, (3), 476 LINK https://doi.org/10.15407/ufm.23.03.476
    [Google Scholar]
  12. F. Bahfie, N. O. Br Kaban, S. Suprihatin, F. Nurjaman, E. Prasetyo, D. Susanti, Prog. Phys. Met., 2023, 24, (1), 157 LINK https://doi.org/10.15407/ufm.24.01.157
    [Google Scholar]
  13. F. Bahfie, M. R. Supriadi, S. Oediyani, F. Nurjaman, W. Astuti, E. Prasetyo, D. Susanti, Period. Mineral., 2022, 91, (2), 155 LINK https://doi.org/10.13133/2239-1002/17756
    [Google Scholar]
  14. E. Prasetyo, W. A. Muryanta, M. Amin, M. Sudibyo, Al Muttaqii, F. Bahfie, A. S. Handoko, Miner. Process. Extr. Metall. Rev., 2024, ahead-of-print LINK https://doi.org/10.1080/08827508.2024.2337038
    [Google Scholar]
  15. B. K. Reck, T. E. Graedel, Science, 2012, 337, (6095), 690 LINK https://doi.org/10.1126/science.1217501
    [Google Scholar]
  16. N. M. Ippolito, V. Innocenzi, I. De Michelis, F. Medici, F. Vegliò, J. Cleaner Prod., 2017, 153, 287 LINK https://doi.org/10.1016/j.jclepro.2017.03.195
    [Google Scholar]
  17. V. Innocenzi, F. Vegliò, J. Power Sources, 2012, 211, 184 LINK https://doi.org/10.1016/j.jpowsour.2012.03.064
    [Google Scholar]
  18. S. Arya, S. Verma, ‘Nickel-Metal Hydride (Ni-MH) Batteries’, in “Rechargable Batteries: History, Progress, and Applications”, eds. R. Boddula, Inamuddin, R. Pothu, A. M. Asiri, Scrivener Publishing LLC, Beverly, USA, 2020, pp. 131175 LINK https://doi.org/10.1002/9781119714774.ch8
    [Google Scholar]
  19. W. Liu, T. Placke, K. T. Chau, Energy Rep., 2022, 8, 4058 LINK https://doi.org/10.1016/j.egyr.2022.03.016
    [Google Scholar]
  20. K. Binnemans, P. T. Jones, T. Müller, L. Yurramendi, J. Sustain. Metall., 2018, 4, (1), 126 LINK https://doi.org/10.1007/s40831-018-0162-8
    [Google Scholar]
  21. P. Zhang, T. Yokoyama, O. Itabashi, Y. Wakui, T. M. Suzuki, K. Inoue, Hydrometallurgy, 1998, 50, (1), 61 LINK https://doi.org/10.1016/s0304-386x(98)00046-2
    [Google Scholar]
  22. L. Li, S. Xu, Z. Ju, F. Wu, Hydrometallurgy, 2009, 100, (1–2), 41 LINK https://doi.org/10.1016/j.hydromet.2009.09.012
    [Google Scholar]
  23. M. K. Jha, P. K. Choubey, O. S. Dinkar, R. Panda, R. K. Jyothi, K. Yoo, I. Park, Minerals, 2022, 12, (1), 34 LINK https://doi.org/10.3390/min12010034
    [Google Scholar]
  24. K. Tanong, J.-F. Blais, G. Mercier, Recent Pat. Eng., 2014, 8, (1), 13 LINK https://doi.org/10.2174/1872212108666140204004041
    [Google Scholar]
  25. L. Alvarado-Hernández, G. T. Lapidus, F. González, Waste Manag., 2019, 95, 53 LINK https://doi.org/10.1016/j.wasman.2019.05.057
    [Google Scholar]
  26. R. P. de Oliveira, J. Benvenuti, D. C. R. Espinosa, Renew. Sustain. Energy Rev., 2021, 145, 111090 LINK https://doi.org/10.1016/j.rser.2021.111090
    [Google Scholar]
  27. K. Miura, M. Itoh, K. Machida, J. Alloys Compd., 2008, 466, (1–2), 228 LINK https://doi.org/10.1016/j.jallcom.2007.11.013
    [Google Scholar]
  28. J. Jiang, T. Ozaki, K. Machida, G. Adachi, J. Alloys Compd., 1997, 260, (1–2), 222 LINK https://doi.org/10.1016/s0925-8388(97)00176-x
    [Google Scholar]
  29. O. Takeda, K. Nakano, Y. Sato, Mater. Trans., 2014, 55, (2), 334 LINK https://doi.org/10.2320/matertrans.m-m2013836
    [Google Scholar]
  30. T. Saito, H. Sato, T. Motegi, J. Alloys Compd., 2006, 425, (1–2), 145 LINK https://doi.org/10.1016/j.jallcom.2006.01.011
    [Google Scholar]
  31. O. Takeda, T. H. Okabe, Y. Umetsu, J. Alloys Compd., 2006, 408–412, 387 LINK https://doi.org/10.1016/j.jallcom.2005.04.094
    [Google Scholar]
  32. T. H. Okabe, O. Takeda, K. Fukuda, Y. Umetsu, Mater. Trans., 2003, 44, (4), 798 LINK https://doi.org/10.2320/matertrans.44.798
    [Google Scholar]
  33. Y. Xu, L. S. Chumbley, F. C. Laabs, J. Mater. Res., 2000, 15, (11), 2296 LINK https://doi.org/10.1557/jmr.2000.0330
    [Google Scholar]
  34. L. Omodara, S. Pitkäaho, E.-M. Turpeinen, P. Saavalainen, K. Oravisjärvi, R. L. Keiski, J. Cleaner Prod., 2019, 236, 117573 LINK https://doi.org/10.1016/j.jclepro.2019.07.048
    [Google Scholar]
  35. A. Saguchi, K. Asabe, T. Fukuda, W. Takahashi, R. O. Suzuki, J. Alloys Compd., 2006, 408–412, 1377 LINK https://doi.org/10.1016/j.jallcom.2005.04.178
    [Google Scholar]
  36. T. Kuzuya, S. Hirai, V. V. Sokolov, Sep. Purif. Technol., 2013, 118, 823 LINK https://doi.org/10.1016/j.seppur.2013.08.008
    [Google Scholar]
  37. S. Mir, N. Shukla, N. Dhawan, J. Miner. Met. Mater. Soc., 2021, 73, (3), 951 LINK https://doi.org/10.1007/s11837-020-04530-9
    [Google Scholar]
  38. S. Maroufi, R. K. Nekouei, R. Hossain, M. Assefi, V. Sahajwalla, ACS Sustainable Chem. Eng., 2018, 6, (9), 11811 LINK https://doi.org/10.1021/acssuschemeng.8b02097
    [Google Scholar]
  39. S. Maroufi, R. K. Nekouei, S. S. Mofarah, A. P. O’Mullane, Y. Yao, S. Lim, C. Cazorla, V. Sahajwalla, Adv. Funct. Mater., 2021, 31, (30), 2100880 LINK https://doi.org/10.1002/adfm.202100880
    [Google Scholar]
  40. Y. Deng, W. Xin, Y. Jiang, P. Wang, Y. Yuan, Trans. Indian Inst. Met., 2020, 73, (10), 2529 LINK https://doi.org/10.1007/s12666-020-02057-w
    [Google Scholar]
  41. A. Fernandes, J. C. Afonso, A. J. B. Dutra, Hydrometallurgy, 2013, 133, 37 LINK https://doi.org/10.1016/j.hydromet.2012.11.017
    [Google Scholar]
  42. Y. Xia, L. Xiao, J. Tian, Z. Li, L. Zeng, J. Rare Earths, 2015, 33, (12), 1348 LINK https://doi.org/10.1016/s1002-0721(14)60568-8
    [Google Scholar]
  43. S. J. R. Vargas, N. Schaeffer, J. C. Souza, L. H. M. da Silva, M. C. Hespanhol, Waste Manag., 2021, 125, 154 LINK https://doi.org/10.1016/j.wasman.2021.02.038
    [Google Scholar]
  44. K. Larsson, C. Ekberg, A. Ødegaard-Jensen, Waste Manag., 2013, 33, (3), 689 LINK https://doi.org/10.1016/j.wasman.2012.06.001
    [Google Scholar]
  45. A. A. L. Marins, S. G. Banhos, E. J. B. Muri, R. V. Rodrigues, P. C. M. Cruz, M. B. J. G. Freitas, Mater. Chem. Phys., 2020, 242, 122440 LINK https://doi.org/10.1016/j.matchemphys.2019.122440
    [Google Scholar]
  46. P. R. Gismonti, J. F. Paulino, J. Afonso, Detritus, 2021, 14, 68 LINK https://doi.org/10.31025/2611-4135/2021.14063
    [Google Scholar]
  47. A. Pathak, M. Vinoba, R. Kothari, Crit. Rev. Environ. Sci. Technol., 2021, 51, (1), 1 LINK https://doi.org/10.1080/10643389.2019.1709399
    [Google Scholar]
  48. E. Gerold, C. Schinnerl, H. Antrekowitsch, Recycling, 2022, 7, (1), 4 LINK https://doi.org/10.3390/recycling7010004
    [Google Scholar]
  49. X. Yang, J. Zhang, X. Fang, J. Hazard. Mater., 2014, 279, 384 LINK https://doi.org/10.1016/j.jhazmat.2014.07.027
    [Google Scholar]
  50. N.-K. Ahn, H.-W. Shim, D.-W. Kim, B. Swain, Waste Manag., 2020, 104, 254 LINK https://doi.org/10.1016/j.wasman.2020.01.014
    [Google Scholar]
  51. J. Lie, J.-C. Liu, J. Environ. Chem. Eng., 2021, 9, (5), 106084 LINK https://doi.org/10.1016/j.jece.2021.106084
    [Google Scholar]
  52. L. Pietrelli, B. Bellomo, D. Fontana, M. R. Montereali, Hydrometallurgy, 2002, 66, (1–3), 135 LINK https://doi.org/10.1016/s0304-386x(02)00107-x
    [Google Scholar]
  53. J. Nan, D. Han, M. Yang, M. Cui, X. Hou, Hydrometallurgy, 2006, 84, (1–2), 75 LINK https://doi.org/10.1016/j.hydromet.2006.03.059
    [Google Scholar]
  54. D. A. Bertuol, A. M. Bernardes, J. A. S. Tenório, J. Power Sources, 2009, 193, (2), 914 LINK https://doi.org/10.1016/j.jpowsour.2009.05.014
    [Google Scholar]
  55. L. E. O. C. Rodrigues, M. B. Mansur, J. Power Sources, 2010, 195, (11), 3735 LINK https://doi.org/10.1016/j.jpowsour.2009.12.071
    [Google Scholar]
  56. A. Akcil, Y. A. Ibrahim, P. Meshram, S. Panda, Abhilash, J. Chem. Technol. Biotechnol., 2021, 96, (7), 1785 LINK https://doi.org/10.1002/jctb.6739
    [Google Scholar]
  57. N. Krishnamurthy, C. K. Gupta, “Extractive Metallurgy of Rare Earths”, CRC Press, Boca Raton, USA, 2005, 504 pp LINK https://doi.org/10.1201/9780203413029
    [Google Scholar]
  58. A. N. Turanov, V. K. Karandashev, A. N. Yarkevich, Z. V Safronova, Radiochemistry, 2006, 48, (1), 47 LINK https://doi.org/10.1134/s1066362206010103
    [Google Scholar]
  59. A. C. Ni’am, Y.-F. Wang, S.-W. Chen, G.-M. Chang, S.-J. You, Chem. Eng. Process. Process Intensif., 2020, 148, 107831 LINK https://doi.org/10.1016/j.cep.2020.107831
    [Google Scholar]
  60. K. Larsson, C. Ekberg, A. Ødegaard-Jensen, Hydrometallurgy, 2013, 133, 168 LINK https://doi.org/10.1016/j.hydromet.2013.01.012
    [Google Scholar]
  61. K. Larsson, C. Ekberg, A. Ødegaard-Jensen, Hydrometallurgy, 2012, 129–130, 35 LINK https://doi.org/10.1016/j.hydromet.2012.08.011
    [Google Scholar]
  62. M. Petranikova, I. Herdzik-Koniecko, B.-M. Steenari, C. Ekberg, Hydrometallurgy, 2017, 171, 128 LINK https://doi.org/10.1016/j.hydromet.2017.05.006
    [Google Scholar]
  63. H. Zhi, S. Ni, X. Su, W. Xie, H. Zhang, X. Sun, J. Rare Earths, 2022, 40, (6), 974 LINK https://doi.org/10.1016/j.jre.2021.04.012
    [Google Scholar]
  64. H. Salehi, S. Maroufi, S. S. Mofarah, R. K. Nekouei, V. Sahajwalla, Renew. Sustain. Energy Rev., 2023, 178, 113248 LINK https://doi.org/10.1016/j.rser.2023.113248
    [Google Scholar]
  65. C. Liu, Y. Deng, J. Chen, D. Zou, W. Su, Ind. Eng. Chem. Res., 2017, 56, (26), 7551 LINK https://doi.org/10.1021/acs.iecr.7b01427
    [Google Scholar]
  66. K. Korkmaz, M. Alemrajabi, Å. C. Rasmuson, K. M. Forsberg, Metals, 2018, 8, (12), 1062 LINK https://doi.org/10.3390/met8121062
    [Google Scholar]
  67. A. Porvali, B. P. Wilson, M. Lundström, Waste Manag., 2018, 71, 381 LINK https://doi.org/10.1016/j.wasman.2017.10.031
    [Google Scholar]
  68. M. Takano, S. Asano, M. Goto, Hydrometallurgy, 2022, 209, 105826 LINK https://doi.org/10.1016/j.hydromet.2022.105826
    [Google Scholar]
  69. J. Constantine, J. Lie, J.-C. Liu, J. Environ. Chem. Eng., 2022, 10, (3), 108000 LINK https://doi.org/10.1016/j.jece.2022.108000
    [Google Scholar]
  70. A. Porvali, S. Ojanen, B. P. Wilson, R. Serna-Guerrero, M. Lundström, J. Sustain. Metall., 2020, 6, (1), 78 LINK https://doi.org/10.1007/s40831-019-00258-2
    [Google Scholar]
  71. M. Nour, J. P. Chaves-Ávila, Á. Sánchez-Miralles, IEEE Access, 2022, 10, 47384 LINK https://doi.org/10.1109/access.2022.3171227
    [Google Scholar]
  72. M. Zielinski, L. Cassayre, P. Destrac, N. Coppey, G. Garin, B. Biscans, ChemSusChem, 2020, 13, (3), 616 LINK https://doi.org/10.1002/cssc.201902640
    [Google Scholar]
  73. M. Geissdoerfer, P. Savaget, N. M. P. Bocken, E. J. Hultink, J. Cleaner Prod., 2017, 143, 757 LINK https://doi.org/10.1016/j.jclepro.2016.12.048
    [Google Scholar]
  74. P. Ghisellini, C. Cialani, S. Ulgiati, J. Cleaner Prod., 2016, 114, 11 LINK https://doi.org/10.1016/j.jclepro.2015.09.007
    [Google Scholar]
  75. A. Bonoli, W. Boninsegni, E. Foschi, Detritus, 2021, 15, 67 LINK https://doi.org/10.31025/2611-4135/2021.14089
    [Google Scholar]
  76. Z. Ge, Y. Geng, F. Dong, J. Liang, C. Zhong, Front. Environ. Sci., 2022, 10 LINK https://doi.org/10.3389/fenvs.2022.962724
    [Google Scholar]
  77. K. Grzesik, K. Kossakowska, B. Bieda, R. Kozakiewicz, IOP Conf. Ser.: Earth Environ. Sci., 2019, 214, 012068 LINK https://doi.org/10.1088/1755-1315/214/1/012068
    [Google Scholar]
  78. K. Habib, H. Wenzel, J. Cleaner Prod., 2014, 84, 348 LINK https://doi.org/10.1016/j.jclepro.2014.04.035
    [Google Scholar]
  79. B. Zhou, Z. Li, C. Chen, Minerals, 2017, 7, (11), 203 LINK https://doi.org/10.3390/min7110203
    [Google Scholar]
  80. O. Artiushenko, V. Zaitsev, W. S. Rojano, G. A. Freitas, M. Nazarkovsky, T. D. Saint’Pierre, J. Kai, J. Hazard. Mater., 2021, 408, 124976 LINK https://doi.org/10.1016/j.jhazmat.2020.124976
    [Google Scholar]
/content/journals/10.1595/205651325X17170604890774
Loading
/content/journals/10.1595/205651325X17170604890774
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): circular economy; Ni-MH spent battery; rare earth element
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test