Skip to content
1887
Volume 69, Issue 2
  • ISSN: 2056-5135
  • oa Autonomous Structural Health Monitoring and Remaining Useful Life Estimation of Floating Offshore Wind Turbine Cables: Part I

    Introducing the EU FLOW-CAM project

  • Authors: Metehan Berker1, Perin Ünal2, Bilgin U. Deveci1, Aras Fırat Ünal2, Bilgin Avenoğlu3 and A. Murat Özbayoğlu4
  • Affiliations: 1 TEKNOPAR Industrial Automation, Teknopark Ankara, İvedik OSB Mah. 2224. Cad. No:1 F-48 06378 Yenimahalle, Ankara, Türkiye 2 Henry Samueli School of Engineering, Department of Electrical and Computer Engineering, University of California Los Angeles (UCLA), California, 90095, USA 3 TEKNOPAR Industrial Automation, Teknopark Ankara, İvedik OSB Mah. 2224. Cad. No:1 F-48 06378 Yenimahalle, Ankara, Türkiye;, Çankaya University, Eskişehir Road 29. Km. Yukarıyurtçu Neighbourhood Mimar Sinan Street No:4 06790, Etimesgut, Ankara, Türkiye 4 TOBB University of Economics and Technology, Söğütözü Street No:43, Söğütözü, 06560, Ankara, Türkiye
    Email: *[email protected]
  • Source: Johnson Matthey Technology Review, Volume 69, Issue 2, Apr 2025, p. 170 - 186
  • DOI: https://doi.org/10.1595/205651324X17125869817025
    • Received: 01 Dec 2023
    • Accepted: 08 Apr 2024

Abstract

Floating offshore wind (FOW) farms are key in meeting Europe’s renewable energy targets, harnessing wind energy from waters 60 m or deeper, where bottom-fixed farms are unfeasible. Additionally, floating structures allow for the installation of larger turbines than stationary farms, which in turn leads to a greater energy output. However, cable failures dramatically impact the energy transmission from the farms and cause most of the financial losses. Monitoring and maintenance tasks are challenging due to the harsh ocean conditions. The FLoating Offshore Wind turbine CAble Monitoring (FLOW-CAM) project, supported by European Union’s HORIZON 2020 programme, studies the structural health monitoring (SHM) of defects in the power cables of the FOW farms which encompass inspection and detection applications. An SHM system integrated with a remotely operated vehicle (ROV) was developed for underwater inspection and maintenance, supporting collection and presentation of essential data through an advanced interface. Part I details the technologies and methods used in this research.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17125869817025
2025-04-01
2025-03-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/2/Berker_Pt1_13a_Imp.html?itemId=/content/journals/10.1595/205651324X17125869817025&mimeType=html&fmt=ahah

References

  1. P. Unal, O. I. Hatipoglu, A. Turker, A. F. Unal, B. U. Deveci, P. Kirci, M. Ozbayoglu, Int. Trans. Elec. Energy Sys., 2024, (1), 5548146 LINK https://doi.org/10.1155/2024/5548146
    [Google Scholar]
  2. T. Asim, S. Z. Islam, A. Hemmati, M. S. U. Khalid, Energies, 2022, 15, (2), 579 LINK https://doi.org/10.3390/en15020579
    [Google Scholar]
  3. M. Berker, P. Ünal, G. Ercan, B. U. Deveci, A. F. Ünal, B. Avenoğlu, A. M. Özbayoğlu, Johnson Matthey Technol. Rev., 2025, 69, (2), 187 LINK https://doi.org/10.1595/205651325X17338452917984
    [Google Scholar]
  4. L. Okkerstrøm, O. T. Gudmestad, E. Pedersen, IOP Conf. Ser. Mater. Sci. Eng., 2021, 1201, 12010 LINK https://doi.org/10.1088/1757-899x/1201/1/012010
    [Google Scholar]
  5. K. Liu, Y. Liang, Mach. Vis. Appl., 2021, 32, (5), 107 LINK https://doi.org/10.1007/s00138-021-01230-5
    [Google Scholar]
  6. J. M. Lavest, G. Rives, J. T. Lapresté, Mach. Vis. Appl., 2003, 13, (5–6), 245 LINK https://doi.org/10.1007/s00138-002-0112-z
    [Google Scholar]
  7. A. Ortiz, M. Simó, G. Oliver, Mach. Vis. Appl., 2002, 13, (3), 129 LINK https://doi.org/10.1007/s001380100065
    [Google Scholar]
  8. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, ‘End-to-End Object Detection with Transformers’, Computer Vision – ECCV 16th European Conference, Glasgow, UK, 23rd–28th August, 2020, eds. A. Vedaldi, H. Bischof, T. Brox, J.-M. Frahm, Lecture Notes in Computer Science, Vol. 12346, Springer Nature Switzerland AG, Cham, Switzerland, 2020, pp. 213229 LINK https://doi.org/10.1007/978-3-030-58452-8_13
    [Google Scholar]
  9. K. He, G. Gkioxari, P. Dollár, R. Girshick, ‘Mask R-CNN’, IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22nd–29th October, 2017, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2017, pp. 29802988 LINK https://doi.org/10.1109/ICCV.2017.322
    [Google Scholar]
  10. R. Girshick, ‘Fast R-CNN’, IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 11th–18th December, 2015, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2015, pp. 14401448 LINK https://doi.org/10.1109/ICCV.2015.169
    [Google Scholar]
  11. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg, ‘SSD: Single Shot MultiBox Detector’, in “Computer Vision – ECCV 2016: 14th European Conference”, eds. B. Leibe, J. Matas, N. Sebe, M. Welling, Lecture Notes in Computer Science, Vol. 9905, Springer International Publishing AG, Cham, Switzerland, 2016, pp. 2137 LINK https://doi.org/10.1007/978-3-319-46448-0_2
    [Google Scholar]
  12. Z. Zou, K. Chen, Z. Shi, Y. Guo, J. Ye, Proc. IEEE, 2023, 111, (3), 257 LINK https://doi.org/10.1109/jproc.2023.3238524
    [Google Scholar]
  13. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, ‘You Only Look Once: Unified, Real-Time Object Detection’, 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 26th June–1st July, 2016, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2016, pp. 779788 LINK https://doi.org/10.1109/cvpr.2016.91
    [Google Scholar]
  14. Z.-Q. Zhao, P. Zheng, S.-T. Xu, X. Wu, IEEE Trans. Neural Netw. Learn. Syst., 2019, 30, (11), 3212 https://doi.org/10.1109/TNNLS.2018.2876865
    [Google Scholar]
  15. Z. Bi, Y.-L. Wang, L. Ma, ‘Perception and Recognition of Underwater Cable Based on Deep Learning’, International Conference on System Science and Engineering (ICSSE), Kagawa, Japan, 31st August–3rd September, 2020, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2020, 6 pp LINK https://doi.org/10.1109/ICSSE50014.2020.9219313
    [Google Scholar]
  16. G. W. Thum, S. H. Tang, S. A. Ahmad, M. Alrifaey, J. Mar. Sci. Eng., 2020, 8, (11), 924 LINK https://doi.org/10.3390/jmse8110924
    [Google Scholar]
  17. A. Balasuriya, T. Ura, ‘Vision-Based Underwater Cable Detection and Following using AUVs’, OCEANS ’02 MTS/IEEE, Biloxi, USA, 29th–31st October, 2002, vol. 3, IEEE, Piscataway, USA, 2002, pp. 15821587 LINK https://doi.org/10.1109/oceans.2002.1191871
    [Google Scholar]
  18. M. Martin-Abadal, M. Piñar-Molina, A. Martorell-Torres, G. Oliver-Codina, Y. Gonzalez-Cid, J. Mar. Sci. Eng., 2021, 9, (1), 5 LINK https://doi.org/10.3390/jmse9010005
    [Google Scholar]
  19. M. Fatan, M. R. Daliri, A. Mohammad Shahri, Measurement, 2016, 91, 309 LINK https://doi.org/10.1016/j.measurement.2016.05.030
    [Google Scholar]
  20. X. Sun, W. K. Lee, Y. Hou, P. W. T. Pong, IEEE Trans. Magn., 2014, 50, (7), 6200605 LINK https://doi.org/10.1109/tmag.2013.2297195
    [Google Scholar]
  21. Y. Li, ‘Object Detection and Instance Segmentation of Cables’, Masters Thesis, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden, 2019, 52 pp LINK https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-271203
    [Google Scholar]
  22. P. Bergmann, T. Meinhardt, L. Leal-Taixe, ‘Tracking without Bells and Whistles’, 2019 International Conference on Computer Vision, Seoul, South Korea, 27th October–2nd November, 2019, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2019, pp. 941951 LINK https://doi.org/10.1109/ICCV.2019.00103
    [Google Scholar]
  23. S. Dai, Y. Wu, ‘Motion from Blur’, IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 23rd–28th June, 2008, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2008, 8 pp LINK https://doi.org/10.1109/CVPR.2008.4587582
    [Google Scholar]
  24. A. Ortiz, J. Antich, G. Oliver, Mach. Vis. Appl., 2011, 22, (2), 283 LINK https://doi.org/10.1007/s00138-009-0199-6
    [Google Scholar]
  25. R. L. Easton, “Fundamentals Digital Image Processing”, Prentice Hall Press, Hoboken, USA, 2010
    [Google Scholar]
  26. A. Ortiz, M. Simo, G. Oliver, ‘Image Sequence Analysis for Real-Time Underwater Cable Tracking’, Fifth IEEE Workshop on Applications of Computer Vision, Palm Springs, USA, 4th–6th December, 2000, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2000, pp. 230236 LINK https://doi.org/10.1109/WACV.2000.895427
    [Google Scholar]
  27. M. Narimani, S. Nazem, M. Loueipour, ‘Robotics Vision-Based System for an Underwater Pipeline and Cable Tracker’, OCEANS 2009-Europe, Bremen, Germany, 11th–14th May, 2009, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2009, 6 pp LINK https://doi.org/10.1109/OCEANSE.2009.5278327
    [Google Scholar]
  28. A. Grau, J. Climent, J. Aranda, ‘Real-Time Architecture for Cable Tracking Using Texture Descriptors’, OCEANS’98 Conference Proceedings, Nice, France, 28th September–1st October, 1998, Vol. 3, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 1998, pp. 14961500 LINK https://doi.org/10.1109/OCEANS.1998.726320
    [Google Scholar]
  29. N. Wang, Y. Wang, M. J. Er, Control Eng. Pract., 2022, 118, 104458 LINK https://doi.org/10.1016/j.conengprac.2020.104458
    [Google Scholar]
  30. G. Matczak, P. Mazurek, ‘Dim Line Tracking Using Deep Learning for Autonomous Line Following Robot’, in “Artificial Intelligence Trends in Intelligent Systems”, eds. R. Silhavy, R. Senkerik, Z. K. Oplatkova, Z. Prokopova, P. Silhavy, Springer International Publishing AG, Cham, Switzerland, 2017, pp. 414423 LINK https://doi.org/10.1007/978-3-319-57261-1_41
    [Google Scholar]
  31. X. Chen, B. Yan, J. Zhu, D. Wang, X. Yang, H. Lu, ‘TransT - Transformer Tracking: [CVPR2021]’, 2021 LINK https://github.com/chenxin-dlut/TransT
    [Google Scholar]
  32. M. Tan, R. Pang, Q. V Le, ‘EfficientDet: Scalable and Efficient Object Detection’, IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 14th–19th June, 2020, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2020, pp. 1077810787 LINK https://doi.org/10.1109/cvpr42600.2020.01079
    [Google Scholar]
  33. M. Chaabane, P. Zhang, J. R. Beveridge, S. O’Hara, ‘DEFT: Detection Embeddings for Tracking’, arXiv:2102.02267v2, 2021 LINK https://doi.org/10.48550/arXiv.2102.02267
  34. A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft, ‘Simple Online and Realtime Tracking’, International Conference on Image Processing, Phoenix, USA, 25th–28th September, 2016, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2016, pp. 34643468 LINK https://doi.org/10.1109/ICIP.2016.7533003
    [Google Scholar]
  35. N. Wojke, A. Bewley, D. Paulus, ‘Simple Online and Realtime Tracking with a Deep Association Metric’, International Conference on Image Processing, Beijing, China, 17th–20th July, 2017, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2017, pp. 36453649 LINK https://doi.org/10.1109/icip.2017.8296962
    [Google Scholar]
  36. D. S. Bolme, J. R. Beveridge, B. A. Draper, Y. M. Lui, ‘Visual Object Tracking Using Adaptive Correlation Filters’, Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 13th–18th June, 2010, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2010, pp. 25442550 LINK https://doi.org/10.1109/CVPR.2010.5539960
    [Google Scholar]
  37. M. Danelljan, G. Bhat, F. S. Khan, M. Felsberg, ‘ECO: Efficient Convolution Operators for Tracking’, 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 21st–26th July, 2016, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2017, pp. 69316939 LINK https://doi.org/10.1109/CVPR.2017.733
    [Google Scholar]
  38. L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, P. H. S. Torr, ‘Fully-Convolutional Siamese Networks for Object Tracking’, in “Computer Vision–ECCV2016 Workshops”, eds. G. Hua, H. Jégou, Springer International Publishing, Cham, Switzerland, 2016, pp. 850865 LINK https://doi.org/10.1007/978-3-319-48881-3_56
    [Google Scholar]
  39. B. Li, J. Yan, W. Wu, Z. Zhu, X. Hu, ‘High Performance Visual Tracking with Siamese Region Proposal Network’, IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 18th–22nd June, 2018, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2018, pp. 89718980 LINK https://doi.org/10.1109/cvpr.2018.00935
    [Google Scholar]
  40. P. Chu, J. Wang, Q. You, H. Ling, Z. Liu, ‘TransMOT: Spatial-Temporal Graph Transformer for Multiple Object Tracking’, Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2nd–7th January, 2023, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2023, pp. 48594869 LINK https://doi.org/10.1109/wacv56688.2023.00485
    [Google Scholar]
  41. F. Zeng, B. Dong, Y. Zhang, T. Wang, X. Zhang, Y. Wei, ‘MOTR: End-to-End Multiple-Object Tracking with Transformer’, in “Computer Vision – ECCV 2022”, eds. S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, T. Hassner, Springer Nature Switzerland AG, Cham, Switzerland, 2022, pp. 659675 LINK https://doi.org/10.1007/978-3-031-19812-0_38
    [Google Scholar]
  42. G. Wang, C. Luo, X. Sun, Z. Xiong, W. Zeng, ‘Tracking by Instance Detection: A Meta-Learning Approach’, IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 14th–19th June, 2020, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2020, pp. 62876296 LINK https://doi.org/10.1109/cvpr42600.2020.00632
    [Google Scholar]
  43. C. Mayer, M. Danelljan, D. P. Paudel, L. Van Gool, ‘Learning Target Candidate Association to Keep Track of What Not to Track’, IEEE/CVF International Conference on Computer Vision, Online, 11th–17th October, 2021, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2021, pp. 1342413434 LINK https://doi.org/10.1109/iccv48922.2021.01319
    [Google Scholar]
  44. M. Jeon, Y. Lee, Y.-S. Shin, H. Jang, A. Kim, IFAC-PapersOnLine, 2019, 52, (21), 78 LINK https://doi.org/10.1016/j.ifacol.2019.12.286
    [Google Scholar]
  45. S. H. Karlsdóttir, ‘Experience in Transporting Energy Through Subsea Power Cables: The Case of Iceland’, Master’s Thesis, Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, 2013
    [Google Scholar]
  46. L. Carter, D. Burnett, S. Drew, G. Marle, L. Hagadorn, D. Bartlett-McNeil, N. Irvine, ‘Submarine Cables and the Oceans: Connecting the World’, International Cable Protection Committee Ltd, United Nations Environment Programme, Cambridge, UK, 2009 LINK https://doi.org/10.34892/FC3W-X186
    [Google Scholar]
  47. D. Jiang, B. Wu, X. Yang, P. H. A. J. M. Van Gelder, Ocean Eng., 2019, 193, 106616 LINK https://doi.org/10.1016/j.oceaneng.2019.106616
    [Google Scholar]
  48. J. Mou, X. Jia, P. Chen, L. Chen, J. Mar. Sci. Eng., 2021, 9, (8), 881 LINK https://doi.org/10.3390/jmse9080881
    [Google Scholar]
  49. A. Masoudi, J. A. Pilgrim, T. P. Newson, G. Brambilla, ‘Dynamic Strain Measurement in Subsea Power Cables with Distributed Optical Fibre Vibration Sensor’, Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), Zurich, Switzerland, 2nd–5th July, 2018, Paper No. SeTh2E.1, Optica Publishing Group, Washington, DC, USA, 2018 LINK https://doi.org/10.1364/SENSORS.2018.SeTh2E.1
    [Google Scholar]
  50. D. S. Herd, D. Flynn, ‘Prognostic Health Management Techniques for Intelligent Condition Monitoring of Offshore Renewable Generation Assets’, 2nd IET Renewable Power Generation Conference (RPG 2013), Beijing, China, 9th–11th September, 2013, Institution of Engineering and Technology, Stevenage, UK, 2013 LINK https://doi.org/10.1049/cp.2013.1732
    [Google Scholar]
  51. N. Wang, Y. Zhou, F. Han, H. Zhu, J. Yao, ‘UWGAN: Underwater GAN for Real-World Underwater Color Restoration and Dehazing’, arXiv:1912.10269, 2021 LINK https://doi.org/10.48550/arXiv.1912.10269
  52. D. Flynn, C. Bailey, P. Rajaguru, W. Tang, C. Yin, ‘PHM of Subsea Cables’, in “Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things”, eds. M. G. Pecht, M. Kang, John Wiley & Sons Ltd, Chichester, UK, 2018, pp. 451478 LINK https://doi.org/10.1002/9781119515326.ch16
    [Google Scholar]
  53. X. Huang, C. Cai, Q. Guo, W. Zhang, C. Wu, X. Li, Y. Chen, J. Wang, G. Zuo, ‘Adaptive Inspection of Submarine Cable for Operating Environment Based on Remote Operated Vehicle’, International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO), Beijing, China, 15th–17th October, 2021, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2021, 5 pp LINK https://doi.org/10.1109/AEERO52475.2021.9708122
    [Google Scholar]
  54. F. A. Wicaksana, E. Mulyana, S. Hidayat, R. Yusuf, Int. J. Adv. Comput. Sci. Appl., 2023, 14, (9), 966 LINK https://doi.org/10.14569/ijacsa.2023.01409101
    [Google Scholar]
  55. H. Liu, Z. Song, S. Liang, L. Chang, R. Lin, W. Chen, Q. Zeng, ‘Design and Experiment of Control System for Underwater Ocean Engineering Structure Inspection and Cleaning Remotely Operated Vehicle’, in “Frontier Computing”, eds. J. Hung, N. Yen, K.-C. Li, Springer Science and Business Media, Singapore, 2016 LINK https://doi.org/10.1007/978-981-10-0539-8_85
    [Google Scholar]
  56. T. N. Huy, H. T. Dat, Sci. Technol. Dev. J. – Eng. Technol., 2019, 3, (SI1), S149 LINK https://doi.org/10.32508/stdjet.v3isi1.722
    [Google Scholar]
  57. F. Yu, Y. Chen, ‘The Design and Analysis of Autonomous Underwater Pipeline Inspection Robots’, in “Recent Advances in Mechanisms, Transmissions and Applications”, eds. D. Wang, V. Petuya, Y. Chen, S. Yu, Mechanisms and Machine Science Book Series, Vol. 79, Springer Nature Singapore Pte Ltd, Singapore, 2020, pp. 172181 LINK https://doi.org/10.1007/978-981-15-0142-5_18
  58. Z. Jia, H. Liu, H. Zheng, S. Fan, Z. Liu, Machines, 2022, 10, (11), 1011 LINK https://doi.org/10.3390/machines10111011
    [Google Scholar]
  59. F. Dinmohammadi, D. Flynn, C. Bailey, M. Pecht, C. Yin, P. Rajaguru, V. Robu, IEEE Access, 2019, 7, 54658 LINK https://doi.org/10.1109/access.2019.2911260
    [Google Scholar]
  60. D. V. Roman, R. W. Dickie, D. Flynn, V. Robu, ‘A Review of the Role of Prognostics in Predicting the Remaining Useful Life of Assets’, 27th Safety and Reliability Conference 2017, eds. M Čepin, R Briš, CRC Press, Boca Raton, USA, 2017, pp. 897904
    [Google Scholar]
  61. R. L. Lyon, ‘Failure Analysis Informing Intelligent Asset Management’, PhD Thesis, Heriot-Watt University, Edinburgh, UK, January, 2015
    [Google Scholar]
  62. J. Liu, D. Wei, Z. Zhao, W. Zheng, J. Cui, J. Phys.: Conf. Ser., 2022, 2187, 012061 LINK https://doi.org/10.1088/1742-6596/2187/1/012061
    [Google Scholar]
  63. F. Serttaş, F. O. Hocaoğlu, Turkish J. Electr. Eng. Comput. Sci., 2020, 28, (4), 2331 LINK https://doi.org/10.3906/elk-2003-16
    [Google Scholar]
  64. M. I. A. Halim, N. Z. MohdRazaly, M. N. K. H. Rohani, N. Rosle, W. N. Auni, A. S. Rosmi, M. Z. Aihsan, M. A. Jamlos, A. A. Mas’ud, J. Adv. Res. Appl. Sci. Eng. Technol., 2023, 29, (3), 214 LINK https://doi.org/10.37934/araset.29.3.214227
    [Google Scholar]
  65. K. Zhou, Y. Fu, G. Zhu, S. Zhao, L. Lu, X. Wang, Y. Li, P. Meng, S. Ma, IEEE Trans. Instrum. Meas., 2022, 71, 3528309 LINK https://doi.org/10.1109/tim.2022.3216800
    [Google Scholar]
  66. M. Shafiq, G. Robles, A. Hussain, K. Kauhaniemi, M. Lehtonen, Proc. Nord. Insul. Symp., 2019, 22 LINK https://doi.org/10.5324/nordis.v0i26.3269
    [Google Scholar]
  67. G. Robles, M. Shafiq, J. M. Martínez-Tarifa, IEEE Trans. Instrum. Meas., 2019, 68, (12), 4703 LINK https://doi.org/10.1109/tim.2019.2896553
    [Google Scholar]
  68. D. A. Polyakov, I. V. Komarov, A. B. Sarsembayev, K. I. Nikitin, U. V. Polyakova, ‘Research of Partial Discharge Characteristics in XLPE-Insulated Cables with Single and Multiple Defects’, 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russia, 11th–13th March, 2021, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2021, 4 pp LINK https://doi.org/10.1109/REEPE51337.2021.9387998
    [Google Scholar]
  69. W. Tang, K. Brown, D. Flynn, H. Pellae, ‘Integrity Analysis Inspection and Lifecycle Prediction of Subsea Power Cables’, Prognostics and System Health Management Conference, Chongqing, China, 26th–28th October, 2018, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2018, pp. 105114 LINK https://doi.org/10.1109/PHM-Chongqing.2018.00024
    [Google Scholar]
  70. R. Nicholls-Lee, P. R. Thies, J. M. Dulieu-Barton, G. Ólafsson, R. Hughes, A. Hernandez Arroyo, G. Xu, N. Cartlidge, Prog. Energy, 2022, 4, (4), 042011 LINK https://doi.org/10.1088/2516-1083/ac8ccb
    [Google Scholar]
  71. D. C. Buxton, D. G. John, ‘Cathodic Protection System Life Assessment’, SPE International Oilfield Corrosion Conference, Aberdeen, UK, 27th May, 2008, OnePetro, Richardson, USA, 2008 LINK https://doi.org/10.2118/114134-ms
    [Google Scholar]
  72. A. Zaeni, U. Khayam, D. Viviantoro, ‘Methods for Remaining Life Prediction of Power Cable Based on Partial Discharge and Cable Failure History Data’, International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 9th–10th July, 2019, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2019, pp. 662665 LINK https://doi.org/10.1109/ICEEI47359.2019.8988904
    [Google Scholar]
  73. T. Somsak, T. Suwanasri, C. Suwanasri, Energies, 2022, 15, (24), 9447 LINK https://doi.org/10.3390/en15249447
    [Google Scholar]
  74. A. Zaeni, U. Khayam, D. Viviantoro, ‘Methods for Remaining Life Prediction of Power Cable Based on Partial Discharge with Regard to Loading Factor Calculation and Voltage Variation’, 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Bali, Indonesia, 1st–4th October, 2019, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2019, pp. 180185 LINK https://doi.org/10.1109/ICHVEPS47643.2019.9011113
    [Google Scholar]
  75. P. Unal, Ö. Albayrak, M. Jomâa, A. J. Berre, ‘Data-Driven Artificial Intelligence and Predictive Analytics for the Maintenance of Industrial Machinery with Hybrid and Cognitive Digital Twins’, in “Technologies and Applications for Big Data Value”, eds. E. Curry, S. Auer, A. J. Berre, A. Metzger, M. S. Perez, S. Zillner, Springer Nature Switzerland AG, Cham, Switzerland, 2022, pp. 299319 LINK https://doi.org/10.1007/978-3-030-78307-5_14
    [Google Scholar]
  76. N. B. Shaik, S. R. Pedapati, F. A. A. Dzubir, Process Saf. Prog., 2019, 39, (S1), e12112 LINK https://doi.org/10.1002/prs.12112
    [Google Scholar]
  77. W. B. Yousuf, T. M. R. Khan, S. T. Tariq, M. ul-Hassan, A. Shah, IEEE Trans. Power Deliv., 2022, 37, (4), 2543 LINK https://doi.org/10.1109/tpwrd.2021.3112081
    [Google Scholar]
  78. G. F. M. de Souza, E. G. Veruz, M. M. Miguel, ‘Remaining Useful Life of Corroded Piping Based on Bayesian Network’, Annual Reliability and Maintainability Symposium (RAMS), Orlando, USA, 23rd–26th January, 2023, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2023, 6 pp LINK https://doi.org/10.1109/RAMS51473.2023.10088252
    [Google Scholar]
  79. A. F. Ünal, A. Y. Kaleli, E. Ummak, Ö. Albayrak, ‘A Comparison of State-of-the-Art Machine Learning Algorithms on Fault Indication and Remaining Useful Life Determination by Telemetry Data’, 8th International Conference on Future Internet of Things and Cloud (FiCloud), Rome, Italy, 23rd–25th August, 2021, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2021, pp. 7985 LINK https://doi.org/10.1109/FiCloud49777.2021.00019
    [Google Scholar]
  80. A. Y. Kaleli, A. F. Unal, S. Ozer, ‘Simultaneous Prediction of Remaining-Useful-Life and Failure-Likelihood with GRU-Based Deep Networks for Predictive Maintenance Analysis’, 44th International Conference on Telecommunications and Signal Processing (TSP), Brno, Czech Republic, 26th–28th July, 2021, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2021, pp. 301304 LINK https://doi.org/10.1109/TSP52935.2021.9522592
    [Google Scholar]
  81. D. Menges, S. M. Sætre, A. Rasheed, ‘Digital Twin for Autonomous Surface Vessels to Generate Situational Awareness’, ASME 42nd International Conference on Ocean, Offshore and Arctic Engineering: Ocean Engineering, Melbourne, Australia, 11th–16th June, 2023, Vol. 5, American Society of Mechanical Engineers, New York, USA, 2023, V005T06A025 LINK https://doi.org/10.1115/OMAE2023-100626
    [Google Scholar]
  82. H.-J. Lim, S. Samaria, S. Choi, A. Sablok, H. Jang, B. Koo, ‘Time Domain Structural Analysis and Digital Twin Application for Floating Offshore Wind Turbine’, ASME 42nd International Conference on Ocean, Offshore and Arctic Engineering: Ocean Renewable Energy, Melbourne, Australia, 11th–16th June, 2023, Vol. 8, American Society of Mechanical Engineers, New York, USA, 2023, OMV008T09A055 LINK https://doi.org/10.1115/omae2023-105074
    [Google Scholar]
  83. K. Jayasinghe, J. Gumley, C. Thomas, F. Lemmer, S. Raach, ‘The Adaptation of Condition Monitoring Methodologies from Fixed Wind and Floating Oil and Gas to Floating Offshore Wind’, ASME 42nd International Conference on Ocean, Offshore and Arctic Engineering: Ocean Renewable Energy, Melbourne, Australia, 11th–16th June, 2023, Vol. 8, American Society of Mechanical Engineers, New York, USA, 2023, V008T09A049, 13 pp LINK https://doi.org/10.1115/omae2023-104715
    [Google Scholar]
  84. F. Stadtmann, H. A. G. Wassertheurer, A. Rasheed, ‘Demonstration of a Standalone, Descriptive, and Predictive Digital Twin of a Floating Offshore Wind Turbine’, ASME 42nd International Conference on Ocean, Offshore and Arctic Engineering: Ocean Renewable Energy, Melbourne, Australia, 11th–16th June, 2023, Vol. 8, American Society of Mechanical Engineers, New York, USA, 2023, V008T09A039, 10 pp LINK https://doi.org/10.1115/omae2023-103112
    [Google Scholar]
  85. M. Skaldebø, I. Schjølberg, B. O. A. Haugaløkken, ‘Underwater Vehicle Manipulator System (UVMS) With BlueROV2 and SeaArm-2 Manipulator’, ASME 41st International Conference on Ocean , Offshore and Arctic Engineering: Ocean Engineering, Hamburg, Germany, 5th–10th June, 2022, Vol. 5B, American Society of Mechanical Engineers, New York, USA, 2022, V05BT06A022, 8 pp LINK https://doi.org/10.1115/OMAE2022-79913
    [Google Scholar]
  86. E. Coccolo, C. Delea, F. Steinmetz, R. Francescon, A. Signori, C. N. Au, F. Campagnaro, V. Schneider, F. Favaro, J. Oeffner, B.-C. Renner, M. Zorzi, IEEE J. Ocean. Eng., 2023, 48, (3), 716 LINK https://doi.org/10.1109/joe.2023.3234710
    [Google Scholar]
  87. E. Kandemir, J. Liu, A. Hasan, Energy Rep., 2023, 9, (S11), 208 LINK https://doi.org/10.1016/j.egyr.2023.08.091
    [Google Scholar]
  88. F. K. Moghadam, G. F. de S. Rebouças, A. R. Nejad, Forsch. Ingenieurwes., 2021, 85, (2), 273 LINK https://doi.org/10.1007/s10010-021-00468-9
    [Google Scholar]
  89. J. Walker, A. Coraddu, L. Oneto, S. Kilbourn, ‘Digital Twin of the Mooring Line Tension for Floating Offshore Wind Turbines’, OCEANS 2021, San Diego, USA, 20th–23rd September, 2021, The Institute of Electrical and Electronics Engineers Inc, New York, USA, 2021, 7 pp LINK https://doi.org/10.23919/OCEANS44145.2021.9706018
    [Google Scholar]
  90. ‘138-KV EPR Cable Inspection Dataset’, Kaggle, San Francisco, USA, 31st August, 2020 LINK https://www.kaggle.com/datasets/utilityanalytics/138kv-epr-cable
    [Google Scholar]
  91. “Distribution System Health Indices”, Report No. T134700-50/118, CEATI International Inc, Montreal, Canada, 2016
    [Google Scholar]
/content/journals/10.1595/205651324X17125869817025
Loading
/content/journals/10.1595/205651324X17125869817025
Loading

Data & Media loading...

Supplements

TEKNOPAR Industrial Automation LINK https://teknopar.com.tr/en/rved-projects/flow-cam-martera-era-net-9.html Alesta Diving and Underwater Services Industry Trade Limited Company LINK https://www.alestadalgiclik.com/en/portfolio/maintenance-repair-services/

Supplementary Information 

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test