Skip to content
1887
Volume 69, Issue 2
  • ISSN: 2056-5135
  • oa Structural-Phase State of Austenitic 20GL Steel After Thermal Treatment by Normalising and High-Temperature Tempering

    Recommendations for improving performance

  • Authors: Alyona Russakova1, Almira Zhilkashinova2, Madi Abilev3, Alexandr Pavlov4, Assel Zhilkashinova4 and Darya Alontseva5
  • Affiliations: 1 Sarsen Amanzholov East Kazakhstan University, 34 Tridtsatoy Gvardeiskoy Divizii street, Ust-Kamenogorsk 070002, Republic of Kazakhstan; School of Digital Technology and Artificial Intelligence, Daulet Serikbayev East Kazakhstan Technical University, 19 Serikbayev Street, Ust-Kamenogorsk 070004, Republic of Kazakhstan 2 Sarsen Amanzholov East Kazakhstan University, 34 Tridtsatoy Gvardeiskoy Divizii street, Ust-Kamenogorsk 070002, Republic of Kazakhstan 3 al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Republic of Kazakhstan 4 Sarsen Amanzholov East Kazakhstan University, 34 Tridtsatoy Gvardeiskoy Divizii street, Ust-Kamenogorsk 070002, Republic of Kazakhstan 5 Sarsen Amanzholov East Kazakhstan University, 34 Tridtsatoy Gvardeiskoy Divizii street, Ust-Kamenogorsk 070002, Republic of Kazakhstan; School of Digital Technology and Artificial Intelligence, Daulet Serikbayev East Kazakhstan Technical University, 19 Serikbayev Street, Ust-Kamenogorsk 070004, Republic of Kazakhstan
    *Email: [email protected]
  • Source: Johnson Matthey Technology Review, Volume 69, Issue 2, Apr 2025, p. 283 - 298
  • DOI: https://doi.org/10.1595/205651325X17201768472132
    • Received: 28 Feb 2024
    • Accepted: 05 Jul 2024

Abstract

The article presents the results of a study of the influence of normalising at 900°C and high-temperature tempering at 650°C on the microstructure and mechanical properties of cast steel 20GL. Heat treatment modes with and without high-temperature tempering were analysed taking into account the geometric dimensions of the specimens. The microstructure and structural-phase composition of cast steel specimens after heat treatment were studied using transmission and scanning electron microscopy (SEM) and X-ray diffraction analysis. Results showed that the selected mode ensures noticeable changes to ferrite-pearlite, homogeneous, fine-grained structure with grain size number 9 and 170 Brinell hardness number (HB). Mechanical tests for static tensile and impact strength resulted in selection of the optimal content of manganese in studied cast steel as 1.2 wt%. It has been established that the processes of final deoxidation have the greatest influence on the mechanical properties of steel determining the nature and character of non-metallic inclusions.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17201768472132
2025-04-01
2025-04-15
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/2/Abilev_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17201768472132&mimeType=html&fmt=ahah

References

  1. L. Zhang, X. Liu, J. Yan, Z. Li, S. Huang, Y. Weng, J. Li, C. Yuan, P. Han, S. Ye, X. Zhang, Surf. Coat. Technol., 2023, 460, 129412 LINK https://doi.org/10.1016/j.surfcoat.2023.129412
    [Google Scholar]
  2. S. Ahmed, J. Penttilä, J. Rämö, M. Honkanen, V.-T. Kuokkala, O. Oja, P. Peura, Mater. Sci. Eng.: A, 2022, 856, 144011 LINK https://doi.org/10.1016/j.msea.2022.144011
    [Google Scholar]
  3. ‘Standard Specification for Steel Castings, Ferritic and Martensitic, for Pressure-Containing and Other Applications, for Low-Temperature Service’, ASTM A757/A757M-22, ASTM International, West Conshohocken, USA, 1st December, 2022 LINK https://doi.org/10.1520/A0757_A0757M-22
  4. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci., 2018, 92, 112 LINK https://doi.org/10.1016/j.pmatsci.2017.10.001
    [Google Scholar]
  5. S. Zhou, Z. Li, L. Jiang, X. Wang, P. Xu, Y. Ma, Y. Yan, C. Yang, Q. Yong, Eng. Fail. Anal., 2022, 131, 105860 LINK https://doi.org/10.1016/j.engfailanal.2021.105860
    [Google Scholar]
  6. D. Veres, F. Kerber, S. Dudczig, S. Horn, C. Setzer, K. Lippold, C. G. Aneziris, Open Ceram., 2023, 16, 100466 LINK https://doi.org/10.1016/j.oceram.2023.100466
    [Google Scholar]
  7. G. Altuntaş, O. Altuntaş, M. K. Öztürk, B. Bostan, Int. J. Metalcast., 2023, 17, (2), 1340 LINK https://doi.org/10.1007/s40962-022-00860-3
    [Google Scholar]
  8. G. Altuntaş, O. Altuntaş, B. Bostan, Int. J. Metalcast., 2024, 18, (2), 1523 LINK https://doi.org/10.1007/s40962-023-01131-5
    [Google Scholar]
  9. G. Altuntaş, Ö. F. Kaplan, B. Bostan, Gazi Univ. J. Sci. Part C: Des. Tech., 2023, 11, (2), 300 LINK https://doi.org/10.29109/gujsc.1271368
    [Google Scholar]
  10. A. Ozer, M. Ozer, Ç. Atak, G. Altuntas, Can. Metall. Q., 2023, 63, (4), 1138 LINK https://doi.org/10.1080/00084433.2023.2286144
    [Google Scholar]
  11. N. Z. Khan, S. S. Ul Islam, M. M. Khan, A. N. Siddiquee, ‘Steel Heat Treatment: Equipment and Process Design’, in “Comprehensive Materials Processing: Thermal Engineering of Seel Alloy Systems”, ed. S. Hashmi, ch. 2, Vol. 11, Elsevier Ltd, London, UK, 2024, pp. 724 LINK https://doi.org/10.1016/b978-0-323-96020-5.00249-1
    [Google Scholar]
  12. A. Goenaga-Villanueva, E. Bastos-Blandon, L. Casadiego-Miranda, E. Niebles-Nuñez, H. Gonzalez-Romero, L. Leguizamón-Galindo, A. Muñoz-Mizuno, Ain Shams Eng. J., 2024, 15, (5), 102687 LINK https://doi.org/10.1016/j.asej.2024.102687
    [Google Scholar]
  13. Y. Zhang, Q. Ye, Y. Yan, J. Mater. Sci. Technol., 2024, 201, 44 LINK https://doi.org/10.1016/j.jmst.2024.03.014
    [Google Scholar]
  14. C. Liang, G. Song, W. Wang, I. L. Sohn, J. Zeng, J. Mater. Res. Technol., 2024, 28, 2116 LINK https://doi.org/10.1016/j.jmrt.2023.12.157
    [Google Scholar]
  15. C. Liang, W. Wang, H. He, J. Zeng, J. Mater. Res. Technol., 2023, 23, 6090 LINK https://doi.org/10.1016/j.jmrt.2023.02.216
    [Google Scholar]
  16. X. Wang, X. Sun, K. Zhang, D. Zhang, C. Du, Mater. Today Commun., 2024, 38, 108451 LINK https://doi.org/10.1016/j.mtcomm.2024.108451
    [Google Scholar]
  17. T. Mukherjee, J. W. Elmer, H. L. Wei, T. J. Lienert, W. Zhang, S. Kou, T. DebRoy, Prog. Mater. Sci., 2023, 138, 101153 LINK https://doi.org/10.1016/j.pmatsci.2023.101153
    [Google Scholar]
  18. Y. Wang, S. Lin, Z. Dong, J. H. Park, Q. Wang, H. Ni, W. Mu, Mater. Charact., 2023, 205, 113299 LINK https://doi.org/10.1016/j.matchar.2023.113299
    [Google Scholar]
  19. Y. Li, S. Wu, J. Wang, H. Wang, W. Kong, F. Cheng, J. Mater. Process. Technol., 2022, 307, 117682 LINK https://doi.org/10.1016/j.jmatprotec.2022.117682
    [Google Scholar]
  20. A. Zhilkashinova, M. Skakov, M. Abilev, D. Yerbolatuly, J. Mater. Civ. Eng., 2021, 33, (11) LINK https://doi.org/10.1061/(asce)mt.1943-5533.0003951
    [Google Scholar]
  21. A. Russakova, A. Zhilkashinova, D. Alontseva, M. Abilev, A. Khozhanov, A. Zhilkashinova, Materials, 2023, 16, (4), 1717 LINK https://doi.org/10.3390/ma16041717
    [Google Scholar]
  22. P. W. Zhou, W. L. Yang, Y. C. Wu, Y. Y. Zong, Vacuum, 2023, 216, 112354 LINK https://doi.org/10.1016/j.vacuum.2023.112354
    [Google Scholar]
  23. X. Wang, W. Li, Y. Yao, L. Fan, J. Wang, W. Wang, P. Wen, Z. Yang, H. Chen, Addit. Manuf., 2023, 77, 103825 LINK https://doi.org/10.1016/j.addma.2023.103825
    [Google Scholar]
  24. C. Zhou, Q.-B. Ye, J. Hu, T. Zhao, X.-H. Gao, Z.-D. Wang, Mater. Sci. Eng.: A, 2022, 831, 142356 LINK https://doi.org/10.1016/j.msea.2021.142356
    [Google Scholar]
  25. Y. Xiao, L. Cao, G. Wang, H. Lei, Z. Zhao, Y. Ren, J. Alloys Compd., 2024, 970, 172621 LINK https://doi.org/10.1016/j.jallcom.2023.172621
    [Google Scholar]
  26. S. Isavand, M. Kardan-Halvaei, A. Assempour, Int. J. Solids Struct., 2021, 233, 111205 LINK https://doi.org/10.1016/j.ijsolstr.2021.111205
    [Google Scholar]
  27. J. Campbell, ‘Casting Alloys’, in “Complete Casting Handbook”, 2nd Edn., ch. 6, Elsevier Ltd, Oxford, UK, 2015, pp. 223340 LINK https://doi.org/10.1016/b978-0-444-63509-9.00006-6
    [Google Scholar]
  28. B. Zhu, Y. Mei, J. Pei, Z. Wang, Y. Zhang, J. Magn. Magn. Mater., 2023, 580, 170766 LINK https://doi.org/10.1016/j.jmmm.2023.170766
    [Google Scholar]
  29. Y. Guo, J. Zhao, B. Xu, C. Gu, K. Feng, Y. Wang, J. Alloys Compd., 2022, 913, 165254 LINK https://doi.org/10.1016/j.jallcom.2022.165254
    [Google Scholar]
  30. S. Mishra, R. Dalai, Mater. Today Proc., 2021, 43, (1), 593 LINK https://doi.org/10.1016/j.matpr.2020.12.107
    [Google Scholar]
  31. ‘Steel — Hardenability Test by End Quenching (Jominy Test)’, ISO 642:2024, 3rd Edn., International Organization for Standardization, Geneva, Switzerland, August, 2024 LINK https://www.iso.org/standard/85868.html
  32. ‘Standard Test Methods for Determining Hardenability of Steel’, ASTM A255-20a, ASTM International, West Conshohocken, USA, 16th November, 2020 LINK https://doi.org/10.1520/A0255-20A
  33. B. C. De Cooman, Y. Estrin, S. K. Kim, Acta Mater., 2018, 142, 283 LINK https://doi.org/10.1016/j.actamat.2017.06.046
    [Google Scholar]
  34. S.-D. Kim, J. Y. Park, S.-J. Park, J. H. Jang, J. Moon, H.-Y. Ha, C.-H. Lee, J.-Y. Kang, J.-H. Shin, T.-H. Lee, Sci. Rep. 2019, 9, 15171 LINK https://doi.org/10.1038/s41598-019-51586-y
    [Google Scholar]
  35. S.-K. Oh, H.-J. Kwon, Y.-K. Lee, Mater. Sci. Eng.: A, 2024, 897, 146304 LINK https://doi.org/10.1016/j.msea.2024.146304
    [Google Scholar]
  36. H. Cheng, L. Sun, W. Li, Y. Zhang, Y. Cui, D. Chen, Z. Zhang, J. Mater. Sci. Technol., 2024, 187, 240 LINK https://doi.org/10.1016/j.jmst.2023.11.032
    [Google Scholar]
  37. U. Gürol, K. S. Can, J. Min. Metall. Sect. B: Metall., 2020, 56, (2), 171 LINK https://doi.org/10.2298/jmmb191111009g
    [Google Scholar]
  38. M. Sabzi, M. Farzam, Mater. Res. Express, 2019, 6, (10), 1065c2 LINK https://doi.org/10.1088/2053-1591/ab3ee3
    [Google Scholar]
  39. R. Allende-Seco, A. Artigas, H. Bruna, L. Carvajal, A. Monsalve, M. F. Sklate-Boja, Metals, 2021, 11, (6), 961 LINK https://doi.org/10.3390/met11060961
    [Google Scholar]
  40. T. Liu, Y. Cui, K. Zheng, F. Yin, Z. Luo, Corros. Sci., 2023, 215, 111054 LINK https://doi.org/10.1016/j.corsci.2023.111054
    [Google Scholar]
  41. J. Huang, D. Yi, J. Yan, B. Han, Y. He, Z. Yang, Y. Zhou, F. Yang, Corros. Commun., 2024, 14, 72 LINK https://doi.org/10.1016/j.corcom.2023.09.003
    [Google Scholar]
  42. X. Zhang, Y. Peng, Y. Huang, K. Wang, J. Kong, Z. Du, T. Wu, M. Zhou, Mater. Des., 2023, 225, 111536 LINK https://doi.org/10.1016/j.matdes.2022.111536
    [Google Scholar]
  43. J. Chu, Y. Nian, L. Zhang, Y. Bao, N. Ali, C. Zhang, H. Zhou, J. Mater. Res. Technol., 2023, 22, 1505 LINK https://doi.org/10.1016/j.jmrt.2022.12.023
    [Google Scholar]
  44. Z. C. Luo, Y. X. Cui, Z. X. Liu, T. L. Liu, F. X. Yin, K. H. Zheng, Corros. Sci., 2024, 227, 111720 LINK https://doi.org/10.1016/j.corsci.2023.111720
    [Google Scholar]
/content/journals/10.1595/205651325X17201768472132
Loading
/content/journals/10.1595/205651325X17201768472132
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test