Skip to content
1887
Volume 69, Issue 2
  • ISSN: 2056-5135
  • oa Three-Dimensional Oldroyd-B Fluid Flow Past a Stretching Surface with Magnetic Field, Nanofluid Particles and Cattaneo-Christov Double Diffusion Effects

    Computing heat transfer in sustainable energy applications

  • Authors: G. Murali1, J. Venkata Madhu2, G. Deepa3, P. Suresh3 and B. Nagaraju4
  • Affiliations: 1 Department of Freshman Engineering, Geethanjali College of Engineering and Technology, Cheeryal Village, Keesara Mandal, Telangana, 501301, India 2 Department of Mathematics, Sreenidhi Institute of Science and Technology, Yamnampet, 501301, India 3 Department of Mathematics, Chaitanya Bharathi Institute of Technology, Gandipet, Telangana, 500075, India 4 Department of Mathematics, Palamuru University, Bandameedipally, Mahbubnagar, Telangana, 509001, India
    *[email protected]
  • Source: Johnson Matthey Technology Review, Volume 69, Issue 2, Apr 2025, p. 299 - 320
  • DOI: https://doi.org/10.1595/205651325X17375408788409
    • Received: 11 Nov 2024
    • Accepted: 21 Jan 2025

Abstract

The purpose of this paper is to investigate the effects of Cattaneo-Christov double diffusion on a steady, viscous, magnetohydrodynamic, incompressible, electrically conducting flow of an Oldroyd-B fluid flow over a stretched sheet with mixed convection account taken into consideration along with the presence of a magnetic field, nanofluid particles, thermal diffusion and diffusion thermoeffects. In addition, the characteristics of chemical processes, the Schmidt number, thermophoresis, the Prandtl number and Brownian motion effects are taken into consideration in this research. As a result of the present use of similarity variables, the scope of application for constitutive equations that deal to mass, energy and concentration has been expanded. Making use of the bvp4c solver, which is a computational platform that runs on MATLAB®, in order to find answers for the problem of governing equations that has been presented. In order to get an accurate measurement of the shear stress as well as the rates of heat and mass transfer at the boundary, the Sherwood number, the Nusselt number and the skin-friction coefficients are used. Tables are a useful tool for doing accurate computations using numerical values. In order to undertake a comprehensive analysis of the dynamics of the problem, we carry out an in-depth research of the concrete repercussions that are caused by a number of different aspects. After then, we use graphic approaches to accentuate and show the implications that have resulted from the situation. In addition, to get a more thorough knowledge of the memory effects, it is beneficial to do a comparative assessment of the present results and the outcomes from the past.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17375408788409
2025-04-01
2025-04-15
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/2/Murali_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17375408788409&mimeType=html&fmt=ahah

References

  1. M. Rao, F. Lefèvre, S. Khandekar, J. Bonjour, Int. J. Heat Mass Transf., 2015, 86, 519 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.015
    [Google Scholar]
  2. P. Jayavel, H. Upreti, D. Tripathi, A. K. Pandey, Numer. Heat Transf. Part A: Appl., 2023, latest articles LINK https://doi.org/10.1080/10407782.2023.2260948
    [Google Scholar]
  3. A. Hussain, M. A. Elkotb, M. Arshad, A. Rehman, K. S. Nisar, A. Hassan, C. A. Saleel, Processes, 2021, 9, (8), 1453 LINK https://doi.org/10.3390/pr9081453
    [Google Scholar]
  4. M. Arshad, A. Hassan, Eur. Phys. J. Plus, 2022, 137, (10), 1126 LINK https://doi.org/10.1140/epjp/s13360-022-03313-2
    [Google Scholar]
  5. P. C. Pattanaik, S. R. Mishra, S. Jena, P. K. Pattnaik, Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst., 2022, 236, (1–2), 3 LINK https://doi.org/10.1177/23977914221080046
    [Google Scholar]
  6. B. Mohanty, S. Mohanty, S. R. Mishra, P. K. Pattnaik, Eur. Phys. J. Plus, 2021, 136, (11), 1139 LINK https://doi.org/10.1140/epjp/s13360-021-02150-z
    [Google Scholar]
  7. T. Gupta, A. K. Pandey, M. Kumar, Mod. Phys. Lett. B, 2024, 38, (02), 2350209 LINK https://doi.org/10.1142/s0217984923502093
    [Google Scholar]
  8. T. Gupta, A. K. Pandey, M. Kumar, Numer. Heat Transf. Part A: Appl., 2023, 85, (7), 1063 LINK https://doi.org/10.1080/10407782.2023.2195689
    [Google Scholar]
  9. N. Joshi, H. Upreti, A. K. Pandey, Int. J. Comput. Methods Eng. Sci. Mech., 2022, 23, (6), 527 LINK https://doi.org/10.1080/15502287.2022.2030426
    [Google Scholar]
  10. H. Upreti, A. K. Pandey, M. Kumar, O. D. Makinde, Int. J. Mod. Phys. B, 2023, 37, (02), 2350018 LINK https://doi.org/10.1142/s0217979223500182
    [Google Scholar]
  11. S. Riasat, M. Ramzan, Y.-L. Sun, M. Y. Malik, R. Chinram, Case Stud. Therm. Eng., 2021, 26, 101039 LINK https://doi.org/10.1016/j.csite.2021.101039
    [Google Scholar]
  12. K. V. Prasad, H. Vaidya, K. Vajravelu, G. Manjunatha, M. Rahimi-Gorji, H. Basha, Defect Diffus. Forum, 2020, 401, 164 LINK https://doi.org/10.4028/www.scientific.net/ddf.401.164
    [Google Scholar]
  13. W. Ibrahim, C. Zemedu, J. Phys. Commun., 2020, 4, (1), 015016 LINK https://doi.org/10.1088/2399-6528/ab5260
    [Google Scholar]
  14. N. Iftikhar, D. Baleanu, S. M. Husnine, K. Shabbir, AIP Adv., 2019, 9, (3), 035251 LINK https://doi.org/10.1063/1.5086534
    [Google Scholar]
  15. B. C. Prasannakumara, M. Gnaneswara Reddy, G. T. Thammanna, B. J. Gireesha, Nonlinear Eng., 2018, 7, (3), 195 LINK https://doi.org/10.1515/nleng-2017-0058
    [Google Scholar]
  16. M. I. Khan, T. Hayat, S. Afzal, M. I. Khan, A. Alsaedi, Comput. Methods Programs Biomed., 2020, 186, 105145 LINK https://doi.org/10.1016/j.cmpb.2019.105145
    [Google Scholar]
  17. M. M. Bhatti, C. M. Khalique, T. A. Bég, O. A. Bég, A. Kadir, Mod. Phys. Lett. B, 2020, 34, (02), 2050026 LINK https://doi.org/10.1142/s0217984920500268
    [Google Scholar]
  18. M. Ramzan, F. Yousaf, M. Farooq, J. D. Chung, Commun. Theor. Phys., 2016, 66, (1), 133 LINK https://doi.org/10.1088/0253-6102/66/1/133
    [Google Scholar]
  19. M. Ramzan, S. Inam, S. A. Shehzad, Alexandria Eng. J., 2016, 55, (1), 311 LINK https://doi.org/10.1016/j.aej.2015.09.012
    [Google Scholar]
  20. M. Hamid, M. Usman, R. U. Haq, Phys. Scr., 2019, 94, (11), 115219 LINK https://doi.org/10.1088/1402-4896/ab2650
    [Google Scholar]
  21. A. Farooq, R. Ali, A. C. Benim, Phys. A: Stat. Mech. Appl., 2018, 503, 345 LINK https://doi.org/10.1016/j.physa.2018.02.204
    [Google Scholar]
  22. H. Upreti, A. K. Pandey, M. Kumar, O. D. Makinde, Arab. J. Sci. Eng., 2020, 45, (9), 7705 LINK https://doi.org/10.1007/s13369-020-04826-7
    [Google Scholar]
  23. H. Upreti, P. Bartwal, A. K. Pandey, O. D. Makinde, Numer. Heat Transf. Part B: Fundam., 2023, 84, (4), 415 LINK https://doi.org/10.1080/10407790.2023.2209281
    [Google Scholar]
  24. S. Upadhyay, H. Upreti, A. K. Pandey, Numer. Heat Transf. Part A: Appl., 2023, latest articles LINK https://doi.org/10.1080/10407782.2023.2287543
    [Google Scholar]
  25. S. Saranya, A. K. A. Hakeem, P. Ragupathi, Q. M. Al-Mdallal, B. Ganga, ‘Non-Linear Velocity Effects on the Flow of Newtonian/Non-Newtonian Basefluids with Magnetic/Non-Magnetic Nanoparticles over a Stretching Sheet Embedded in a Porous Medium’, in “Proceedings of the 2nd International Conference on Nonlinear Dynamics and Applications (ICNDA 2024)”, eds. A. Saha, S. Banerjee, Vol. 2, Springer Proceedings in Physics Book Series, Vol. 315, Springer Nature Switzerland AG, Cham, Switzerland, 2024, pp. 576592 LINK https://doi.org/10.1007/978-3-031-69134-8_40
    [Google Scholar]
  26. S. Saranya, P. Ragupathi, Q. Al-Mdallal, Case Stud. Therm. Eng., 2022, 39, 102433 LINK https://doi.org/10.1016/j.csite.2022.102433
    [Google Scholar]
  27. P. Ragupathi, S. Saranya, H. V. R. Mittal, Q. M. Al-Mdallal, Complexity, 2021, 5058751 LINK https://doi.org/10.1155/2021/5058751
    [Google Scholar]
  28. S. Sharma, A. Dadheech, A. Parmar, J. Arora, Q. Al-Mdallal, S. Saranya, Sci. Rep., 2023, 13, 10715 LINK https://doi.org/10.1038/s41598-023-36988-3
    [Google Scholar]
  29. A. Dadheech, S. Sharma, Q. Al-Mdallal, Sci. Rep., 2024, 14, 10591 LINK https://doi.org/10.1038/s41598-024-58376-1
    [Google Scholar]
  30. D. R. Kirubaharan, A. D. Subhashini, G. Murali, Adv. Syst. Sci. Appl., 2024, 24, (3), 90
    [Google Scholar]
  31. P. K. Tanuku, L. P. Mamidi, M. Gundagani, Acta Polytech., 2024, 64, (5), 455 LINK https://doi.org/10.14311/AP.2024.64.0455
    [Google Scholar]
  32. M. Gundagani, L. P. Mamidi, P. K. Tanuku, J. Eng. Appl. Sci., 2024, 71, 9 LINK https://doi.org/10.1186/s44147-023-00347-w
    [Google Scholar]
  33. G. Murali, G. Deepa, V. Nirmala Kasturi, T. Poornakantha, Math. Mod. Eng., 2023, 9, (4), 130 LINK https://doi.org/10.21595/mme.2023.23590
    [Google Scholar]
  34. M. Gundagani, S. Sheri, A. Paul, M. C. K. Reddy, Walailak J. Sci. Tech., 2013, 10, (5), 499 LINK https://wjst.wu.ac.th/index.php/wjst/article/view/380
    [Google Scholar]
  35. G. Murali, N. V. N. Babu, J. Comput. Appl. Mech., 2023, 54, (1), 36 LINK https://doi.org/10.22059/JCAMECH.2023.351326.773
    [Google Scholar]
  36. G. Murali, G. Deepa, J. Venkata Madhu, V. Nirmala Kasturi, S. M. Bhati, N. Narendra Babu, Discontin. Nonlinearity Complex., 2025, 14, (2), 373 LINK https://www.lhscientificpublishing.com/Journals/articles/DOI-10.5890-DNC.2025.06.010.aspx
    [Google Scholar]
  37. N. Singh, J. Kaur, P. Thakur, G. Murali, Struct. Integ. Life, 2023, 23, (3), 293 LINK http://divk.inovacionicentar.rs/ivk/ivk23/OF2303-10.html
    [Google Scholar]
  38. S. M. Bhati, G. Murali, C. Sanjay, J. Appl. Sci. Eng., 2022, 25, (4), 759 LINK https://doi.org/10.6180/jase.202208_25(4).0011
    [Google Scholar]
  39. G. Deepa, G. Murali, Iranian J. Sci. Technol., 2014, 38, (3.1), 379 LINK https://doi.org/10.22099/IJSTS.2014.2437
    [Google Scholar]
  40. S. Sheri, M. Gundagani, M. P. Karanamu, Walailak J. Sci. Tech., 2012, 9, (4), 407 LINK https://wjst.wu.ac.th/index.php/wjst/article/view/451
    [Google Scholar]
/content/journals/10.1595/205651325X17375408788409
Loading
/content/journals/10.1595/205651325X17375408788409
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test