Skip to content
1887
Volume 69, Issue 3
  • ISSN: 2056-5135

Abstract

Accurate measurement of glass transition temperature (T) and coefficient of thermal expansion (CTE) is of great significance in guiding the use and process performance of the materials. This manuscript measures the CTE and T of samples by the thermal expansion method and systematically researches the measurement factors affecting the T and the CTE, including the shape and size of the samples, the starting furnace temperature and the heat treatment process. The study shows that the sample shape and size, the starting furnace temperature and the heat treatment process all have an effect on the test results. At the same time, the placement of the sample and the data processing method will also make the test results deviate from the real value. Therefore, in order to accurately assess the thermal properties of the material, the size of the sample is specified to be 6 mm in diameter and 50 mm in length, while the initial temperature of the furnace during the CTE test should be lower than 35°C. In addition, test samples of the same glass grade should undergo the same heat treatment process to ensure the accuracy of the test results.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17314046073320
2025-07-01
2025-07-09
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/3/Cao_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17314046073320&mimeType=html&fmt=ahah

References

  1. M. Hadipeykani, F. Aghadavoudi, D. Toghraie, Phys. A: Stat. Mech. Appl., 2020, 546, 123995 LINK https://doi.org/10.1016/j.physa.2019.123995
    [Google Scholar]
  2. M. Zhang, Z. Cao, S. Yang, Y. Zhang, Y. Han, F. Qiu, J. Zheng, H. Liu, J. Jia, J. Chin. Ceram. Soc., 2024, 52, (10), 3301 https://doi.org/10.14062/j.issn.0454-5648.20230882
    [Google Scholar]
  3. J. Kinast, E. Hilpert, R.-R. Rohloff, A. Gebhardt, A. Tünnermann, Surf. Coatings Technol., 2014, 259, (C), 500 LINK https://doi.org/10.1016/j.surfcoat.2014.10.038
    [Google Scholar]
  4. A. T. Fadhil, G. Washer, A. Poudel, Mater. Eval., 2024, 82, (1), 79 LINK https://doi.org/10.32548/2024.me-04382
    [Google Scholar]
  5. M. Torabi Milani, J. Del Fatti, K. Orna, Y. Zhang, A. N. Sinclair, Mater. Eval., 2023, 81, (3), 38 LINK https://doi.org/10.32548/2023.me-04314
    [Google Scholar]
  6. H. Hayashi, M. Watanabe, H. Inaba, Thermochim. Acta, 2000, 359, (1), 77 LINK https://doi.org/10.1016/s0040-6031(00)00507-4
    [Google Scholar]
  7. Y. Hua, ‘Analysis of Influencing Factors of Thermal Expansion Coefficient’, The 5th Baosteel Academic Annual Conference, Shanghai, China, 1st June, 2013
    [Google Scholar]
  8. Y. Meng, Ind. Metrol., 2005, 15, (3), 6 LINK https://doi.org/10.3969/j.issn.1002-1183.2005.03.003
    [Google Scholar]
  9. A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, X. Y. Li, J. Non-Cryst. Solids, 2007, 353, (28), 2692 LINK https://doi.org/10.1016/j.jnoncrysol.2007.05.011
    [Google Scholar]
  10. H. Wang, X. Zhou, L. Sun, J. Dong, S. Yu, Nucl. Eng. Des., 2009, 239, (3), 484 LINK https://doi.org/10.1016/j.nucengdes.2008.11.004
    [Google Scholar]
  11. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, E. P. George, J. Alloys Compd., 2015, 623, 348 LINK https://doi.org/10.1016/j.jallcom.2014.11.061
    [Google Scholar]
  12. Z. Cao, J. Jia, China Building Mat Academy,, ‘Micro Channel Plate Borate Core Glass and Preparation Method Thereof’, Chinese Patent 105293903, 2017
    [Google Scholar]
  13. M. Hunkel, H. Surm, M. Steinbacher, ’Dilatometry’ in “Handbook of Thermal Analysis and Calorimetry”, eds. S. Vyazovkin, N. Koga, C. Schick, ch. 3, Vol. 6, Elsevier, Amsterdam, The Netherlands, 2018, pp. 103129 LINK https://doi.org/10.1016/b978-0-444-64062-8.00019-x
    [Google Scholar]
  14. ‘Standard Test Method for Linear Thermal Expansion of Solid Materials with a Push-Rod Dilatometer’, ASTM E0228-17, ASTM International, West Conshohocken, USA, 2017 LINK https://store.astm.org/e0228-17.html
    [Google Scholar]
  15. N. Taibi, Z. Belabed, B. Boucham, M. Benguediab, A. Tounsi, K. M. Khedher, M. A. Salem, J. Appl. Comput. Mech., 2024, 10, (2), 224 LINK https://doi.org/10.22055/jacm.2023.44257.4191
    [Google Scholar]
  16. K. Lichtenberg, K. A. Weidenmann, Thermochim. Acta, 2017, 654, 85 LINK https://doi.org/10.1016/j.tca.2017.05.010
    [Google Scholar]
  17. A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, X. Y. Li, J. Non.-Cryst. Solids, 2007, 353, (28), 2692 LINK https://doi.org/10.1016/j.jnoncrysol.2007.05.011
    [Google Scholar]
  18. Z. Meilun, C. Zhenbo, Y. Shengyun, H. Yu, W. Ke, Z. Yang, Z. You, M. Jing, B. Tiezhu, L. Hui, J. Jinsheng, J. Alloys Compd., 2024, 1005, 175991 LINK https://doi.org/10.1016/j.jallcom.2024.175991
    [Google Scholar]
  19. A. Q. Tool, J. Am. Ceram. Soc., 1946, 29, (9), 240 LINK https://doi.org/10.1111/j.1151-2916.1946.tb11592.x
    [Google Scholar]
/content/journals/10.1595/205651325X17314046073320
Loading
/content/journals/10.1595/205651325X17314046073320
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): coefficient of thermal expansion; factors; glass; thermal expansion method
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test