Skip to content
1887
Volume 69, Issue 4
  • ISSN: 2056-5135

Graphical Abstract

Abstract

Currently, the traditional hydrodesulfurisation (HDS) process is extensively utilised in the oil refining industry to remove sulfur compounds from petroleum fractions which have environmental and health impacts in addition to affecting product quality. The HDS process needs high pressure and temperature, uses costly hydrogen gas and has low activity towards extraction of thiophene and its derivatives. Alternative desulfurisation processes like catalytic oxidative desulfurisation (ODS) are possible approaches because of mild process conditions, no need for hydrogen and efficiency in removing thiophene and its derivatives. ODS is developed using various types of catalyst, oxidants and designs of reactors under different operating conditions. In continuation with developing more workable and economical parameters in ODS technology, different types of reactors are considered as alternatives to the traditional batch reactors. This three-part work investigates the most recent developments in reactors for ODS processes and reviews the advantages, limitations and future potential of each reactor.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17458327898766
2025-10-01
2025-10-03
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/4/Humadi2_13a_Imp-Pt1.html?itemId=/content/journals/10.1595/205651325X17458327898766&mimeType=html&fmt=ahah

References

  1. J. Ben-Iwo, V. Manovic, P. Longhurst, Renew. Sustain. Energy Rev., 2016, 63, 172 LINK https://doi.org/10.1016/j.rser.2016.05.050
    [Google Scholar]
  2. R. Huirache-Acuña, B. Pawelec, E. Rivera-Muñoz, R. Nava, J. Espino, J. L. G. Fierro, Appl. Catal. B Environ., 2009, 92, (1–2), 168 LINK https://doi.org/10.1016/j.apcatb.2009.07.012
    [Google Scholar]
  3. L. A. Khamees, A. A. A. A. Alrazzaq, J. I. Humadi, Mater. Today Proc., 2022, 57, (2), 586 LINK https://doi.org/10.1016/j.matpr.2022.01.455
    [Google Scholar]
  4. L. A. Khamees, F. N. Abdulrazzaq, J. I. Humadi, J. Chem. Pet. Eng., 2024, 58, (1), 115
    [Google Scholar]
  5. J. I. Humadi, S. A. Jafar, N. S. Ali, M. A. Ahmed, M. J. Mzeed, R. J. Al-Salhi, N. M. C. Saady, H. S. Majdi, S. Zendehboudi, T. M. Albayati, Sci. Rep., 2023, 13, (1), 9931 LINK https://doi.org/10.1038/s41598-023-37188-9
    [Google Scholar]
  6. W. Jiang, J. She, D. Zhu, J. He, B. Zhang, S. Xun, L. Zhu, H. Li, W. Zhu, H. Li, Sep. Purif. Technol., 2025, 363, (1), 131994 LINK https://doi.org/10.1016/j.seppur.2025.131994
    [Google Scholar]
  7. R. J. Algawi, J. I. Humadi, L. A. Khamees, Pet. Sci. Technol., 2024, 42, (21), 2933 LINK https://doi.org/10.1080/10916466.2023.2179636
    [Google Scholar]
  8. J. I. Humadi, S. A. Gheni, S. M. R. Ahmed, A. Harvey, RSC Adv., 2022, 12, (23), 14385 LINK https://doi.org/10.1039/d2ra01663j
    [Google Scholar]
  9. J. I. Humadi, A. T. Nawaf, A. T. Jarullah, M. A. Ahmed, S. A. Hameed, I. M. Mujtaba, Chem. Eng. Res. Des., 2023, 190, 634 LINK https://doi.org/10.1016/j.cherd.2022.12.043
    [Google Scholar]
  10. A. E. Mohammed, S. A. Gheni, W. T. Mohammed, S. M. R. Ahmed, D. Y. Aqar, H. R. Mohammed, M. M. Ali, M. H. Mohammed, N. T. Karakullukcu, H. M. Hmood, M. A. Mahmood, Diam. Relat. Mater., 2024, 142, 110723 LINK https://doi.org/10.1016/j.diamond.2023.110723
    [Google Scholar]
  11. A. E. Mohammed, W. T. Mohammed, S. A. Gheni, Case Stud. Chem. Environ. Eng., 2025, 11, 101024 LINK https://doi.org/10.1016/j.cscee.2024.101024
    [Google Scholar]
  12. M. Beshtar, A. Larimi, A. A. Asgharinezhad, J. Photochem. Photobiol. A Chem., 2025, 459, 116056 LINK https://doi.org/10.1016/j.jphotochem.2024.116056
    [Google Scholar]
  13. X.-X. Xing, M.-Y. He, H.-L. Guo, Y.-J. Song, W.-S. Zhu, J.-Y. Pang, Y. Bai, D.-B. Dang, Sep. Purif. Technol., 2025, 354, (8), 129475 LINK https://doi.org/10.1016/j.seppur.2024.129475
    [Google Scholar]
  14. A. Stanislaus, A. Marafi, M. S. Rana, Catal. Today, 2010, 153, (1–2), 1 LINK https://doi.org/10.1016/j.cattod.2010.05.011
    [Google Scholar]
  15. P. S. Kulkarni, C. A. M. Afonso, Green Chem., 2010, 12, (7), 1139 LINK https://doi.org/10.1039/c002113j
    [Google Scholar]
  16. A. A. Aabid, J. I. Humadi, G. S. Ahmed, A. T. Jarullah, M. A. Ahmed, W. S. Abdullah, Appl. Sci. Eng. Prog., 2023, 16, (3), 6756 LINK https://doi.org/10.14416/j.asep.2023.02.007
    [Google Scholar]
  17. G. S. Ahmed, J. I. Humadi, A. A. Aabid, Iraqi J. Chem. Pet. Eng., 2021, 22, (3), 11 LINK https://doi.org/10.31699/ijcpe.2021.3.2
    [Google Scholar]
  18. A. Qasim, H. H. Alwan, Iraqi J. Chem. Pet. Eng., 2024, 25, (1), 83 LINK https://doi.org/10.31699/ijcpe.2024.1.8
    [Google Scholar]
  19. J. I. Humadi, M. A. Shihab, G. S. Ahmed, M. A. Ahmed, Z. A. Abdullah, S. Sehgal, Chem. Ind. Chem. Eng. Q., 2024, 30, (2), 151 LINK https://doi.org/10.2298/ciceq230208020h
    [Google Scholar]
  20. C. Song, X. Ma, Appl. Catal. B Environ., 2003, 41, (1–2), 207 LINK https://doi.org/10.1016/s0926-3373(02)00212-6
    [Google Scholar]
  21. S. Haji, C. Erkey, Ind. Eng. Chem. Res., 2003, 42, (26), 6933 LINK https://doi.org/10.1021/ie030518m
    [Google Scholar]
  22. K. I. Hamad, J. I. Humadi, H. A. Abdulkareem, S. Al-Salihi, O. I. Farhan, Energy Sci. Eng., 2023, 11, (10), 3662 LINK https://doi.org/10.1002/ese3.1545
    [Google Scholar]
  23. Q. A. Mahmood, B. A. Abdulmajeed, R. Haldhar, Iraqi J. Chem. Pet. Eng., 2023, 24, (4), 83 LINK https://doi.org/10.31699/ijcpe.2023.4.8
    [Google Scholar]
  24. N. S. Ahmedzeki, B. J. Ibrahem, Iraqi J. Chem. Pet. Eng., 2015, 16, (1), 35 LINK https://doi.org/10.31699/ijcpe.2015.1.4
    [Google Scholar]
  25. B. B. Jima, N. S. Majeed, Iraqi J. Chem. Pet. Eng., 2020, 21, (1), 9 LINK https://doi.org/10.31699/ijcpe.2020.1.2
    [Google Scholar]
  26. F. Jiménez, V. Kafarov, M. Nuñez, Chem. Eng. J., 2007, 134, (1–3), 200 LINK https://doi.org/10.1016/j.cej.2007.03.080
    [Google Scholar]
  27. J. I. Humadi, Y. S. Issa, D. Y. Aqar, M. A. Ahmed, H. H. Ali Alak, I. M. Mujtaba, Int. J. Chem. React. Eng., 2022, 21, (6), 727 LINK https://doi.org/10.1515/ijcre-2022-0046
    [Google Scholar]
  28. A. Seeberger, A. Jess, Green Chem., 2010, 12, (4), 602 LINK https://doi.org/10.1039/b918724c
    [Google Scholar]
  29. Y. Muhammad, A. Shoukat, A. U. Rahman, H. U. Rashid, W. Ahmad, Chinese J. Chem. Eng., 2018, 26, (3), 593 LINK https://doi.org/10.1016/j.cjche.2017.05.015
    [Google Scholar]
  30. D. Julião, R. Valença, J. C. Ribeiro, B. de Castro, S. S. Balula, Appl. Catal. A Gen., 2017, 537, 93 LINK https://doi.org/10.1016/j.apcata.2017.02.021
    [Google Scholar]
  31. S. O. Ribeiro, D. Julião, L. Cunha-Silva, V. F. Domingues, R. Valença, J. C. Ribeiro, B. de Castro, S. S. Balula, Fuel, 2016, 166, 268 LINK https://doi.org/10.1016/j.fuel.2015.10.095
    [Google Scholar]
  32. J. I. Humadi, A. A. Aabid, A. E. Mohammed, G. S. Ahmed, M. A. Abdulqader, Chem. Eng. Res. Des., 2024, 206, 285 LINK https://doi.org/10.1016/j.cherd.2024.05.001
    [Google Scholar]
  33. J. I. Humadi, S. A. Gheni, S. M. R. Ahmed, G. H. Abdullah, A. N. Phan, A. P. Harvey, Process Saf. Environ. Prot., 2021, 152, 178 LINK https://doi.org/10.1016/j.psep.2021.05.028
    [Google Scholar]
  34. O. N. Katasonova, E. Y. Savonina, T. A. Maryutina, Russ. J. Appl. Chem., 2021, 94, (4), 411 LINK https://doi.org/10.1134/s1070427221040017
    [Google Scholar]
  35. T. A. Saleh, Trends Environ. Anal. Chem., 2020, 25, e00080 LINK https://doi.org/10.1016/j.teac.2020.e00080
    [Google Scholar]
  36. J. Lelieveld, G.-J. Roelofs, L. Ganzeveld, J. Feichter, H. Rodhe, Philos. Trans. R. Soc. Lond. B Biol. Sci., 1997, 352, (1350), 149 LINK https://doi.org/10.1098/rstb.1997.0010
    [Google Scholar]
  37. F. S. Mjalli, O. U. Ahmed, T. Al-Wahaibi, Y. Al-Wahaibi, I. M. AlNashef, Rev. Chem. Eng., 2014, 30, (4), 337 LINK https://doi.org/10.1515/revce-2014-0001
    [Google Scholar]
  38. J. P. Nehlsen, ‘Developing Clean Fuels: Novel Techniques for Desulfurization’, PhD Thesis, Princeton University, USA, 2006
  39. P. Wu, S. Ma, S. Zhou, Y. Sun, L. Chen, J. Liu, W. Zhu, C. Xu, Chem. Eng. Sci., 2025, 305, 121136 LINK https://doi.org/10.1016/j.ces.2024.121136
    [Google Scholar]
  40. S. Gokhale, M. Khare, Int. J. Transp. Manag., 2004, 2, (2), 59 LINK https://doi.org/10.1016/j.ijtm.2004.09.001
    [Google Scholar]
  41. C. Song, Catal. Today, 2003, 86, (1–4), 211 LINK https://doi.org/10.1016/s0920-5861(03)00412-7
    [Google Scholar]
  42. Z. Jiang, H. , Y. Zhang, C. Li, Chinese J. Catal., 2011, 32, (5), 707 LINK https://doi.org/10.1016/s1872-2067(10)60246-x
    [Google Scholar]
  43. I. V. Babich, J. A. Moulijn, Fuel, 2003, 82, (6), 607 LINK https://doi.org/10.1016/s0016-2361(02)00324-1
    [Google Scholar]
  44. A. A. Al Swat, T. A. Saleh, S. A. Ganiyu, M. N. Siddiqui, K. R. Alhooshani, J. Anal. Appl. Pyrolysis, 2017, 128, 246 LINK https://doi.org/10.1016/j.jaap.2017.10.004
    [Google Scholar]
  45. A. T. Jarullah, M. A. Ahmed, B. A. Al-Tabbakh, I. M. Mujtaba, Chem. Prod. Process Model., 2022, 18, (2), 265 LINK https://doi.org/10.1515/cppm-2021-0073
    [Google Scholar]
  46. M. I. Fathi, J. I. Humadi, Q. A. Mahmood, A. T. Nawaf, R. S. Ayoub, AIP Conf. Proc., 2022, 2660, (1), 020026 LINK https://doi.org/10.1063/5.0109089
    [Google Scholar]
  47. J. B. Bhasarkar, P. K. Dikshit, V. S. Moholkar, Bioresour. Technol., 2015, 187, 369 LINK https://doi.org/10.1016/j.biortech.2015.03.102
    [Google Scholar]
  48. S. A. Jafar, A. T. Nawaf, J. I. Humadi, Mater. Today Proc., 2021, 42, (5), 1777 LINK https://doi.org/10.1016/j.matpr.2020.11.821
    [Google Scholar]
  49. S. S. Cheng, ‘Ultra Clean Fuels Via Modified UAOD Process With Room Temperature Ionic Liquid (RTIL) & Solid Catalyst Polishing’, PhD Thesis, University of Southern California, USA, May, 2008
  50. M. Alibouri, S. M. Ghoreishi, H. R. Aghabozorg, AIChE J., 2009, 55, (10), 2665 LINK https://doi.org/10.1002/aic.11867
    [Google Scholar]
  51. N. M. Ali, E. M. Majeed, G. H. A. Razzaq, J. I. Humadi, M. A. Ahmed, Pet. Sci. Technol., 2025, 43, (3), 305 LINK https://doi.org/10.1080/10916466.2023.2292784
    [Google Scholar]
  52. D. Chandran, M. Khalid, R. Walvekar, N. M. Mubarak, S. Dharaskar, W. Y. Wong, T. C. S. M. Gupta, J. Mol. Liq., 2019, 275, 312 LINK https://doi.org/10.1016/j.molliq.2018.11.051
    [Google Scholar]
  53. D. Zhu, J. Yin, L. Xu, B. Zhang, L. Zhu, J. He, H. Li, W. Zhu, H. Li, W. Jiang, Appl. Catal. B Environ. Energy, 2025, 363, 124774 LINK https://doi.org/10.1016/j.apcatb.2024.124774
    [Google Scholar]
  54. M. F. Majid, H. F. M. Zaid, C. F. Kait, K. Jumbri, L. C. Yuan, S. Rajasuriyan, J. Mol. Liq., 2020, 306, 112870 LINK https://doi.org/10.1016/j.molliq.2020.112870
    [Google Scholar]
  55. S. Gooneh-Farahani, M. Anbia, J. Environ. Chem. Eng., 2023, 11, (1), 108997 LINK https://doi.org/10.1016/j.jece.2022.108997
    [Google Scholar]
  56. B. Rodríguez Cabo, ‘Desulfurization of Fuels with Ionic Liquids by Extraction and Oxidative Extraction Processes’, PhD Thesis, Department of Chemical Engineering, University of Santiago de Compostela, Spain, November, 2013
  57. S. Kumar, V. C. Srivastava, S. M. Nanoti, Sep. Purif. Rev., 2017, 46, (4), 319 LINK https://doi.org/10.1080/15422119.2017.1288633
    [Google Scholar]
  58. R. G. Faria, D. Silva, F. Mirante, S. Gago, L. Cunha-Silva, S. S. Balula, Catalysts, 2024, 14, (2), 137 LINK https://doi.org/10.3390/catal14020137
    [Google Scholar]
  59. O. Etemadi, T. F. Yen, Energy Fuels, 2007, 21, (3), 1622 LINK https://doi.org/10.1021/ef070016b
    [Google Scholar]
  60. B. Saha, S. Vedachalam, A. K. Dalai, Fuel Process. Technol., 2021, 214, 106685 LINK https://doi.org/10.1016/j.fuproc.2020.106685
    [Google Scholar]
  61. A. Chica, K. Strohmaier, E. Iglesia, Langmuir, 2004, 20, (25), 10982 LINK https://doi.org/10.1021/la048320+
    [Google Scholar]
  62. H. Wang, W. Yu, X. Peng, Z. Chen, S. Wu, Q. Yu, W. Yang, J. Zhou, Chem. Eng. J., 2020, 388, 124220 LINK https://doi.org/10.1016/j.cej.2020.124220
    [Google Scholar]
  63. V. Meille, E. Schulz, V. Meille, M. Vrinat, M. Lemaire, Chem. Commun., 1998, (3), 305 LINK https://doi.org/10.1039/a706877h
    [Google Scholar]
  64. G. V. Jeffreys, C. J. Mumford, M. H. Herridge, J. Appl. Chem. Biotechnol., 1972, 22, (3), 319 LINK https://doi.org/10.1002/jctb.2720220304
    [Google Scholar]
  65. F. Sanyangare, ‘Simulation of the Adsorptive Desulphurisation of Diesel Fuel’, MSc Dissertation, Faculty of Engineering and the Built Environment, University of the Witwatersrand, South Africa, November, 2016
  66. P. T. Burnett, G. A. Huff, V. R. Pradhan, M. Hodges, J. A. Glassett, S. G. McDaniel, P. Hurst, The European Refining Technology Conference, Rome, Italy, 2000
    [Google Scholar]
  67. N. Gupta, P. K. Roychoudhury, J. K. Deb, Appl. Microbiol. Biotechnol., 2005, 66, (4), 356 LINK https://doi.org/10.1007/s00253-004-1755-7
    [Google Scholar]
  68. B. R. Folsom, D. R. Schieche, P. M. DiGrazia, J. Werner, S. Palmer, Appl. Environ. Microbiol., 1999, 65, (11), 4967 LINK https://doi.org/10.1128/AEM.65.11.4967-4972.1999
    [Google Scholar]
  69. K. Watanabe, K. Noda, J. Konishi, K. Maruhashi, Biotechnol. Lett., 2003, 25, (17), 1451 LINK https://doi.org/10.1023/a:1025020003953
    [Google Scholar]
  70. B. E. Alkhalili, A. Yahya, N. Ibrahim, B. Ganapathy, Mod. Appl. Sci., 2017, 11, (9), 104 LINK https://doi.org/10.5539/mas.v11n9p104
    [Google Scholar]
  71. F. Nazari, M. Kefayati, J. Raheb, J. Sci. Islamic Rep. Iran, 2017, 28, (3), 205
    [Google Scholar]
  72. M. S. Salman, S. A. Jafar, G. H. Abdullah, J. I. Humadi, M. A. Ahmed, A. M. Mohammed, Chem. Eng. Commun., 2024, 211, (10), 1508 LINK https://doi.org/10.1080/00986445.2024.2358369
    [Google Scholar]
  73. G. H. Abdullah, Y. Xing, Energy Fuels, 2018, 32, (8), 8254 LINK https://doi.org/10.1021/acs.energyfuels.8b01630
    [Google Scholar]
  74. G. H. Abdullah, Y. Xing, Pet. Sci. Technol., 2023, 41, (21), 2036 LINK https://doi.org/10.1080/10916466.2022.2105359
    [Google Scholar]
  75. A. T. Jarullah, B. A. Al-Tabbakh, H. A. A. Saleem, S. A. Hameed, J. I. Humadi, I. M. Mujtaba, Pet. Chem., 2024, 64, (4), 458 LINK https://doi.org/10.1134/s0965544124030150
    [Google Scholar]
  76. Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F. M. Al-Shahrani, A. A. Hajji, O. R. Koseoglu, Catal. Rev., 2011, 53, (3), 199 LINK https://doi.org/10.1080/01614940.2011.596426
    [Google Scholar]
  77. J. I. Humadi, G. H. Abdullah, S. M. R. Ahmed, M.A. Ahmed, J. Appl. Sci. Eng., 2024, 27, (3), 2271 LINK https://doi.org/10.6180/jase.202403_27(3).0014
    [Google Scholar]
  78. J. I. Humadi, G. H. A. Razzaq, L. A. Khamees, M. A. Ahmed, L. I. Saeed, Korean Chem. Eng. Res., 2023, 61, (2), 226 LINK https://doi.org/10.9713/kcer.2023.61.2.226
    [Google Scholar]
  79. B. S. Ahmed, L. O. Hamasalih, K. H. H. Aziz, Y. M. Salih, F. S. Mustafa, K. M. Omer, Separations, 2023, 10, (3), 206 LINK https://doi.org/10.3390/separations10030206
    [Google Scholar]
  80. F. Zannikos, E. Lois, S. Stournas, Fuel Process. Technol., 1995, 42, (1), 35 LINK https://doi.org/10.1016/0378-3820(94)00104-2
    [Google Scholar]
  81. J. I. Humadi, M. A. Shihab, G. S. Ahmed, M. A. Ahmed, Z. A. Abdullah, S. Sehgal, Chem. Ind. Chem. Eng. Q., 2024, 30, (2), 151 LINK https://doi.org/10.2298/CICEQ230208020H
    [Google Scholar]
  82. P. Sikarwar, V. Gosu, V. Subbaramaiah, Rev. Chem. Eng., 2018, 35, (6), 669 LINK https://doi.org/10.1515/revce-2017-0082
    [Google Scholar]
  83. Z.-Z. Li, J.-Q. Wu, Q. He, S.-W. Li, W. Wang, J.-S. Zhao, Sep. Purif. Technol., 2025, 356, (B), 129958 LINK https://doi.org/10.1016/j.seppur.2024.129958
    [Google Scholar]
  84. H. H. Andevary, A. Akbari, P. Safari, M. Omidkhah, A. Sharifi, M. Mirzaei, Energy Fuels, 2025, 39, (2), 1042 LINK https://doi.org/10.1021/acs.energyfuels.4c04359
    [Google Scholar]
  85. A. E. Mohammed, W. T. Mohammed, S. A. Gheni, Case Studies Chem. Environ. Eng., 2025, 11, 101024 LINK https://doi.org/10.1016/j.cscee.2024.101024
    [Google Scholar]
  86. A. Attar, W. H. Corcoran, Ind. Eng. Chem. Prod. Res. Dev., 1978, 17, (2), 102 LINK https://doi.org/10.1021/i360066a003
    [Google Scholar]
  87. A. H. Mamaghani, S. Fatemi, M. Asgari, Int. J. Chem. Eng., 2013, (1), 951045 LINK https://doi.org/10.1155/2013/951045
    [Google Scholar]
  88. S. Latypova, E. Eseva, I. Levin, K. Cherednichenko, O. Grafov, A. Anisimov, A. Akopyan, Fuel, 2026, 403, 136114 LINK https://doi.org/10.1016/j.fuel.2025.136114
    [Google Scholar]
  89. V. C. Srivastava, RSC Adv., 2012, 2, (3), 759 LINK https://doi.org/10.1039/c1ra00309g
    [Google Scholar]
  90. M. A. Betiha, A. M. Rabie, H. S. Ahmed, A. A. Abdelrahman, M. F. El-Shahat, Egypt. J. Pet., 2018, 27, (4), 715 LINK https://doi.org/10.1016/j.ejpe.2017.10.006
    [Google Scholar]
  91. A. Farshi, P. Shiralizadeh, Petrol. Coal, 2015, 57, (3), 295 LINK https://www.vurup.sk/wp-content/uploads/dlm_uploads/2017/07/pc_3_2015_farshi_324_final.pdf
    [Google Scholar]
  92. M. Liao, M. Zheng, G. Li, X. Pi, Y. Xiao, L. Zhang, H. Wu, J. Guo, Fuel, 2025, 381, (C), 133585 LINK https://doi.org/10.1016/j.fuel.2024.133585
    [Google Scholar]
  93. W. Ahmad, I. Ahmad, M. Yaseen, Korean J. Chem. Eng., 2016, 33, (9), 2530 LINK https://doi.org/10.1007/s11814-016-0099-1
    [Google Scholar]
  94. L. Yang, J. Li, X. Yuan, J. Shen, Y. Qi, J. Mol. Catal. A Chem., 2007, 262, (1–2), 114 LINK https://doi.org/10.1016/j.molcata.2006.08.058
    [Google Scholar]
  95. P. S. Tam, J. R. Kittrell, J. W. Eldridge, Ind. Eng. Chem. Res., 1990, 29, (3), 321 LINK https://doi.org/10.1021/ie00099a002
    [Google Scholar]
  96. C. A. Gamelas, T. Lourenço, A. P. da Costa, A. L. Simplício, B. Royo, C. C. Romão, Tetrahedron Lett., 2008, 49, (32), 4708 LINK https://doi.org/10.1016/j.tetlet.2008.05.126
    [Google Scholar]
  97. A. Di Giuseppe, M. Crucianelli, F. De Angelis, C. Crestini, R. Saladino, Appl. Catal. B Environ., 2009, 89, (1–2), 239 LINK https://doi.org/10.1016/j.apcatb.2009.02.009
    [Google Scholar]
  98. X. Ma, A. Zhou, C. Song, Catal. Today, 2007, 123, (1–4), 276 LINK https://doi.org/10.1016/j.cattod.2007.02.036
    [Google Scholar]
  99. Y. Shiraishi, T. Hirai, Energy Fuels, 2004, 18, (1), 37 LINK https://doi.org/10.1021/ef0301396
    [Google Scholar]
  100. D. Xu, W. Zhu, H. Li, J. Zhang, F. Zou, H. Shi, Y. Yan, Energy Fuels, 2009, 23, (12), 5929 LINK https://doi.org/10.1021/ef900686q
    [Google Scholar]
  101. M. Te, C. Fairbridge, Z. Ring, Appl. Catal. A Gen., 2001, 219, (1–2), 267 LINK https://doi.org/10.1016/s0926-860x(01)00699-8
    [Google Scholar]
  102. J. Xiao, L. Wu, Y. Wu, B. Liu, L. Dai, Z. Li, Q. Xia, H. Xi, Appl. Energy, 2014, 113, 78 LINK https://doi.org/10.1016/j.apenergy.2013.06.047
    [Google Scholar]
  103. H. , P. Li, Y. Liu, L. Hao, W. Ren, W. Zhu, C. Deng, F. Yang, Chem. Eng. J., 2017, 313, 1004 LINK https://doi.org/10.1016/j.cej.2016.10.140
    [Google Scholar]
  104. H. , S. Wang, C. Deng, W. Ren, B. Guo, J. Hazard. Mater., 2014, 279, 220 LINK https://doi.org/10.1016/j.jhazmat.2014.07.005
    [Google Scholar]
  105. M. F. Ali, A. Al-Malki, B. El-Ali, G. Martinie, M. N. Siddiqui, Fuel, 2006, 85, (10–11), 1354 LINK https://doi.org/10.1016/j.fuel.2005.12.006
    [Google Scholar]
  106. P. De Filippis, M. Scarsella, N. Verdone, Ind. Eng. Chem. Res., 2010, 49, (10), 4594 LINK https://doi.org/10.1021/ie9017622
    [Google Scholar]
  107. X. Ma, K. Sakanishi, I. Mochida, Ind. Eng. Chem. Res., 1994, 33, (2), 218 LINK https://doi.org/10.1021/ie00026a007
    [Google Scholar]
  108. S. Otsuki, T. Nonaka, N. Takashima, W. Qian, A. Ishihara, T. Imai, T. Kabe, Energy Fuels, 2000, 14, (6), 1232 LINK https://doi.org/10.1021/ef000096i
    [Google Scholar]
  109. V. Hulea, F. Fajula, J. Bousquet, J. Catal., 2001, 198, (2), 179 LINK https://doi.org/10.1006/jcat.2000.3149
    [Google Scholar]
  110. P. De Filippis, M. Scarsella, Energy Fuels, 2003, 17, (6), 1452 LINK https://doi.org/10.1021/ef0202539
    [Google Scholar]
  111. J. M. Campos-Martin, M. C. Capel-Sanchez, J. L. G. Fierro, Green Chem., 2004, 6, (11), 557 LINK https://doi.org/10.1039/b409882j
    [Google Scholar]
  112. A. Ishihara, D. Wang, F. Dumeignil, H. Amano, E. W. Qian, T. Kabe, Appl. Catal. A Gen., 2005, 279, (1–2), 279 LINK https://doi.org/10.1016/j.apcata.2004.10.037
    [Google Scholar]
  113. K. Yazu, A. Matsumura, S. Sato, J. Japan Pet. Inst., 2010, 53, (4), 251 LINK https://doi.org/10.1627/jpi.53.251
    [Google Scholar]
  114. F. Yu, R. Wang, Molecules, 2013, 18, (11), 13691 LINK https://doi.org/10.3390/molecules181113691
    [Google Scholar]
  115. L. Hao, T. Su, D. Hao, C. Deng, W. Ren, H. , Chinese J. Catal., 2018, 39, (9), 1552 LINK https://doi.org/10.1016/s1872-2067(18)63091-8
    [Google Scholar]
  116. L. Sun, Z. Zhu, T. Su, W. Liao, D. Hao, Y. Chen, Y. Zhao, W. Ren, H. Ge, H. , Appl. Catal. B Environ., 2019, 255, 117747 LINK https://doi.org/10.1016/j.apcatb.2019.117747
    [Google Scholar]
  117. L. Li, Y. Lu, H. Meng, C. Li, Fuel, 2019, 253, 802 LINK https://doi.org/10.1016/j.fuel.2019.05.082
    [Google Scholar]
  118. M.-W. Wan, ‘Development of a Portable, Modular Unit for the Optimization of Ultrasound-Assisted Oxidative Desulfurization of Diesel’, PhD Thesis, University of Southern California, USA, May, 2006
  119. J.-M. Brégeault, Dalton Trans., 2003, (17), 3289 LINK https://doi.org/10.1039/b303073n
    [Google Scholar]
  120. “Catalytic Oxidations with Hydrogen Peroxide as Oxidant”, ed. G. Strukul, Catalysis by Metal Complexes, Vol. 9, Springer Science & Business Media, Dordrecht, The Netherlands, 1992
    [Google Scholar]
  121. P. S. Tam, J. R. Kittrell, J. W. Eldridge, Ind. Eng. Chem. Res., 1990, 29, (3), 324 LINK https://doi.org/10.1021/ie00099a003
    [Google Scholar]
  122. S. Xun, C. Hu, B. Yang, W. Jiang, M. He, W. Zhu, H. Li, Green Energy Environ., 2025, 10, (7), 1519 LINK https://doi.org/10.1016/j.gee.2025.02.005
    [Google Scholar]
  123. J. Chang, A. Wang, J. Liu, X. Li, Y. Hu, Catal. Today, 2010, 149, (1–2), 122 LINK https://doi.org/10.1016/j.cattod.2009.04.026
    [Google Scholar]
  124. L. I. Kuznetsova, L. G. Detusheva, N. I. Kuznetsov, V. K. Duplyakin, V. A. Likholobov, Kinet. Catal., 2008, 49, (5), 644 LINK https://doi.org/10.1134/s002315840805008x
    [Google Scholar]
  125. X. Zhou, C. Zhao, J. Yang, S. Zhang, Energy Fuels, 2006, 21, (1), 7 LINK https://doi.org/10.1021/ef060441p
    [Google Scholar]
  126. A. Chica, A. Corma, M. E. Dómine, J. Catal., 2006, 242, (2), 299 LINK https://doi.org/10.1016/j.jcat.2006.06.013
    [Google Scholar]
  127. N. Y. Chan, T.-Y. Lin, T. F. Yen, Energy Fuels, 2008, 22, (5), 3326 LINK https://doi.org/10.1021/ef800460g
    [Google Scholar]
  128. R. Sundararaman, X. Ma, C. Song, Ind. Eng. Chem. Res., 2010, 49, (12), 5561 LINK https://doi.org/10.1021/ie901812r
    [Google Scholar]
  129. A. T. Nawaf, A. T. Jarullah, S. A. Gheni, I. M. Mujtaba, Ind. Eng. Chem. Res., 2015, 54, (50), 12503 LINK https://doi.org/10.1021/acs.iecr.5b03289
    [Google Scholar]
  130. J. Wang, D. Zhao, K. Li, Energy Fuels, 2010, 24, (4), 2527 LINK https://doi.org/10.1021/ef901324p
    [Google Scholar]
  131. N. M. Likhterova, V. V. Lunin, D. S. Sazonov, S. A. Samoilenko, Chem. Technol. Fuels Oils, 2008, 44, (1), 39 LINK https://doi.org/10.1007/s10553-008-0010-9
    [Google Scholar]
  132. M. Hassanein, H. El-Hamshary, N. Salahuddin, A. Abu-El-Fotoh, J. Mol. Catal. A Chem., 2005, 234, (1–2), 45 LINK https://doi.org/10.1016/j.molcata.2005.02.014
    [Google Scholar]
  133. H. Liu, E. Min, Green Chem., 2006, 8, (7), 657 LINK https://doi.org/10.1039/b603461f
    [Google Scholar]
  134. M. Shi, D. Zhang, X. Yu, Y. Li, X. Wang, W. Yang, Fuel Process. Technol., 2017, 160, 136 LINK https://doi.org/10.1016/j.fuproc.2017.02.038
    [Google Scholar]
  135. J. I. Humadi, W. T. Mohammed, Johnson Matthey Technol. Rev., 2026, 70, (1), in press LINK https://doi.org/10.1595/205651326X17539747239841
    [Google Scholar]
  136. J. I. Humadi, W. T. Mohammed, Johnson Matthey Technol. Rev., 2026, 70, (2), in press LINK https://doi.org/10.1595/205651326X17539747239869
    [Google Scholar]
/content/journals/10.1595/205651325X17458327898766
Loading
/content/journals/10.1595/205651325X17458327898766
Loading

Data & Media loading...

Supplements

  • Article Type: Review Article
Keyword(s): desulfurisation technologies; ODS process; oscillatory baffled reactor; reactor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test