Skip to content
1887
Volume 70, Issue 1
  • ISSN: 2056-5135
  • oa Structure-Property Correlation in Intermetallic Compounds of Aluminium with Ruthenium, Iridium and Nickel

    Effect of temperature and crystallographic orientation on physical properties

  • Authors: Rakesh Kumar1, Devraj Singh1, Sudhanshu Tripathi2, Mokhtar Boudjelal3 and Rabah Khenata3
  • 1 Department of Physics, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, Veer Bahadur Singh Purvanchal University, Jaunpur-222003, Uttar Pradesh, India 2 Amity Institute of Information Technology, Amity University, Uttar Pradesh, Noida-201313, India 3 Laboratory Of Quantum Physics of Matter and Mathematical Modeling (LPQ3M), University of Mascara, Mascara, 29000, Algeria
    *[email protected]; #[email protected]
  • Source: Johnson Matthey Technology Review, Volume 70, Issue 1, Jan 2026, p. 101 - 119
  • DOI: https://doi.org/10.1595/205651326X17510235734462
    • Received: 15 May 2025
    • Accepted: 27 Jun 2025

Abstract

The intermetallic compounds X-aluminium (X = ruthenium, iridium, nickel) show unique combinations of mechanical strength, thermal stability and oxidation resistance, making them attractive for advanced structural and functional applications. The present work explores the ultrasonic properties of selected materials for understanding their thermophysical temperature-dependent behaviour. The thermophysical properties for selected intermetallic compounds X-aluminium such as specific heat, energy density, thermal conductivity, Debye temperature and thermal relaxation time have been enumerated using second and third order elastic constants (SOECs and TOECs) the Born potential model in the temperature range 0–500 K. The ELATE visualisation tool has been used to envision mechanical parameters such as Young’s modulus, shear modulus, Poisson’s ratio and compressibility (linear) at zero pressure for ruthenium-aluminium, iridium-aluminium and nickel-aluminium in three dimensions (3D). The mechanical and ultrasonic properties of X-aluminium such as shear modulus, Young’s modulus, Zener anisotropic factor, Poisson’s ration, Pugh’s ratio and ultrasonic wave velocities for longitudinal and shear modes along <100>, <110> and <111> directions have been enumerated using the established mathematical model. Finally, all computed parameters have been utilised to evaluate the ultrasonic attenuation for the selected intermetallics. The obtained results are discussed and cumulated with available results on the materials for further analysis of intermetallic bonding, phase stability and high-temperature behaviour.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651326X17510235734462
2026-01-01
2025-11-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/70/1/Kumar2_13a_Imp.html?itemId=/content/journals/10.1595/205651326X17510235734462&mimeType=html&fmt=ahah

References

  1. K. M. Mullin, S. A. Kube, S. K. Wu, T. M. Pollock, Metall. Mater. Trans. A, 2024, 55, (10), 3809 LINK https://doi.org/10.1007/s11661-024-07541-2
    [Google Scholar]
  2. P. Jozwik, W. Polkowski, Z. Bojar, Materials, 2015, 8, (5), 2537 LINK https://doi.org/10.3390/ma8052537
    [Google Scholar]
  3. J. Ren, P. Hou, Q. Gao, Q. Wang, Y. Bai, J. Li, H. Xue, X. Lu, F. Tang, J. Phys. Chem. Solids, 2025, 202, 112679 LINK https://doi.org/10.1016/j.jpcs.2025.112679
    [Google Scholar]
  4. Y.-Y. Fang, Y.-H. Tsai, Y.-L. Chen, D.-J. Jhan, M.-Y. Lu, P. Y. Keng, S.-Y. Chang, Appl. Phys. Lett., 2024, 124, (14), 142108 LINK https://doi.org/10.1063/5.0198235
    [Google Scholar]
  5. R. Darolia, JOM, 1991, 43, (3), 44 LINK https://doi.org/10.1007/bf03220163
    [Google Scholar]
  6. G. K. Dey, Sadhana, 2003, 28, (1–2), 247 LINK https://doi.org/10.1007/bf02717135
    [Google Scholar]
  7. A. V. Ponomareva, Y. K. Vekilov, I. A. Abrikosov, J. Alloys Compd., 2014, 586, (1), S274 LINK https://doi.org/10.1016/j.jallcom.2012.12.103
    [Google Scholar]
  8. B. Fatima, N. Acharya, S. S. Chouhan, S. P. Sanyal, AIP Conf. Proc., 2013, 1512, (1), 796 LINK https://doi.org/10.1063/1.4791278
    [Google Scholar]
  9. B. Fatima, S. S. Chouhan, N. Acharya, S. P. Sanyal, Adv. Phys. Theor. Appl., 2013, 19, 24 LINK https://iiste.org/Journals/index.php/APTA/article/view/5955/6123
    [Google Scholar]
  10. Y. Pan, P. Wang, Mol. Simul., 2019, 45, (13), 1058 LINK https://doi.org/10.1080/08927022.2019.1631452
    [Google Scholar]
  11. Y. Pan, C. Jin, Vacuum, 2017, 143, 165 LINK https://doi.org/10.1016/j.vacuum.2017.06.013
    [Google Scholar]
  12. Y. Pan, M. Wen, L. Wang, X. Wang, Y. H. Lin, W. M. Guan, J. Alloys Compd., 2015, 648, 771 LINK https://doi.org/10.1016/j.jallcom.2015.07.058
    [Google Scholar]
  13. Y. Pan, W. M. Guan, Int. J. Hydrogen Energy, 2020, 45, (38), 20032 LINK https://doi.org/10.1016/j.ijhydene.2020.04.290
    [Google Scholar]
  14. F. Mücklich, N. Ilić, K. Woll, Intermetallics, 2008, 16, (5), 593 LINK https://doi.org/10.1016/j.intermet.2008.02.010
    [Google Scholar]
  15. S. Huang, C.-H. Zhang, R.-Z. Li, J. Shen, N.-X. Chen, Intermetallics, 2014, 51, 24 LINK https://doi.org/10.1016/j.intermet.2014.02.020
    [Google Scholar]
  16. V. Ott, T. Wojcik, S. Kolozsvari, P. Polcik, C. Schäfer, C. Pauly, F. Mücklich, S. Ulrich, P. H. Mayrhofer, H. Riedl, M. Stüber, Adv. Eng. Mater., 2025, 27, (3), 2400258 LINK https://doi.org/10.1002/adem.202400258
    [Google Scholar]
  17. H. Fu, D. Li, F. Peng, T. Gao, X. Cheng, Comput. Mater. Sci., 2008, 44, (2), 774 LINK https://doi.org/10.1016/j.commatsci.2008.05.026
    [Google Scholar]
  18. Y. Cao, P. Zhu, J. Zhu, Y. Liu, Comput. Mater. Sci., 2016, 111, 34 LINK https://doi.org/10.1016/j.commatsci.2015.08.053
    [Google Scholar]
  19. H. Wang, M. Li, Phys. Rev. B, 2009, 79, (22), 224102 LINK https://doi.org/10.1103/physrevb.79.224102
    [Google Scholar]
  20. A. Pandit, A. Bongiorno, Comput. Phys. Commun., 2023, 288, 108751 LINK https://doi.org/10.1016/j.cpc.2023.108751
    [Google Scholar]
  21. O. N. Senkov, D. B. Miracle, Sci. Rep., 2021, 11, 4531 LINK https://doi.org/10.1038/s41598-021-83953-z
    [Google Scholar]
  22. J. K. D. Verma, B. D. Nag, P. S. Nair, Z. Naturforsch. A, 1964, 19, (13), 1561 LINK https://doi.org/10.1515/zna-1964-1319
    [Google Scholar]
  23. A. Singh, D. Singh, S. Tripathi, R. Khenata, Phys. Lett. A, 2024, 527, 130010 LINK https://doi.org/10.1016/j.physleta.2024.130010
    [Google Scholar]
  24. M. Born, K. Huang, “Dynamical Theory of Crystal Lattices”, Clarendon Press, Oxford, UK, 1954, 420 pp
  25. S. Bhagavantam, “Crystal Symmetry and Physical Properties”, Academic Press Inc (London) Ltd, London, UK, 1966, 230 pp
  26. J. M. Ziman, “Electrons and Phonons: The Theory of Transport Phenomena in Solids”, Oxford University Press, Oxford, UK, 1960, 570 pp
  27. R. P. Thompson, W. J. Clegg, Curr. Opin. Solid State Mater. Sci., 2018, 22, (3), 100 LINK https://doi.org/10.1016/j.cossms.2018.04.001
    [Google Scholar]
  28. S. I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett., 2008, 101, (5), 055504 LINK https://doi.org/10.1103/physrevlett.101.055504
    [Google Scholar]
  29. S. Ahmed, R. B. Thompson, J. Acoust. Soc. Am., 1996, 99, (4), 2086 LINK https://doi.org/10.1121/1.415395
    [Google Scholar]
  30. W. P. Binnie, Phys. Rev., 1956, 103, (3), 579 LINK https://doi.org/10.1103/physrev.103.579
    [Google Scholar]
  31. S. H. Bagade, P. A. Saudagar, Acoust. Phys., 2024, 70, (2), 229 LINK https://doi.org/10.1134/s1063771023601334
    [Google Scholar]
  32. J. Krautkrämer, H. Krautkrämer, “Ultrasonic Testing of Materials”, 2nd Edn., eds., W. Grabendörfer, L. Niklas, R. Frielinghaus, W. Rath, H. Schlemm, U. Schlengermann, Springer-Verlag Berlin Heidelberg, New York, USA, 1977, 667 pp
  33. K. Brugger, Phys. Rev., 1964, 133, (6A), A1611 LINK https://doi.org/10.1103/physrev.133.a1611
    [Google Scholar]
  34. P. B. Ghate, Phys. Rev., 1965, 139, (5A), A1666 LINK https://doi.org/10.1103/physrev.139.a1666
    [Google Scholar]
  35. R. R. Yadav, D. K. Pandey, Acta Phys. Pol. A, 2005, 107, (6), 933 LINK https://doi.org/10.12693/aphyspola.107.933
    [Google Scholar]
  36. R. Kumar, D. Singh, S. Tripathi, R. Khenata, S. Bin-Omran, Johnson Matthey Technol. Rev., 2025, 69, (3), 437 LINK https://doi.org/10.1595/205651325x17236415666329
    [Google Scholar]
  37. W. P. Mason, ‘Effect of Impurities and Phonon Processes on the Ultrasonic Attenuation of Germanium, Crystal Quartz, and Silicon’, in “Physical Acoustics”, Vol. 3B, Academic Press Inc, New York, USA, 1965, pp. 235286
    [Google Scholar]
  38. U. S. Tandon, S. K. Kor, Phys. Rev. B, 1973, 7, (10), 4640 LINK https://doi.org/10.1103/physrevb.7.4640
    [Google Scholar]
  39. M. P. Tosi, ‘Cohesion of Ionic Solids in the Born Model’, in “Solid State Physics”, eds. F. Seitz, D. Turnbull, Vol. 16, Academic Press Inc, New York, USA, 1964, pp. 1120 LINK https://doi.org/10.1016/S0081-1947(08)60515-9
    [Google Scholar]
  40. C. S. G. Cousins, J. Phys. C Solid State Phys., 1971, 4, (10), 1117 LINK https://doi.org/10.1088/0022-3719/4/10/020
    [Google Scholar]
  41. D. Singh, D. K. Pandey, Pramana, 2009, 72, (2), 389 LINK https://doi.org/10.1007/s12043-009-0034-7
    [Google Scholar]
  42. A. Singh, J. Bala, S. P. Singh, D. Singh, Vietnam J. Sci. Technol., 2025, 63, (1), 161 LINK https://doi.org/10.15625/2525-2518/20142
    [Google Scholar]
  43. S. F. Pugh, Lond. Edinb. Dubl. Phil. Mag. J. Sci., 1954, 45, (367), 823 LINK https://doi.org/10.1080/14786440808520496
    [Google Scholar]
  44. J. P. Watt, Phys. Chem. Miner., 1988, 15, (6), 579 LINK https://doi.org/10.1007/bf00311029
    [Google Scholar]
  45. M. A. H. Shah, M. Nuruzzaman, A. Hossain, M. Jubair, M. A. K. Zilani, Comput. Condens. Matter, 2023, 34, e00774 LINK https://doi.org/10.1016/j.cocom.2022.e00774
    [Google Scholar]
  46. R. Gaillac, P. Pullumbi, F.-X. Coudert, J. Phys. Condens. Matter, 2016, 28, (27), 275201 LINK https://doi.org/10.1088/0953-8984/28/27/275201
    [Google Scholar]
  47. “American Institute of Physics Handbook”, 3rd Edn., ed. D. E. Gray, McGraw-Hill Inc, New York, USA, 1972
  48. D. Singh, D. K. Pandey, P. K. Yadawa, Open Phys., 2009, 7, (1), 198 LINK https://doi.org/10.2478/s11534-008-0130-1
    [Google Scholar]
  49. D. K. Pandey, D. Singh, P. K. Yadawa, Platinum Metals Rev., 2009, 53, (2), 91 LINK https://doi.org/10.1595/147106709x430927
    [Google Scholar]
  50. A. Singh, D. Singh, Johnson Matthey Technol. Rev., 2024, 68, (1), 49 LINK https://doi.org/10.1595/205651323x16902884637568
    [Google Scholar]
  51. R. R. Yadav, A. K. Gupta, D. Singh, J. Phys. Stud., 2005, 9, (3), 227 LINK https://doi.org/10.30970/jps.09.227
    [Google Scholar]
/content/journals/10.1595/205651326X17510235734462
Loading
/content/journals/10.1595/205651326X17510235734462
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test