Skip to content
1887
Volume 70, Issue 1
  • ISSN: 2056-5135

Abstract

Platinum group metals (PGMs) are key for various applications in electronics, optics, medicine, sensing, catalysis, energy conversion, water or air treatment and many more. Unfortunately, platinum, palladium, ruthenium, rhodium, iridium and osmium are limited resources. If efficient recycling is a key aspect of the life cycle of PGMs, another important aspect is the optimal actual use of the PGM resources. Optimal use can be achieved by designing nanomaterials down to the atomic scale to make the most of every single PGM atom. In this direction, a parameter often overlooked is the careful selection and development of the synthetic routes selected to obtain the desired PGM-based nanomaterials. Indeed, the way the nanomaterials are obtained can greatly influence their resulting properties and condition their use, activity, stability and potentially even their recyclability. For PGMs to truly contribute to more sustainable technologies and processes, how PGM nanomaterials are obtained could benefit from more sustainable syntheses. An account of emerging simpler and potentially more sustainable syntheses of PGM nanomaterials, their various benefits and remaining challenges is proposed.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651326X17520721599435
2026-01-01
2025-11-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/70/1/Quinson_13a_Imp.html?itemId=/content/journals/10.1595/205651326X17520721599435&mimeType=html&fmt=ahah

References

  1. R. Cayumil, R. Khanna, R. Rajarao, P. S. Mukherjee, V. Sahajwalla, Waste Manage., 2016, 57, 121 LINK https://doi.org/10.1016/j.wasman.2015.12.004
    [Google Scholar]
  2. D. T. Buechler, N. N. Zyaykina, C. A. Spencer, E. Lawson, N. M. Ploss, I. Hua, Waste Manage., 2020, 103, 67 LINK https://doi.org/10.1016/j.wasman.2019.12.014
    [Google Scholar]
  3. J. Quinson, Adv. Colloid Interface Sci., 2022, 303, 102643 LINK https://doi.org/10.1016/j.cis.2022.102643
    [Google Scholar]
  4. M. Rai, A. P. Ingle, S. Birla, A. Yadav, C. A. D. Santos, Crit. Rev. Microbiol., 2016, 42, (5), 696 LINK https://doi.org/10.3109/1040841x.2015.1018131
    [Google Scholar]
  5. L.-Y. Zhu, L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu, H.-L. Lu, Nano Micro Lett., 2023, 15, (1), 89 LINK https://doi.org/10.1007/s40820-023-01047-z
    [Google Scholar]
  6. J. Quinson, S. Kunz, M. Arenz, ACS Catal., 2023, 13, (7), 4903 LINK https://doi.org/10.1021/acscatal.2c05998
    [Google Scholar]
  7. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science, 2017, 355, (6321), eaad4998 LINK https://doi.org/10.1126/science.aad4998
    [Google Scholar]
  8. T. Pradeep, Anshup, Thin Solid Films, 2009, 517, (24), 6441 LINK https://doi.org/10.1016/j.tsf.2009.03.195
    [Google Scholar]
  9. Y. Tonbul, M. Zahmakiran, S. Özkar, Appl. Catal. B Environ., 2014, 148–149, 466 LINK https://doi.org/10.1016/j.apcatb.2013.11.017
    [Google Scholar]
  10. Y. Chen, Q. Qiao, J. Cao, H. Li, Z. Bian, Joule, 2021, 5, (12), 3097 LINK https://doi.org/10.1016/j.joule.2021.11.002
    [Google Scholar]
  11. ‘Reclaiming the Future: PGM Insights for a Circular Economy’, Johnson Matthey, UK, 2025 LINK https://matthey.com/documents/161599/3147297/JM_Circularity_Whitepaper.pdf
  12. J. Quinson, S. Kunz, M. Arenz, ChemCatChem, 2021, 13, (7), 1692 LINK https://doi.org/10.1002/cctc.202001858
    [Google Scholar]
  13. K. Loza, M. Heggen, M. Epple, Adv. Funct. Mater., 2020, 30, (21), 1909260 LINK https://doi.org/10.1002/adfm.201909260
    [Google Scholar]
  14. J. Quinson, K. M. Ø. Jensen, Adv. Colloid Interface Sci., 2020, 286, 102300 LINK https://doi.org/10.1016/j.cis.2020.102300
    [Google Scholar]
  15. N. H. Ramli, N. Mohamad Nor, A. H. Abu Bakar, N. D. Zakaria, Z. Lockman, K. Abdul Razak, Microchem. J., 2024, 200, 110280 LINK https://doi.org/10.1016/j.microc.2024.110280
    [Google Scholar]
  16. T. T. V. Phan, J. Cluster Sci., 2024, 35, (6), 1915 LINK https://doi.org/10.1007/s10876-024-02634-9
    [Google Scholar]
  17. N. Joudeh, A. Saragliadis, G. Koster, P. Mikheenko, D. Linke, Front. Nanotechnol., 2022, 4, 1062608 LINK https://doi.org/10.3389/fnano.2022.1062608
    [Google Scholar]
  18. J. Krajczewski, R. Ambroziak, A. Kudelski, RSC Adv., 2022, 12, (4), 2123 LINK https://doi.org/10.1039/d1ra07470a
    [Google Scholar]
  19. J. Quinson, Open Res. Europe, 2022, 2, 39 LINK https://doi.org/10.12688/openreseurope.14595.2
    [Google Scholar]
  20. T. Freese, N. Elzinga, M. Heinemann, M. M. Lerch, B. L. Feringa, RSC Sustain., 2024, 2, (5), 1300 LINK https://doi.org/10.1039/d4su00056k
    [Google Scholar]
  21. H. Duan, D. Wang, Y. Li, Chem. Soc. Rev., 2015, 44, (16), 5778 LINK https://doi.org/10.1039/c4cs00363b
    [Google Scholar]
  22. P. L. Saldanha, V. Lesnyak, L. Manna, Nano Today, 2017, 12, 46 LINK https://doi.org/10.1016/j.nantod.2016.12.001
    [Google Scholar]
  23. J. E. Hutchison, ACS Sustain. Chem. Eng., 2016, 4, (11), 5907 LINK https://doi.org/10.1021/acssuschemeng.6b02121
    [Google Scholar]
  24. L. M. Gilbertson, J. B. Zimmerman, D. L. Plata, J. E. Hutchison, P. T. Anastas, Chem. Soc. Rev., 2015, 44, (16), 5758 LINK https://doi.org/10.1039/c4cs00445k
    [Google Scholar]
  25. D. Gupta, A. Boora, A. Thakur, T. K. Gupta, Environ. Res., 2023, 231, (3), 116316 LINK https://doi.org/10.1016/j.envres.2023.116316
    [Google Scholar]
  26. A. T. Reda, Y. T. Park, Chem. Eng. J., 2025, 516, 163894 LINK https://doi.org/10.1016/j.cej.2025.163894
    [Google Scholar]
  27. G. K. Prashanth, H. S. Lalithamba, S. Rao, K. V. Rashmi, N. P. Bhagya, M. S. Dileep, M. Gadewar, M. K. Ghosh, Next Materials, 2025, 8, 100613 LINK https://doi.org/10.1016/j.nxmate.2025.100613
    [Google Scholar]
  28. M. D. Arif, M. E. Hoque, M. Z. Rahman, M. U. Shafoyat, Mater. Today Commun., 2024, 40, 109335 LINK https://doi.org/10.1016/j.mtcomm.2024.109335
    [Google Scholar]
  29. M. Jeyaraj, S. Gurunathan, M. Qasim, M.-H. Kang, J.-H. Kim, Nanomaterials, 2019, 9, (12), 1719 LINK https://doi.org/10.3390/nano9121719
    [Google Scholar]
  30. S. Luo, Y. Liu, Y. Zhu, Q. Niu, M. Cheng, S. Ye, H. Yi, B. Shao, M. Shen, X. Wen, G. Zeng, Z. Liu, Environ. Sci. Nano, 2021, 8, (1), 20 LINK https://doi.org/10.1039/d0en01048k
    [Google Scholar]
  31. S. Karim, Y.-P. Ting, Chemosphere, 2025, 377, 144340 LINK https://doi.org/10.1016/j.chemosphere.2025.144340
    [Google Scholar]
  32. N. Baig, I. Kammakakam, W. Falath, Mater. Adv., 2021, 2, (6), 1821 LINK https://doi.org/10.1039/d0ma00807a
    [Google Scholar]
  33. J. Limongelli, F. Tolea, M. Valeanu, L. Diamandescu, T. Xu, M. Sorescu, Ceram. Int., 2015, 41, (1A), 333 LINK https://doi.org/10.1016/j.ceramint.2014.08.076
    [Google Scholar]
  34. G. W. Sievers, A. W. Jensen, J. Quinson, A. Zana, F. Bizzotto, M. Oezaslan, A. Dworzak, J. J. K. Kirkensgaard, T. E. L. Smitshuysen, S. Kadkhodazadeh, M. Juelsholt, K. M. Ø. Jensen, K. Anklam, H. Wan, J. Schäfer, K. Čépe, M. Escudero-Escribano, J. Rossmeisl, A. Quade, V. Brüser, M. Arenz, Nat. Mater., 2021, 20, (2), 208 LINK https://doi.org/10.1038/s41563-020-0775-8
    [Google Scholar]
  35. F. Cao, Z. Song, Z. Zhang, Y.-S. Xiao, M. Zhang, X. Hu, Z.-W. Liu, Y. Qu, ACS Appl. Mater. Interfaces, 2021, 13, (21), 24957 LINK https://doi.org/10.1021/acsami.1c05722
    [Google Scholar]
  36. C. A. Charitidis, P. Georgiou, M. A. Koklioti, A.-F. Trompeta, V. Markakis, Manuf. Rev., 2014, 1, 11 LINK https://doi.org/10.1051/mfreview/2014009
    [Google Scholar]
  37. K.-F. Yung, W.-T. Wong, J. Cluster Sci., 2007, 18, (1), 51 LINK https://doi.org/10.1007/s10876-006-0079-4
    [Google Scholar]
  38. Y.-L. Chen, C.-C. Hsu, Y.-H. Song, Y. Chi, A. J. Carty, S.-M. Peng, G.-H. Lee, Chem. Vap. Deposition, 2006, 12, (7), 442 LINK https://doi.org/10.1002/cvde.200606491
    [Google Scholar]
  39. N. T. K. Thanh, N. Maclean, S. Mahiddine, Chem. Rev., 2014, 114, (15), 7610 LINK https://doi.org/10.1021/cr400544s
    [Google Scholar]
  40. F. Fiévet, S. Ammar-Merah, R. Brayner, F. Chau, M. Giraud, F. Mammeri, J. Peron, J.-Y. Piquemal, L. Sicard, G. Viau, Chem. Soc. Rev., 2018, 47, (14), 5187 LINK https://doi.org/10.1039/c7cs00777a
    [Google Scholar]
  41. M. Bondesgaard, N. L. N. Broge, A. Mamakhel, M. Bremholm, B. B. Iversen, Adv. Funct. Mater., 2019, 29, (50), 1905933 LINK https://doi.org/10.1002/adfm.201905933
    [Google Scholar]
  42. Y. T. Guntern, V. Okatenko, J. Pankhurst, S. B. Varandili, P. Iyengar, C. Koolen, D. Stoian, J. Vavra, R. Buonsanti, ACS Catal., 2021, 11, (3), 1248 LINK https://doi.org/10.1021/acscatal.0c04403
    [Google Scholar]
  43. M. Cargnello, Chem. Mater., 2019, 31, (3), 576 LINK https://doi.org/10.1021/acs.chemmater.8b04533
    [Google Scholar]
  44. D. R. Handwerk, P. D. Shipman, C. B. Whitehead, S. Özkar, R. G. Finke, J. Am. Chem. Soc., 2019, 141, (40), 15827 LINK https://doi.org/10.1021/jacs.9b06364
    [Google Scholar]
  45. J. Quinson, S. Neumann, L. Kacenauskaite, J. Bucher, J. J. K. Kirkensgaard, S. B. Simonsen, L. Theil Kuhn, A. Zana, T. Vosch, M. Oezaslan, S. Kunz, M. Arenz, Chem. Eur. J., 2020, 26, (41), 9012 LINK https://doi.org/10.1002/chem.202001553
    [Google Scholar]
  46. T. S. Rodrigues, M. Zhao, T.-H. Yang, K. D. Gilroy, A. G. M. da Silva, P. H. C. Camargo, Y. Xia, Chem. Eur. J., 2018, 24, (64), 16944 LINK https://doi.org/10.1002/chem.201802194
    [Google Scholar]
  47. R. W. Epps, M. Abolhasani, Appl. Phys. Rev., 2021, 8, (4), 041316 LINK https://doi.org/10.1063/5.0061799
    [Google Scholar]
  48. A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M. F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M. H. Stewart, I. L. Medintz, E. Stratakis, W. J. Parak, A. G. Kanaras, Chem. Rev., 2019, 119, (8), 4819 LINK https://doi.org/10.1021/acs.chemrev.8b00733
    [Google Scholar]
  49. L. M. Rossi, J. L. Fiorio, M. A. S. Garcia, C. P. Ferraz, Dalton Trans., 2018, 47, (17), 5889 LINK https://doi.org/10.1039/c7dt04728b
    [Google Scholar]
  50. M. Cargnello, C. Chen, B. T. Diroll, V. V. T. Doan-Nguyen, R. J. Gorte, C. B. Murray, J. Am. Chem. Soc., 2015, 137, (21), 6906 LINK https://doi.org/10.1021/jacs.5b03333
    [Google Scholar]
  51. M. Inaba, A. Zana, J. Quinson, F. Bizzotto, C. Dosche, A. Dworzak, M. Oezaslan, S. B. Simonsen, L. T. Kuhn, M. Arenz, ACS Catal., 2021, 11, (12), 7144 LINK https://doi.org/10.1021/acscatal.1c00652
    [Google Scholar]
  52. B. A. T. Mehrabadi, S. Eskandari, U. Khan, R. D. White, J. R. Regalbuto, Adv. Catal., 2017, 61, 1 LINK https://doi.org/10.1016/bs.acat.2017.10.001
    [Google Scholar]
  53. P. Munnik, P. E. de Jongh, K. P. de Jong, Chem. Rev., 2015, 115, (14), 6687 LINK https://doi.org/10.1021/cr500486u
    [Google Scholar]
  54. P. Losch, W. Huang, E. D. Goodman, C. J. Wrasman, A. Holm, A. R. Riscoe, J. A. Schwalbe, M. Cargnello, Nano Today, 2019, 24, 15 LINK https://doi.org/10.1016/j.nantod.2018.12.002
    [Google Scholar]
  55. L. Zhao, Y. Guo, L. Luo, X. Yan, S. Shen, J. Zhang, Acta Phys. Chim. Sin., 2024, 40, (7), 2306029 LINK https://doi.org/10.3866/pku.whxb202306029
    [Google Scholar]
  56. S. Neumann, J. Schröder, F. Bizzotto, M. Arenz, A. Dworzak, M. Oezaslan, M. Bäumer, S. Kunz, ChemNanoMat, 2019, 5, (4), 462 LINK https://doi.org/10.1002/cnma.201800550
    [Google Scholar]
  57. J. Quinson, J. Bucher, S. B. Simonsen, L. T. Kuhn, S. Kunz, M. Arenz, ACS Sustain. Chem. Eng., 2019, 7, (16), 13680 LINK https://doi.org/10.1021/acssuschemeng.9b00681
    [Google Scholar]
  58. N. E. Amri, K. Roger, J. Colloid Interface Sci., 2020, 576, 435 LINK https://doi.org/10.1016/j.jcis.2020.04.113
    [Google Scholar]
  59. B. He, Y. Chen, H. Liu, Y. Liu, J. Nanosci. Nanotechnol., 2005, 5, (2), 266 LINK https://doi.org/10.1166/jnn.2005.028
    [Google Scholar]
  60. C. Wei, W. Shixing, Z. Libo, P. Jinhui, Z. Gengwei, Russ. J. Non-Ferrous Met., 2015, 56, (4), 417 LINK https://doi.org/10.3103/s1067821215040215
    [Google Scholar]
  61. M. S. Jameel, A. A. Aziz, M. A. Dheyab, Inorg. Chem. Commun., 2021, 128, 108565 LINK https://doi.org/10.1016/j.inoche.2021.108565
    [Google Scholar]
  62. H. E. Hansen, F. Seland, S. Sunde, O. S. Burheim, B. G. Pollet, Mater. Adv., 2021, 2, (6), 1962 LINK https://doi.org/10.1039/d0ma00909a
    [Google Scholar]
  63. H. E. Hansen, F. Seland, S. Sunde, O. S. Burheim, B. G. Pollet, Ultrason. Sonochem., 2022, 85, 105991 LINK https://doi.org/10.1016/j.ultsonch.2022.105991
    [Google Scholar]
  64. D. Røjkjær Rasmussen, N. Lock, J. Quinson, ChemSusChem, 2025, 18, (3), e202400763 LINK https://doi.org/10.1002/cssc.202400763
    [Google Scholar]
  65. J. Quinson, L. Kacenauskaite, J. Schröder, S. B. Simonsen, L. T. Kuhn, T. Vosch, M. Arenz, Nanoscale Adv., 2020, 2, (6), 2288 LINK https://doi.org/10.1039/d0na00218f
    [Google Scholar]
  66. J. Schröder, S. Neumann, S. Kunz, J. Phys. Chem. C, 2020, 124, (39), 21798 LINK https://doi.org/10.1021/acs.jpcc.0c06361
    [Google Scholar]
  67. L. Kacenauskaite, J. Quinson, H. Schultz, J. J. K. Kirkensgaard, S. Kunz, T. Vosch, M. Arenz, ChemNanoMat, 2017, 3, (2), 89 LINK https://doi.org/10.1002/cnma.201600313
    [Google Scholar]
  68. L. Kacenauskaite, A. A. Swane, J. J. K. Kirkensgaard, M. Fleige, S. Kunz, T. Vosch, M. Arenz, ChemNanoMat, 2016, 2, (2), 104 LINK https://doi.org/10.1002/cnma.201500118
    [Google Scholar]
  69. J. Quinson, L. Kacenauskaite, T. L. Christiansen, T. Vosch, M. Arenz, K. M. Ø. Jensen, ACS Omega, 2018, 3, (8), 10351 LINK https://doi.org/10.1021/acsomega.8b01613
    [Google Scholar]
  70. N. G. García-Peña, R. Redón, A. Herrera-Gomez, A. L. Fernández-Osorio, M. Bravo-Sanchez, G. Gomez-Sosa, Appl. Surf. Sci., 2015, 340, 25 LINK https://doi.org/10.1016/j.apsusc.2015.02.186
    [Google Scholar]
  71. R. Redón, F. Ramírez-Crescencio, A. L. Fernández-Osorio, J. Nano. Res., 2011, 13, (11), 5959 LINK https://doi.org/10.1007/s11051-011-0413-0
    [Google Scholar]
  72. K. Sasaki, K. Miyake, Y. Uchida, N. Nishiyama, ACS Appl. Nano Mater., 2022, 5, (4), 4998 LINK https://doi.org/10.1021/acsanm.1c04583
    [Google Scholar]
  73. D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R. McElroy, S. Abou-Shehada, P. J. Dunn, Green Chem., 2016, 18, (1), 288 LINK https://doi.org/10.1039/c5gc01008j
    [Google Scholar]
  74. M. S. Akhtar, J. Panwar, Y.-S. Yun, ACS Sustain. Chem. Eng., 2013, 1, (6), 591 LINK https://doi.org/10.1021/sc300118u
    [Google Scholar]
  75. R. Muñiz-Diaz, S. Y. Gutiérrez de la Rosa, Ó. Gutiérrez Coronado, R. Patakfalvi, Chem. Pap., 2022, 76, (5), 2573 LINK https://doi.org/10.1007/s11696-021-01970-8
    [Google Scholar]
  76. F. Qazi, Z. Hussain, M. N. Tahir, RSC Adv., 2016, 6, (65), 60277 LINK https://doi.org/10.1039/c6ra11695g
    [Google Scholar]
  77. M. N. Nadagouda, R. S. Varma, Green Chem., 2008, 10, (8), 859 LINK https://doi.org/10.1039/b804703k
    [Google Scholar]
  78. A. K. Sidhu, S. B. Agrawal, N. Verma, P. Kaushal, M. Sharma, Front. Nanotechnol., 2025, 7, 1549713 LINK https://doi.org/10.3389/fnano.2025.1549713
    [Google Scholar]
  79. K. Liu, Z. Qiao, C. Gao, Molecules, 2023, 28, (15), 5720 LINK https://doi.org/10.3390/molecules28155720
    [Google Scholar]
  80. Y. Wu, D. Wang, Y. Li, Sci. China Mater., 2016, 59, (11), 938 LINK https://doi.org/10.1007/s40843-016-5112-0
    [Google Scholar]
  81. A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, 2nd Edn., John Wiley and Sons Inc, Hoboken, New Jersey, USA, 2001, 864 pp
  82. E. Generalic, ‘Platinum’, EniG. Periodic Table of the Elements, KTF-Split, Croatia: https://www.periodni.com/pt.html (Accessed on 9th April 2025)
  83. E. Generalic, ‘Palladium’, EniG. Periodic Table of the Elements, KTF-Split, Croatia: https://www.periodni.com/pd.html (Accessed on 9th April 2025)
  84. E. Generalic, ‘Ruthenium’, EniG. Periodic Table of the Elements, KTF-Split, Croatia: https://www.periodni.com/ru.html (Accessed on 9th April 2025)
  85. E. Generalic, ‘Rhodium’, EniG. Periodic Table of the Elements, KTF-Split, Croatia: https://www.periodni.com/rh.html (Accessed on 9th April 2025)
  86. E. Generalic, ‘Iridium’, EniG. Periodic Table of the Elements, KTF-Split, Croatia: https://www.periodni.com/ir.html (Accessed on 9th April 2025)
  87. E. Generalic, ‘Osmium’, EniG. Periodic Table of the Elements, KTF-Split, Croatia: https://www.periodni.com/os.html (Accessed on 9th April 2025)
  88. P. Vishnukumar, S. Vivekanandhan, S. Muthuramkumar, ChemBioEng Rev., 2017, 4, (1), 18 LINK https://doi.org/10.1002/cben.201600017
    [Google Scholar]
  89. Z. Han, L. Dong, J. Zhang, T. Cui, S. Chen, G. Ma, X. Guo, L. Wang, RSC Adv., 2019, 9, (65), 38265 LINK https://doi.org/10.1039/c9ra08051a
    [Google Scholar]
  90. K. M. Kumar, B. K. Mandal, S. K. Tammina, RSC Adv., 2013, 3, (12), 4033 LINK https://doi.org/10.1039/c3ra22959a
    [Google Scholar]
  91. S. Anantharaj, M. Jayachandran, S. Kundu, Chem. Sci., 2016, 7, (5), 3188 LINK https://doi.org/10.1039/c5sc04714e
    [Google Scholar]
  92. T.-H. Yang, H.-C. Peng, S. Zhou, C.-T. Lee, S. Bao, Y.-H. Lee, J.-M. Wu, Y. Xia, Nano Lett., 2017, 17, (1), 334 LINK https://doi.org/10.1021/acs.nanolett.6b04151
    [Google Scholar]
  93. H. Mao, Y. Liao, J. Ma, S. L. Zhao, F. W. Huo, Nanoscale, 2016, 8, (2), 1049 LINK https://doi.org/10.1039/c5nr07897k
    [Google Scholar]
  94. O. V. Kharissova, H. V. R. Dias, B. I. Kharisov, B. O. Pérez, V. M. J. Pérez, Trends Biotechnol., 2013, 31, (4), 240 LINK https://doi.org/10.1016/j.tibtech.2013.01.003
    [Google Scholar]
  95. C. Engelbrekt, K. H. Sørensen, T. Lübcke, J. Zhang, Q. Li, C. Pan, N. J. Bjerrum, J. Ulstrup, ChemPhysChem, 2010, 11, (13), 2844 LINK https://doi.org/10.1002/cphc.201000380
    [Google Scholar]
  96. C. Kang, L. Wang, Z. Bian, H. Guo, X. Ma, X. Qiu, L. Gao, Chem. Commun., 2014, 50, (90), 13979 LINK https://doi.org/10.1039/c4cc06419d
    [Google Scholar]
  97. K. K. L. Augusto, R. D. Crapnell, E. Bernalte, H. G. Andrews, O. Fatibello Filho, C. E. Banks, Green Chem., 2025, 27, (23), 6869 LINK https://doi.org/10.1039/d5gc00851d
    [Google Scholar]
  98. Y. Li, G. Yang, Y. Weng, L. Xu, F. Hou, S. Devkota, C.-X. Zhao, Colloids Surf. A Physicochem. Eng. Aspects, 2023, 677, (A), 132291 LINK https://doi.org/10.1016/j.colsurfa.2023.132291
    [Google Scholar]
  99. S. Campisi, M. Schiavoni, C. E. Chan-Thaw, A. Villa, Catalysts, 2016, 6, (12), 185 LINK https://doi.org/10.3390/catal6120185
    [Google Scholar]
  100. J. F. Gomes, A. C. Garcia, E. B. Ferreira, C. Pires, V. L. Oliveira, G. Tremiliosi Filho, L. H. S. Gasparotto, Phys. Chem. Chem. Phys., 2015, 17, (33), 21683 LINK https://doi.org/10.1039/c5cp02155c
    [Google Scholar]
  101. Y. Wang, J. Ren, K. Deng, L. Gui, Y. Tang, Chem. Mater., 2000, 12, (6), 1622 LINK https://doi.org/10.1021/cm0000853
    [Google Scholar]
  102. J. Quinson, M. Inaba, S. Neumann, A. A. Swane, J. Bucher, S. B. Simonsen, L. T. Kuhn, J. J. K. Kirkensgaard, K. M. Ø. Jensen, M. Oezaslan, S. Kunz, M. Arenz, ACS Catal., 2018, 8, (7), 6627 LINK https://doi.org/10.1021/acscatal.8b00694
    [Google Scholar]
  103. J. A. Arminio-Ravelo, J. Quinson, M. A. Pedersen, J. J. K. Kirkensgaard, M. Arenz, M. Escudero-Escribano, ChemCatChem, 2020, 12, (5), 1282 LINK https://doi.org/10.1002/cctc.201902190
    [Google Scholar]
  104. S. Neumann, S. Grotheer, J. Tielke, I. Schrader, J. Quinson, A. Zana, M. Oezaslan, M. Arenz, S. Kunz, J. Mater. Chem. A, 2017, 5, (13), 6140 LINK https://doi.org/10.1039/c7ta00628d
    [Google Scholar]
  105. P. Lettenmeier, J. Majchel, L. Wang, V. A. Saveleva, S. Zafeiratos, E. R. Savinova, J. J. Gallet, F. Bournel, A. S. Gago, K. A. Friedrich, Chem. Sci., 2018, 9, (14), 3570 LINK https://doi.org/10.1039/c8sc00555a
    [Google Scholar]
  106. F. Bizzotto, J. Quinson, J. Schröder, A. Zana, M. Arenz, J. Catal., 2021, 401, 54 LINK https://doi.org/10.1016/j.jcat.2021.07.004
    [Google Scholar]
  107. J. Quinson, S. Neumann, T. Wannmacher, L. Kacenauskaite, M. Inaba, J. Bucher, F. Bizzotto, S. B. Simonsen, L. T. Kuhn, D. Bujak, A. Zana, M. Arenz, S. Kunz, Angew. Chem. Int. Ed., 2018, 57, (38), 12338 LINK https://doi.org/10.1002/anie.201807450
    [Google Scholar]
  108. J. K. Mathiesen, J. Quinson, S. Blaseio, E. T. S. Kjær, A. Dworzak, S. R. Cooper, J. K. Pedersen, B. Wang, F. Bizzotto, J. Schröder, T. L. Kinnibrugh, S. B. Simonsen, L. T. Kuhn, J. J. K. Kirkensgaard, J. Rossmeisl, M. Oezaslan, M. Arenz, K. M. Ø. Jensen, J. Am. Chem. Soc., 2023, 145, (3), 1769 LINK https://doi.org/10.1021/jacs.2c10814
    [Google Scholar]
  109. M. Juelsholt, J. Quinson, E. T. S. Kjær, B. Wang, R. Pittkowski, S. R. Cooper, T. L. Kinnibrugh, S. B. Simonsen, L. T. Kuhn, M. Escudero-Escribano, K. M. Ø. Jensen, Beilstein J. Nanotechnol., 2022, 13, 230 LINK https://doi.org/10.3762/bjnano.13.17
    [Google Scholar]
  110. J. Quinson, O. Aalling-Frederiksen, W. L. Dacayan, J. D. Bjerregaard, K. D. Jensen, M. R. V. Jørgensen, I. Kantor, D. R. Sørensen, L. Theil Kuhn, M. S. Johnson, M. Escudero-Escribano, S. B. Simonsen, K. M. Ø. Jensen, Chem. Mater., 2023, 35, (5), 2173 LINK https://doi.org/10.1021/acs.chemmater.3c00090
    [Google Scholar]
  111. J. Quinson, L. Kacenauskaite, J. Bucher, S. B. Simonsen, L. T. Kuhn, M. Oezaslan, S. Kunz, M. Arenz, ChemSusChem, 2019, 12, (6), 1229 LINK https://doi.org/10.1002/cssc.201802897
    [Google Scholar]
  112. M. M. Seitkalieva, D. E. Samoylenko, K. A. Lotsman, K. S. Rodygin, V. P. Ananikov, Coord. Chem. Rev., 2021, 445, 213982 LINK https://doi.org/10.1016/j.ccr.2021.213982
    [Google Scholar]
  113. C. Verma, E. E. Ebenso, M. A. Quraishi, J. Mol. Liq., 2019, 276, 826 LINK https://doi.org/10.1016/j.molliq.2018.12.063
    [Google Scholar]
  114. S. Sugiarto, U. A. Weerasinghe, J. K. Muiruri, A. Y. Q. Chai, J. C. C. Yeo, G. Wang, Q. Zhu, X. J. Loh, Z. Li, D. Kai, Chem. Eng. J., 2024, 499, 156177 LINK https://doi.org/10.1016/j.cej.2024.156177
    [Google Scholar]
  115. D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev., 2017, 117, (5), 3990 LINK https://doi.org/10.1021/acs.chemrev.6b00468
    [Google Scholar]
  116. S. Reichenberger, G. Marzun, M. Muhler, S. Barcikowski, ChemCatChem, 2019, 11, (18), 4489 LINK https://doi.org/10.1002/cctc.201900666
    [Google Scholar]
  117. S. Kohsakowski, F. Seiser, J.-P. Wiederrecht, S. Reichenberger, T. Vinnay, S. Barcikowski, G. Marzun, Nanotechnology, 2019, 31, (9), 095603 LINK https://doi.org/10.1088/1361-6528/ab55bd
    [Google Scholar]
  118. A. R. Parab, A. Ramlal, S. C. B. Gopinath, S. Subramaniam, Front. Nanotechnol., 2025, 6, 1506665 LINK https://doi.org/10.3389/fnano.2024.1506665
    [Google Scholar]
  119. I. Chakraborty, T. Pradeep, Chem. Rev., 2017, 117, (12), 8208 LINK https://doi.org/10.1021/acs.chemrev.6b00769
    [Google Scholar]
  120. A. R. Poerwoprajitno, L. Gloag, S. Cheong, J. J. Gooding, R. D. Tilley, Nanoscale, 2019, 11, (41), 18995 LINK https://doi.org/10.1039/c9nr05802h
    [Google Scholar]
  121. Y.-C. Qin, F.-Q. Wang, X.-M. Wang, M.-W. Wang, W.-L. Zhang, W.-K. An, X.-P. Wang, Y.-L. Ren, X. Zheng, D.-C. Lv, A. Ahmad, Rare Met., 2021, 40, (9), 2354 LINK https://doi.org/10.1007/s12598-021-01727-y
    [Google Scholar]
  122. T. A. A. Batchelor, J. K. Pedersen, S. H. Winther, I. E. Castelli, K. W. Jacobsen, J. Rossmeisl, Joule, 2019, 3, (3), 834 LINK https://doi.org/10.1016/j.joule.2018.12.015
    [Google Scholar]
  123. C. Moreira Da Silva, H. Amara, F. Fossard, A. Girard, A. Loiseau, V. Huc, Nanoscale, 2022, 14, (27), 9832 LINK https://doi.org/10.1039/d2nr02478k
    [Google Scholar]
  124. O. A. Lazar, A. S. Nikolov, L. Anicai, G. V. Mihai, A. A. Messina, M. Enachescu, ACS Omega, 2025, 10, (8), 8066 LINK https://doi.org/10.1021/acsomega.4c09164
    [Google Scholar]
  125. S. D. Jaydev, A. J. Martín, J. Pérez-Ramírez, ChemSusChem, 2021, 14, (23), 5179 LINK https://doi.org/10.1002/cssc.202101999
    [Google Scholar]
  126. J. Quinson, J. K. Mathiesen, J. Schröder, A. Dworzak, F. Bizzotto, A. Zana, S. B. Simonsen, L. Theil Kuhn, M. Oezaslan, K. M. Ø. Jensen, M. Arenz, J. Colloid Interface Sci., 2020, 577, 319 LINK https://doi.org/10.1016/j.jcis.2020.05.078
    [Google Scholar]
  127. J. Quinson, S. B. Simonsen, L. Theil Kuhn, M. Arenz, Sustain. Chem., 2021, 2, (1), 1 LINK https://doi.org/10.3390/suschem2010001
    [Google Scholar]
  128. H. Sonbol, F. Ameen, S. AlYahya, A. Almansob, S. Alwakeel, Sci. Rep., 2021, 11, 5444 LINK https://doi.org/10.1038/s41598-021-84794-6
    [Google Scholar]
  129. G. Cristoforetti, E. Pitzalis, R. Spiniello, R. Ishak, M. Muniz-Miranda, J. Phys. Chem. C, 2011, 115, (12), 5073 LINK https://doi.org/10.1021/jp109281q
    [Google Scholar]
  130. M. Nasrollahzadeh, New J. Chem., 2014, 38, (11), 5544 LINK https://doi.org/10.1039/c4nj01440e
    [Google Scholar]
  131. M. R. Axet, K. Philippot, Chem. Rev., 2020, 120, (2), 1085 LINK https://doi.org/10.1021/acs.chemrev.9b00434
    [Google Scholar]
  132. P. K. Gupta, L. Mishra, Nanoscale Adv., 2020, 2, (5), 1774 LINK https://doi.org/10.1039/d0na00051e
    [Google Scholar]
  133. T. Begum, S. Agarwal, P. Bhuyan, J. Das, A. K. Verma, A. Guha, M. Ganguly, Next Nanotechnol., 2025, 7, 100095 LINK https://doi.org/10.1016/j.nxnano.2024.100095
    [Google Scholar]
  134. P.-M.-A.H. Mfengwana, B. T. Sone, Sci. Rep., 2023, 13, 22638 LINK https://doi.org/10.1038/s41598-023-50005-7
    [Google Scholar]
  135. E. Ismail, S. Khamlich, M. Dhlamini, M. Maaza, RSC Adv., 2016, 6, (90), 86843 LINK https://doi.org/10.1039/c6ra17996g
    [Google Scholar]
  136. S. K. Kannan, M. Sundrarajan, Adv. Powder Technol., 2015, 26, (6), 1505 LINK https://doi.org/10.1016/j.apt.2015.08.009
    [Google Scholar]
  137. L. Xu, D. Liu, D. Chen, H. Liu, J. Yang, Heliyon, 2019, 5, (1), e01165 LINK https://doi.org/10.1016/j.heliyon.2019.e01165
    [Google Scholar]
  138. W. Alsalahi, W. Tylus, A. M. Trzeciak, ChemCatChem, 2018, 10, (9), 2051 LINK https://doi.org/10.1002/cctc.201701644
    [Google Scholar]
  139. D. Muñeton Arboleda, V. Coviello, A. Palumbo, R. Pilot, V. Amendola, Nanoscale Horiz., 2025, 10, (2), 336 LINK https://doi.org/10.1039/d4nh00449c
    [Google Scholar]
  140. E. Ismail, A. Mohamed, E. Maboza, M. S. Dhlamini, R. Z. Adam, Appl. Res., 2024, 3, (5), e202300130 LINK https://doi.org/10.1002/appl.202300130
    [Google Scholar]
  141. F. Bizzotto, J. Quinson, A. Zana, J. J. K. Kirkensgaard, A. Dworzak, M. Oezaslan, M. Arenz, Catal. Sci. Technol., 2019, 9, (22), 6345 LINK https://doi.org/10.1039/C9CY01728C
    [Google Scholar]
  142. R. M. Hassan, S. M. Ibrahim, Int. J. Biol. Macromol., 2023, 238, 124156 LINK https://doi.org/10.1016/j.ijbiomac.2023.124156
    [Google Scholar]
  143. J. K. Mathiesen, H. M. Ashberry, R. Pokratath, J. T. L. Gamler, B. Wang, A. Kirsch, E. T. S. Kjær, S. Banerjee, K. M. Ø. Jensen, S. E. Skrabalak, ACS Nano, 2024, 18, (39), 26937 LINK https://doi.org/10.1021/acsnano.4c08835
    [Google Scholar]
  144. J. Du, J. Quinson, A. Zana, M. Arenz, ACS Catal., 2021, 11, (12), 7584 LINK https://doi.org/10.1021/acscatal.1c01496
    [Google Scholar]
  145. L. Duclos, R. Chattot, L. Dubau, P.-X. Thivel, G. Mandil, V. Laforest, M. Bolloli, R. Vincent, L. Svecova, Green Chem., 2020, 22, (6), 1919 LINK https://doi.org/10.1039/c9gc03630j
    [Google Scholar]
  146. R. Sharma, S. J. Andreasen, J. Chamier, S. M. Andersen, J. Electrochem. Soc., 2019, 166, (13), F963 LINK https://doi.org/10.1149/2.0671913jes
    [Google Scholar]
  147. M. Chourashiya, R. Sharma, S. Gyergyek, S. M. Andersen, Mater. Chem. Phys., 2022, 276, 125439 LINK https://doi.org/10.1016/j.matchemphys.2021.125439
    [Google Scholar]
/content/journals/10.1595/205651326X17520721599435
Loading
/content/journals/10.1595/205651326X17520721599435
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test