Skip to content
1887
Volume 70, Issue 1
  • ISSN: 2056-5135
  • oa Catalyst Deactivation Modes of Palladium Oxide on Gamma Alumina Catalysts for Lean Methane Oxidation

    Reversible and irreversible modes are identified

  • Authors: Hai-Ying Chen1ORCID icon, Yuliana Lugo-Jose2, Joseph M. Fedeyko2, Todd J. Toops1, Lawrence F. Allard3, Yan-Ru Lin3 and Jacqueline Fidler4
  • 1 Oak Ridge National Laboratory, 2360 Cherahala Boulevard, Knoxville, TN 37932, USA 2 Johnson Matthey, 435 Devon Park Drive, Wayne, PA 19087, USA 3 Oak Ridge National Laboratory, 1 Bethel Valley Road, Knoxville, TN 37830, USA 4 CONSOL Energy Inc, 275 Technology Drive, Canonsburg, PA 15317, USA
    *[email protected]
  • Source: Johnson Matthey Technology Review, Volume 70, Issue 1, Jan 2026, p. 58 - 77
  • DOI: https://doi.org/10.1595/205651326X17521441507328
    • Received: 13 May 2025
    • Accepted: 09 Jul 2025

Abstract

Palladium(II) oxide/γ-alumina (PdO/γ-AlO) catalysts are one of the most active catalytic components for the complete oxidation of methane. Under reaction conditions, especially in a wet feed, the catalysts suffer severe performance degradation. This study establishes a series of testing protocols to systematically investigate the causes of catalyst deactivation under methane oxidation reaction conditions. Four distinct catalyst deactivation modes are identified. Two of the deactivation modes are directly related to water, either from the feed gas or as a part of the reaction products, with one (Mode 2) being attributed to the formation of surface hydroxyl groups and the other (Mode 3) to the competitive adsorption of water on the catalysts. The impact of the two deactivation modes is acute and severe but reversible. In contrast, the other two deactivation modes are gradual and persistent but irreversible. Both modes are induced by methane oxidation reaction, with the impact of a wet feed (Mode 4) being substantially more severe than that of a dry feed (Mode 1). The major cause of the irreversible catalyst deactivation is attributed to surface reconstruction of palladium(II) oxide nanoparticles, which behaves as a passivation layer lowering the number of coordinately unsaturated palladium sites for methane activation. Although the passivation layer is relatively stable against thermal or hydrothermal treatment, it is not completely inert. Formation and partial regeneration of the passivation layer is a highly dynamic process and heavily depends on the reaction temperature: a lower reaction temperature (≤450°C) can lead to quicker catalyst deactivation; but a higher reaction temperature (between 500–550°C) can result in a greater extent of catalyst deactivation.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651326X17521441507328
2026-01-01
2025-11-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/70/1/Yuliana_13a_Imp.html?itemId=/content/journals/10.1595/205651326X17521441507328&mimeType=html&fmt=ahah

References

  1. ‘Overview of Greenhouse Gases’, United States Environmental Protection Agency, Washington, USA, 16th January, 2025 LINK https://www.epa.gov/ghgemissions/overview-greenhouse-gases#methane
    [Google Scholar]
  2. A. Raj, Johnson Matthey Technol. Rev., 2016, 60, (4), 228 LINK https://doi.org/10.1595/205651316x692554
    [Google Scholar]
  3. A. Setiawan, E. M. Kennedy, M. Stockenhuber, Energy Technol., 2017, 5, (4), 521 LINK https://doi.org/10.1002/ente.201600490
    [Google Scholar]
  4. D. Ciuparu, M. R. Lyubovsky, E. Altman, L. D. Pfefferle, A. Datye, Catalysis Rev., 2002, 44, (4), 593 LINK https://doi.org/10.1081/cr-120015482
    [Google Scholar]
  5. P. Gélin, M. Primet, Appl. Catal. B Environ., 2002, 39, (1), 1 LINK https://doi.org/10.1016/s0926-3373(02)00076-0
    [Google Scholar]
  6. X. Feng, L. Jiang, D. Li, S. Tian, X. Zhu, H. Wang, C. He, K. Li, J. Energy Chem., 2022, 75, 173 LINK https://doi.org/10.1016/j.jechem.2022.08.001
    [Google Scholar]
  7. D. R. Fertal, M. Monai, L. Proaño, M. P. Bukhovko, J. Park, Y. Ding, B. M. Weckhuysen, A. C. Banerjee, Catal. Today, 2021, 382, 120 LINK https://doi.org/10.1016/j.cattod.2021.08.005
    [Google Scholar]
  8. E. Garbowski, C. Feumi-Jantou, N. Mouaddib, M. Primet, Appl. Catal. A Gen., 1994, 109, (2), 277 LINK https://doi.org/10.1016/0926-860x(94)80124-x
    [Google Scholar]
  9. R. Burch, F. J. Urbano, P. K. Loader, Appl. Catal. A Gen., 1995, 123, (1), 173 LINK https://doi.org/10.1016/0926-860x(94)00251-7
    [Google Scholar]
  10. R. Gholami, M. Alyani, K. J. Smith, Catalysts, 2015, 5, (2), 561 LINK https://doi.org/10.3390/catal5020561
    [Google Scholar]
  11. B. Stasinska, A. Machocki, K. Antoniak, M. Rotko, J. L. Figueiredo, F. Gonçalves, Catal. Today, 2008, 137, (2–4), 329 LINK https://doi.org/10.1016/j.cattod.2008.05.015
    [Google Scholar]
  12. P. Velin, M. Ek, M. Skoglundh, A. Schaefer, A. Raj, D. Thompsett, G. Smedler, P.-A. Carlsson, J. Phys. Chem. C, 2019, 123, (42), 25724 LINK https://doi.org/10.1021/acs.jpcc.9b07606
    [Google Scholar]
  13. X. Li, X. Wang, K. Roy, J. A. van Bokhoven, L. Artiglia, ACS Catal., 2020, 10, (10), 5783 LINK https://doi.org/10.1021/acscatal.0c01069
    [Google Scholar]
  14. A. Boubnov, A. Gremminger, M. Casapu, O. Deutschmann, J.-D. Grunwaldt, ChemCatChem, 2022, 14, (22), e202200573 LINK https://doi.org/10.1002/cctc.202200573
    [Google Scholar]
  15. H. Nassiri, K.-E. Lee, Y. Hu, R. E. Hayes, R. W. J. Scott, N. Semagina, J. Catal., 2017, 352, 649 LINK https://doi.org/10.1016/j.jcat.2017.06.008
    [Google Scholar]
  16. K. Persson, L. D. Pfefferle, W. Schwartz, A. Ersson, S. G. Järås, Appl. Catal. B Environ., 2007, 74, (3–4), 242 LINK https://doi.org/10.1016/j.apcatb.2007.02.015
    [Google Scholar]
  17. M. Alyani, K. J. Smith, Ind. Eng. Chem. Res., 2016, 55, (30), 8309 LINK https://doi.org/10.1021/acs.iecr.6b01881
    [Google Scholar]
  18. O. Mihai, G. Smedler, U. Nylén, M. Olofsson, L. Olsson, Catal. Sci. Technol., 2017, 7, (14), 3084 LINK https://doi.org/10.1039/c6cy02329k
    [Google Scholar]
  19. A. Boucly, L. Artiglia, M. Roger, M. Zabilskiy, A. Beck, D. Ferri, J. A. van Bokhoven, Appl. Surf. Sci., 2022, 606, 154927 LINK https://doi.org/10.1016/j.apsusc.2022.154927
    [Google Scholar]
  20. A. Large, J. Seymour, W. Quevedo Garzon, K. Roy, F. Venturini, D. C. Grinter, L. Artiglia, E. Brooke, M. B. de Gutierrez, A. Raj, K. R. J. Lovelock, R. A. Bennett, T. Eralp-Erden, G. Held, J. Phys. D Appl. Phys., 2021, 54, (17), 174006 LINK https://doi.org/10.1088/1361-6463/abde67
    [Google Scholar]
  21. R. L. Mortensen, H.-D. Noack, K. Pedersen, M. A. Dunstan, F. Wilhelm, A. Rogalev, K. S. Pedersen, J. Mielby, S. Mossin, Appl. Catal. B Environ. Energy, 2024, 344, 123646 LINK https://doi.org/10.1016/j.apcatb.2023.123646
    [Google Scholar]
  22. H.-Y. Chen, Y. Lugo-Jose, J. M. Fedeyko, T. J. Toops, J. Fidler, ACS Catal., 2024, 14, (20), 15751 LINK https://doi.org/10.1021/acscatal.4c03690
    [Google Scholar]
  23. K. Fujimoto, F. H. Ribeiro, M. Avalos-Borja, E. Iglesia, J. Catal., 1998, 179, (2), 431 LINK https://doi.org/10.1006/jcat.1998.2178
    [Google Scholar]
  24. Y.-H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc., 2013, 135, (41), 15425 LINK https://doi.org/10.1021/ja405004m
    [Google Scholar]
  25. J. Au-Yeung, K. Chen, A. T. Bell, E. Iglesia, J. Catal., 1999, 188, (1), 132 LINK https://doi.org/10.1006/jcat.1999.2643
    [Google Scholar]
  26. D. Ciuparu, E. Altman, L. Pfefferle, J. Catal., 2001, 203, (1), 64 LINK https://doi.org/10.1006/jcat.2001.3331
    [Google Scholar]
  27. J. J. Willis, A. Gallo, D. Sokaras, H. Aljama, S. H. Nowak, E. D. Goodman, L. Wu, C. J. Tassone, T. F. Jaramillo, F. Abild-Pedersen, M. Cargnello, ACS Catal., 2017, 7, (11), 7810 LINK https://doi.org/10.1021/acscatal.7b02414
    [Google Scholar]
  28. H. Stotz, L. Maier, A. Boubnov, A. T. Gremminger, J. D. Grunwaldt, O. Deutschmann, J. Catal., 2019, 370, 152 LINK https://doi.org/10.1016/j.jcat.2018.12.007
    [Google Scholar]
  29. D. G. Oh, H. A. Aleksandrov, H. Kim, I. Z. Koleva, K. Khivantsev, G. N. Vayssilov, J. H. Kwak, Molecules, 2023, 28, (4), 1957 LINK https://doi.org/10.3390/molecules28041957
    [Google Scholar]
  30. M. Monai, T. Montini, R. J. Gorte, P. Fornasiero, Eur. J. Inorg. Chem., 2018, 2018, (25), 2884 LINK https://doi.org/10.1002/ejic.201800326
    [Google Scholar]
  31. T. V. Choudhary, S. Banerjee, V. R. Choudhary, Appl. Catal. A Gen., 2002, 234, (1–2), 1 LINK https://doi.org/10.1016/s0926-860x(02)00231-4
    [Google Scholar]
  32. C. A. Müller, M. Maciejewski, R. A. Koeppel, R. Tschan, A. Baiker, J. Phys. Chem., 1996, 100, (51), 20006 LINK https://doi.org/10.1021/jp961903a
    [Google Scholar]
  33. A. Y. Stakheev, A. M. Batkin, N. S. Teleguina, G. O. Bragina, V. I. Zaikovsky, I. P. Prosvirin, A. K. Khudorozhkov, V. I. Bukhtiyarov, Top. Catal., 2013, 56, (1–8), 306 LINK https://doi.org/10.1007/s11244-013-9971-y
    [Google Scholar]
  34. Q. Zhong, Q. Sun, X. Zeng, W. Zhang, R. Nie, S. Li, Y. Jiao, J. Chen, Q. Zhang, Y. Chen, P. Ning, ACS Catal., 2025, 15, (8), 6150 LINK https://doi.org/10.1021/acscatal.5c00749
    [Google Scholar]
  35. F. H. Ribeiro, M. Chow, R. A. Dallabetta, J. Catal., 1994, 146, (2), 537 LINK https://doi.org/10.1006/jcat.1994.1092
    [Google Scholar]
  36. G. Zhu, J. Han, D. Y. Zemlyanov, F. H. Ribeiro, J. Phys. Chem. B, 2005, 109, (6), 2331 LINK https://doi.org/10.1021/jp0488665
    [Google Scholar]
  37. R. S. Monteiro, D. Zemlyanov, J. M. Storey, F. H. Ribeiro, J. Catal., 2001, 199, (2), 291 LINK https://doi.org/10.1006/jcat.2001.3176
    [Google Scholar]
  38. D. Ciuparu, E. Perkins, L. Pfefferle, Appl. Catal. A Gen., 2004, 263, (2), 145 LINK https://doi.org/10.1016/j.apcata.2003.12.006
    [Google Scholar]
  39. N. Sadokhina, F. Ghasempour, X. Auvray, G. Smedler, U. Nylén, M. Olofsson, L. Olsson, Catal. Lett., 2017, 147, (9), 2360 LINK https://doi.org/10.1007/s10562-017-2133-2
    [Google Scholar]
  40. W. R. Schwartz, D. Ciuparu, L. D. Pfefferle, J. Phys. Chem. C, 2012, 116, (15), 8587 LINK https://doi.org/10.1021/jp212236e
    [Google Scholar]
  41. K. Keller, P. Lott, H. Stotz, L. Maier, O. Deutschmann, Catalysts, 2020, 10, (8), 922 LINK https://doi.org/10.3390/catal10080922
    [Google Scholar]
  42. W. Barrett, J. Shen, Y. Hu, R. E. Hayes, R. W. J. Scott, N. Semagina, ChemCatChem, 2020, 12, (3), 944 LINK https://doi.org/10.1002/cctc.201901744
    [Google Scholar]
  43. A. K. Datye, J. Bravo, T. R. Nelson, P. Atanasova, M. Lyubovsky, L. Pfefferle, Appl. Catal. A Gen., 2000, 198, (1–2), 179 LINK https://doi.org/10.1016/s0926-860x(99)00512-8
    [Google Scholar]
  44. E. J. Jang, J. Lee, D. G. Oh, J. H. Kwak, ACS Catal., 2021, 11, (10), 5894 LINK https://doi.org/10.1021/acscatal.1c00156
    [Google Scholar]
  45. A. Borodziński, M. Bonarowska, Langmuir, 1997, 13, (21), 5613 LINK https://doi.org/10.1021/la962103u
    [Google Scholar]
  46. R. J. Farrauto, J. K. Lampert, M. C. Hobson, E. M. Waterman, Appl. Catal. B Environ., 1995, 6, (3), 263 LINK https://doi.org/10.1016/0926-3373(95)00015-1
    [Google Scholar]
  47. H. Xiong, K. Lester, T. Ressler, R. Schlögl, L. F. Allard, A. K. Datye, Catal. Lett., 2017, 147, (5), 1095 LINK https://doi.org/10.1007/s10562-017-2023-7
    [Google Scholar]
  48. K. Keller, P. Lott, S. Tischer, M. Casapu, J.-D. Grunwaldt, O. Deutschmann, ChemCatChem, 2023, 15, (11), e202300366 LINK https://doi.org/10.1002/cctc.202300366
    [Google Scholar]
  49. K. Murata, J. Ohyama, Y. Yamamoto, S. Arai, A. Satsuma, ACS Catal., 2020, 10, (15), 8149 LINK https://doi.org/10.1021/acscatal.0c02050
    [Google Scholar]
  50. H.-Y. Chen, J. Lu, J. M. Fedeyko, A. Raj, Appl. Catal. A Gen., 2022, 633, 118534 LINK https://doi.org/10.1016/j.apcata.2022.118534
    [Google Scholar]
  51. E. Pocoroba, L. J. Pettersson, J. Agrell, M. Boutonnet, K. Jansson, Top. Catal., 2001, 16, (1–4), 407 LINK https://doi.org/10.1023/a:1016637805194
    [Google Scholar]
/content/journals/10.1595/205651326X17521441507328
Loading
/content/journals/10.1595/205651326X17521441507328
Loading

Data & Media loading...

Supplements

The Supplementary Information is compiled in a separate word document. It includes: methane oxidation activity testing results over a 0.4% PdO/γ-AlO catalyst; a table that tabulates the methane breakthrough levels as shown in and the corresponding pseudo rate constants; an extended activity evaluation at 600°C over the 0.4% PdO/γ-AlO catalyst under wet methane oxidation conditions after the evaluation as shown in .

Supplementary Information 

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test