Skip to content
1887
Volume 70, Issue 1
  • ISSN: 2056-5135

Abstract

This is Part II of an investigation of the most recent developments in reactors for the ODS process. Here we present a discussion of the types of catalyst used in the ODS process along with the kinetics, mechanisms and reactor types. The advantages of OBR over conventional reactors are described.

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license. You are free to: share: copy and redistribute the material in any medium or format; adapt: remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: attribution: you must give appropriate credit, provide a link to the license, and indicate if changes were made. See: https://creativecommons.org/licenses/by/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651326X17539747239841
2026-01-01
2025-11-05
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/70/1/Humadi_Pt2_13a_Imp.html?itemId=/content/journals/10.1595/205651326X17539747239841&mimeType=html&fmt=ahah

References

  1. J. I. Humadi, W. T. Mohammed, Johnson Matthey Technol. Rev., 2025, 69, (4), 616 LINK https://doi.org/10.1595/205651325X17458327898766
    [Google Scholar]
  2. V. N. Nemykin, A. E. Polshyna, S. A. Borisenkova, V. V. Strelko, J. Mol. Catal. A Chem., 2007, 264, (1–2), 103 LINK https://doi.org/10.1016/j.molcata.2006.08.093
    [Google Scholar]
  3. W. Chen, B. Zhao, Y. Pan, Y. Yao, S. Lu, S. Chen, L. Du, J. Colloid Interface Sci., 2006, 300, (2), 626 LINK https://doi.org/10.1016/j.jcis.2006.04.008
    [Google Scholar]
  4. B. Zapata, F. Pedraza, M. A. Valenzuela, Catal. Today, 2005, 106, (1–4), 219 LINK https://doi.org/10.1016/j.cattod.2005.07.134
    [Google Scholar]
  5. X. Si, S. Cheng, Y. Lu, G. Gao, M.-Y. He, Catal. Lett., 2007, 122, (3–4), 321 LINK https://doi.org/10.1007/s10562-007-9380-6
    [Google Scholar]
  6. L. Chen, F. Li, Energy Fuels, 2010, 24, (6), 3443 LINK https://doi.org/10.1021/ef1002205
    [Google Scholar]
  7. A. Chica, A. Corma, M. E. Dómine, J. Catal., 2006, 242, (2), 299 LINK https://doi.org/10.1016/j.jcat.2006.06.013
    [Google Scholar]
  8. W. N. A. Wan Mokhtar, W. A. Wan Abu Bakar, R. Ali, A. A. Abdul Kadir, Clean Technol. Environ. Policy, 2014, 17, (6), 1487 LINK https://doi.org/10.1007/s10098-014-0873-x
    [Google Scholar]
  9. J. I. Humadi, A. T. Nawaf, A. T. Jarullah, M. A. Ahmed, S. A. Hameed, I. M. Mujtaba, Chem. Eng. Res. Des., 2023, 190, 634 LINK https://doi.org/10.1016/j.cherd.2022.12.043
    [Google Scholar]
  10. A. T. Jarullah, A. K. Hussein, B. A. Al-Tabbakh, S. A. Hameed, I. M. Mujtaba, L. I. Saeed, J. I. Humadi, Catalysts, 2024, 14, (8), 529 LINK https://doi.org/10.3390/catal14080529
    [Google Scholar]
  11. H. Huang, J. He, X. Cheng, Y. Wu, X. Zhu, S. Zhou, D. Zhu, L. Zhu, W. Zhu, H. Li, W. Jiang, Fuel, 2025, 381, (C), 133535 LINK https://doi.org/10.1016/j.fuel.2024.133535
    [Google Scholar]
  12. Y. Muhammad, A. Shoukat, A. U. Rahman, H. U. Rashid, W. Ahmad, Chinese J. Chem. Eng., 2018, 26, (3), 593 LINK https://doi.org/10.1016/j.cjche.2017.05.015
    [Google Scholar]
  13. F. Wu, Q. Yuan, J. Wang, X. Wang, J. Luo, Y. Guo, H. Xu, X. Wei, Arab. J. Chem., 2024, 18, (1), 106076 LINK https://doi.org/10.1016/j.arabjc.2024.106076
    [Google Scholar]
  14. X. Zhang, J. Zhang, J. Yin, X. Liu, W. Qiu, J. He, W. Jiang, L. Zhu, H. Li, H. Li, Sep. Purif. Technol., 2025, 353, (B), 128289 LINK https://doi.org/10.1016/j.seppur.2024.128289
    [Google Scholar]
  15. A.-L. Maciuca, C.-E. Ciocan, E. Dumitriu, F. Fajula, V. Hulea, Catal. Today, 2008, 138, (1–2), 33 LINK https://doi.org/10.1016/j.cattod.2008.04.031
    [Google Scholar]
  16. L. Chen, S. Guo, D. Zhao, Chin. J. Chem. Eng., 2007, 15, (4), 520 LINK https://doi.org/10.1016/s1004-9541(07)60118-9
    [Google Scholar]
  17. P. De Filippis, M. Scarsella, Energy Fuels, 2003, 17, (6), 1452 LINK https://doi.org/10.1021/ef0202539
    [Google Scholar]
  18. X.-M. Yan, P. Mei, J. Lei, Y. Mi, L. Xiong, L. Guo, J. Mol. Catal. A Chem., 2009, 304, (1–2), 52 LINK https://doi.org/10.1016/j.molcata.2009.01.023
    [Google Scholar]
  19. Z. E. A. Abdalla, B. Li, A. Tufail, Colloids Surf. A Physicochem. Eng. Asp., 2009, 341, (1–3), 86 LINK https://doi.org/10.1016/j.colsurfa.2009.03.042
    [Google Scholar]
  20. C. Montiel, E. Terrés, J.-M. Domínguez, J. Aburto, J. Mol. Catal. B Enzym., 2007, 48, (3–4), 90 LINK https://doi.org/10.1016/j.molcatb.2007.06.012
    [Google Scholar]
  21. A. A. Aabid, J. I. Humadi, G. S. Ahmed, A. T. Jarullah, M. A. Ahmed, W. S. Abdullah, Appl. Sci. Eng. Prog., 2023, 16, (3), 6756 LINK https://doi.org/10.14416/j.asep.2023.02.007
    [Google Scholar]
  22. L. C. Caero, F. Jorge, A. Navarro, A. Gutiérrez-Alejandre, Catal. Today, 2006, 116, (4), 562 LINK https://doi.org/10.1016/j.cattod.2006.06.031
    [Google Scholar]
  23. G. Yang, J. Han, Y. Liu, Z. Qiu, X. Chen, Chin. J. Chem. Eng., 2020, 28, (9), 2227 LINK https://doi.org/10.1016/j.cjche.2020.06.026
    [Google Scholar]
  24. J. I. Humadi, M. A. Shihab, A. A. Hasan, A. M. Mohammed, Chem. Eng. Res. Des., 2024, 211, 160 LINK https://doi.org/10.1016/j.cherd.2024.10.001
    [Google Scholar]
  25. G. Rodriguez-Gattorno, A. Galano, E. Torres-García, Appl. Catal. B Environ., 2009, 92, (1–2), 1 LINK https://doi.org/10.1016/j.apcatb.2009.07.031
    [Google Scholar]
  26. G. Ye, G. Shi, H. Chen, L. Nie, Q. Zhang, L. Wu, J. Zhou, J. Wang, Adv. Funct. Mater., 2025, 35, (4), 2414025 LINK https://doi.org/10.1002/adfm.202414025
    [Google Scholar]
  27. A. T. Jarullah, B. A. Al-Tabbakh, H. A. A. Saleem, S. A. Hameed, J. I. Humadi, I. M. Mujtaba, Pet. Chem., 2024, 64, (4), 458 LINK https://doi.org/10.1134/s0965544124030150
    [Google Scholar]
  28. J. M. Campos-Martin, M. C. Capel-Sanchez, J. L. G. Fierro, Green Chem., 2004, 6, (11), 557 LINK https://doi.org/10.1039/b409882j
    [Google Scholar]
  29. D. Huang, Y. Lu, Y. Wang, G. Luo, Ind. Eng. Chem. Res., 2007, 46, (19), 6221 LINK https://doi.org/10.1021/ie0706111
    [Google Scholar]
  30. D. Huang, Z. Zhai, Y. C. Lu, L. M. Yang, G. S. Luo, Ind. Eng. Chem. Res., 2007, 46, (5), 1447 LINK https://doi.org/10.1021/ie0611857
    [Google Scholar]
  31. J. Qiu, G. Wang, D. Zeng, Y. Tang, M. Wang, Y. Li, Fuel Process. Technol., 2009, 90, (12), 1538 LINK https://doi.org/10.1016/j.fuproc.2009.08.001
    [Google Scholar]
  32. W. Trakarnpruk, K. Rujiraworawut, Fuel Process. Technol., 2009, 90, (3), 411 LINK https://doi.org/10.1016/j.fuproc.2008.11.002
    [Google Scholar]
  33. A. V. Anisimov, A. V. Tarakanova, Russ. J. Gen. Chem., 2009, 79, (6), 1264 LINK https://doi.org/10.1134/s1070363209060437
    [Google Scholar]
  34. A. Farshi, P. Shiralizadeh, Petrol. Coal, 2015, 57, (3), 295 LINK https://www.vurup.sk/wp-content/uploads/dlm_uploads/2017/07/pc_3_2015_farshi_324_final.pdf
    [Google Scholar]
  35. G. Yu, S. Lu, H. Chen, Z. Zhu, Energy Fuels, 2005, 19, (2), 447 LINK https://doi.org/10.1021/ef049760b
    [Google Scholar]
  36. J. I. Humadi, S. A. Gheni, S. M. R. Ahmed, A. Harvey, RSC Adv., 2022, 12, (23), 14385 LINK https://doi.org/10.1039/d2ra01663j
    [Google Scholar]
  37. J. I. Humadi, S. A. Gheni, S. M. R. Ahmed, G. H. Abdullah, A. N. Phan, A. P. Harvey, Process Saf. Environ. Prot., 2021, 152, 178 LINK https://doi.org/10.1016/j.psep.2021.05.028
    [Google Scholar]
  38. A. W. Bhutto, R. Abro, S. Gao, T. Abbas, X. Chen, G. Yu, J. Taiwan Inst. Chem. Eng., 2016, 62, 84 LINK https://doi.org/10.1016/j.jtice.2016.01.014
    [Google Scholar]
  39. Y. Nie, Y. Dong, L. Bai, H. Dong, X. Zhang, Fuel, 2013, 103, 997 LINK https://doi.org/10.1016/j.fuel.2012.07.071
    [Google Scholar]
  40. M. F. Ali, A. Al-Malki, S. Ahmed, Fuel Process. Technol., 2009, 90, (4), 536 LINK https://doi.org/10.1016/j.fuproc.2009.01.005
    [Google Scholar]
  41. L. Chen, S. Guo, D. Zhao, Chin. J. Chem. Eng., 2006, 14, (6), 835 LINK https://doi.org/10.1016/s1004-9541(07)60022-6
    [Google Scholar]
  42. K.-G. Haw, W. A. W. A. Bakar, R. Ali, J.-F. Chong, A. A. A. Kadir, Fuel Process. Technol., 2010, 91, (9), 1105 LINK https://doi.org/10.1016/j.fuproc.2010.03.021
    [Google Scholar]
  43. W.-H. Lo, H.-Y. Yang, G.-T. Wei, Green Chem., 2003, 5, (5), 639 LINK https://doi.org/10.1039/b305993f
    [Google Scholar]
  44. M. Te, C. Fairbridge, Z. Ring, Appl. Catal. A Gen., 2001, 219, (1–2), 267 LINK https://doi.org/10.1016/s0926-860x(01)00699-8
    [Google Scholar]
  45. A. Di Giuseppe, M. Crucianelli, F. De Angelis, C. Crestini, R. Saladino, Appl. Catal. B Environ., 2009, 89, (1–2), 239 LINK https://doi.org/10.1016/j.apcatb.2009.02.009
    [Google Scholar]
  46. L. Hui-Peng, S. Jian, Z. Hua, Pet. Chem., 2007, 47, (6), 452 LINK https://doi.org/10.1134/s096554410706014x
    [Google Scholar]
  47. S. Choi, ‘Vapor-Phase Catalytic Oxidesulfurization (ODS) of Organosulfur Compounds Over Supported Metal Oxide Catalysts’, PhD Thesis, Chemical Engineering, Lehigh University, USA, 2004
  48. A. T. Nawaf, S. A. Gheni, A. T. Jarullah, I. M. Mujtaba, Fuel Process. Technol., 2015, 138, 337 LINK https://doi.org/10.1016/j.fuproc.2015.05.033
    [Google Scholar]
  49. D. Wang, E. W. Qian, H. Amano, K. Okata, A. Ishihara, T. Kabe, Appl. Catal. A Gen., 2003, 253, (1), 91 LINK https://doi.org/10.1016/s0926-860x(03)00528-3
    [Google Scholar]
  50. X. Li, H. Qi, W. Zhou, W. Xu, Y. Sun, C. R. Chim., 2019, 22, (4), 321 LINK https://doi.org/10.1016/j.crci.2018.11.008
    [Google Scholar]
  51. A. T. Nawaf, S. A. Gheni, A. T. Jarullah, I. M. Mujtaba, Energy Fuels, 2015, 29, (5), 3366 LINK https://doi.org/10.1021/acs.energyfuels.5b00157
    [Google Scholar]
  52. R. Wang, F. Yu, G. Zhang, H. Zhao, Catal. Today, 2010, 150, (1–2), 37 LINK https://doi.org/10.1016/j.cattod.2009.10.001
    [Google Scholar]
  53. D. Huang, Y. J. Wang, Y. C. Cui, G. S. Luo, Microporous Mesoporous Mater., 2008, 116, (1–3), 378 LINK https://doi.org/10.1016/j.micromeso.2008.04.031
    [Google Scholar]
  54. M. C. Capel-Sanchez, J. M. Campos-Martin, J. L. G. Fierro, Energy Environ. Sci., 2010, 3, (3), 328 LINK https://doi.org/10.1039/b923795j
    [Google Scholar]
  55. K. Kuśmierek, A. Świątkowski, React. Kinet. Mech. Catal., 2015, 116, (1), 261 LINK https://doi.org/10.1007/s11144-015-0889-1
    [Google Scholar]
  56. A. Leitão, A. Rodrigues, Chem. Eng. Sci., 1989, 44, (5), 1245 LINK https://doi.org/10.1016/0009-2509(89)87023-x
    [Google Scholar]
  57. A. Deshpande, A. Bassi, A. Prakash, Energy Fuels, 2004, 19, (1), 28 LINK https://doi.org/10.1021/ef0340965
    [Google Scholar]
  58. S. A. Gheni, A. T. Jarullah, G. H. A. Razak, Pet. Coal, 2017, 59, (2), 155
    [Google Scholar]
  59. V. Ukkirapandian, V. Sadasivam, B. Sivasankar, Pet. Sci. Technol., 2008, 26, (4), 423 LINK https://doi.org/10.1080/10916460600809626
    [Google Scholar]
  60. F. Li, R. Liu, J. Wen, D. Zhao, Z. Sun, Y. Liu, Green Chem., 2009, 11, (6), 883 LINK https://doi.org/10.1039/b815575e
    [Google Scholar]
  61. T. O. Sachdeva, K. K. Pant, Fuel Process. Technol., 2010, 91, (9), 1133 LINK https://doi.org/10.1016/j.fuproc.2010.03.027
    [Google Scholar]
  62. S. H. Ali, D. M. Hamad, B. H. Albusairi, M. A. Fahim, Energy Fuels, 2009, 23, (12), 5986 LINK https://doi.org/10.1021/ef900683d
    [Google Scholar]
  63. Z. Hasan, J. Jeon, S. H. Jhung, J. Hazard. Mater., 2012, 205–206, 216 LINK https://doi.org/10.1016/j.jhazmat.2011.12.059
    [Google Scholar]
  64. S. Kumar, V. C. Srivastava, R. P. Badoni, Int. J. Chem. React. Eng., 2014, 12, (1), 295 LINK https://doi.org/10.1515/ijcre-2013-0095
    [Google Scholar]
  65. W. Ahmad, I. Ahmad, M. Yaseen, Korean J. Chem. Eng., 2016, 33, (9), 2530 LINK https://doi.org/10.1007/s11814-016-0099-1
    [Google Scholar]
  66. W. Ahmad, I. Ahmad, J. Power Energy Eng., 2017, 5, (12), 87 LINK https://doi.org/10.4236/jpee.2017.512011
    [Google Scholar]
  67. D. K. Chauhan, P. Kumar, R. Painuly, S. Kumar, S. L. Jain, S. K. Ganguly, Fuel Process. Technol., 2017, 162, 135 LINK https://doi.org/10.1016/j.fuproc.2017.04.003
    [Google Scholar]
  68. M. A. Rezvani, S. Khandan, M. Aghmasheh, J. Taiwan Inst. Chem. Eng., 2017, 77, 321 LINK https://doi.org/10.1016/j.jtice.2017.05.014
    [Google Scholar]
  69. A. Teimouri, M. Mahmoudsalehi, H. Salavati, Int. J. Hydrogen Energy, 2018, 43, (31), 14816 LINK https://doi.org/10.1016/j.ijhydene.2018.05.102
    [Google Scholar]
  70. J. Wang, L. Zhang, Y. Sun, B. Jiang, Y. Chen, X. Gao, H. Yang, Fuel Process. Technol., 2018, 177, 81 LINK https://doi.org/10.1016/j.fuproc.2018.04.013
    [Google Scholar]
  71. Y. Gao, R. Gao, G. Zhang, Y. Zheng, J. Zhao, Fuel, 2018, 224, 261 LINK https://doi.org/10.1016/j.fuel.2018.03.034
    [Google Scholar]
  72. P. Sikarwar, U. K. A. Kumar, V. Gosu, V. Subbaramaiah, J. Environ. Chem. Eng., 2018, 6, (2), 1736 LINK https://doi.org/10.1016/j.jece.2018.02.021
    [Google Scholar]
  73. S.-W. Li, R.-M. Gao, W. Zhang, Y. Zhang, J. Zhao, Fuel, 2018, 221, 1 LINK https://doi.org/10.1016/j.fuel.2017.12.093
    [Google Scholar]
  74. A. Nawaf, B. A. Abdulmajeed, J. Chem. Pet. Eng., 2024, 58, (2), 359
    [Google Scholar]
  75. D. Zhao, H. Ren, J. Wang, Y. Yang, Y. Zhao, Energy Fuels, 2007, 21, (5), 2543 LINK https://doi.org/10.1021/ef070152g
    [Google Scholar]
  76. A. Farshi, Z. Rabiei, Pet. Coal, 2005, 47, (1), 49
    [Google Scholar]
  77. B. K. Saikia, N. Kakati, K. Khound, B. P. Baruah, Int. J. Oil Gas Coal Technol., 2013, 6, (6), 720 LINK https://doi.org/10.1504/ijogct.2013.056747
    [Google Scholar]
  78. Y. Chen, Y.-F. Song, ChemPlusChem, 2013, 79, (2), 304 LINK https://doi.org/10.1002/cplu.201300323
    [Google Scholar]
  79. J. I. Humadi, G. H. Abdullah, S. M. R. Ahmed, M. A. Ahmed, J. Appl. Sci. Eng., 2024, 27, (3), 2271 LINK https://doi.org/10.6180/jase.202403_27(3).0014
    [Google Scholar]
  80. J. I. Humadi, G. H. A. Razzaq, L. A. Khamees, M. A. Ahmed, L. I. Saeed, Korean Chem. Eng. Res., 2023, 61, (2), 226 LINK https://doi.org/10.9713/kcer.2023.61.2.226
    [Google Scholar]
  81. R. Tetrisyanda, A. Wiguno, R. R. Ginting, M. C. Dzikrillah, G. Wibawa, Indones. J. Chem., 2018, 18, (2), 242 LINK https://doi.org/10.22146/ijc.26722
    [Google Scholar]
  82. M. I. Fathi, J. I. Humadi, Q. A. Mahmood, A. T. Nawaf, R. S. Ayoub, R. S., AIP Conf. Proc., 2022, 2660, (1), 020026 LINK https://doi.org/10.1063/5.0109089
    [Google Scholar]
  83. J. I. Humadi, Y. S. Issa, D. Y. Aqar, M. A. Ahmed, H. H. Ali Alak, I. M. Mujtaba, Int. J. Chem. React. Eng., 2022, 21, (6), 727 LINK https://doi.org/10.1515/ijcre-2022-0046
    [Google Scholar]
  84. A. T. Jarullah, B. A. Al-Tabbakh, H. A. A. Saleem, S. A. Hameed, J. I. Humadi, I. M. Mujtaba, Pet. Chem., 2024, 64, (4), 458 LINK https://doi.org/10.1134/S0965544124030150
    [Google Scholar]
  85. G. S. Ahmed, A. T. Jarullah, B. A. Al-Tabbakh, I. M. Mujtaba, J. Clean. Prod., 2020, 257, 120436 LINK https://doi.org/10.1016/j.jclepro.2020.120436
    [Google Scholar]
  86. A. T. Jarullah, S. K. Aldulaimi, B. A. Al-Tabbakh, I. M. Mujtaba, Chem. Eng. Res. Des., 2020, 160, 405 LINK https://doi.org/10.1016/j.cherd.2020.05.015
    [Google Scholar]
  87. L. C. Caero, E. Hernández, F. Pedraza, F. Murrieta, Catal. Today, 2005, 107–108, 564 LINK https://doi.org/10.1016/j.cattod.2005.07.017
    [Google Scholar]
  88. A. T. Nawaf, H. H. Hamed, S. A. Hameed, A. T. Jarullah, L. T. Abdulateef, I. M. Mujtaba, Chem. Eng. Sci., 2021, 232, 116384 LINK https://doi.org/10.1016/j.ces.2020.116384
    [Google Scholar]
  89. A. M. Dehkordi, M. A. Sobati, M. A. Nazem, Chin. J. Chem. Eng., 2009, 17, (5), 869 LINK https://doi.org/10.1016/s1004-9541(08)60289-x
    [Google Scholar]
  90. S. Baradaran, M. T. Sadeghi, Ultrason. Sonochem., 2019, 58, 104698 LINK https://doi.org/10.1016/j.ultsonch.2019.104698
    [Google Scholar]
  91. H. S. Fogler, “Essentials of Chemical Reaction Engineering”, Prentice Hall, USA, 2010
  92. A. K. Coker, “Modeling of Chemical Kinetics and Reactor Design”, Elsevier Inc, USA, 2001
  93. X. Wang, M. Economides, “Advanced Natural Gas Engineering”, Elsevier Inc, USA, 2010 LINK https://doi.org/10.1016/C2013-0-15532-8
  94. J. J. Alcaraz, B. J. Arena, R. D. Gillespie, J. S. Holmgren, Catal. Today, 1998, 43, (1–2), 89 LINK https://doi.org/10.1016/s0920-5861(98)00137-0
    [Google Scholar]
  95. A. Ishihara, D. Wang, F. Dumeignil, H. Amano, E. W. Qian, T. Kabe, Appl. Catal. A Gen., 2005, 279, (1–2), 279 LINK https://doi.org/10.1016/j.apcata.2004.10.037
    [Google Scholar]
  96. Z. Khan, S. Ali, S. Afr. J. Chem. Eng., 2013, 18, (2), 14 LINK https://hdl.handle.net/10520/EJC151789
    [Google Scholar]
  97. V. V. D. N. Prasad, K.-E. Jeong, H.-J. Chae, C.-U. Kim, S.-Y. Jeong, Catal. Commun., 2008, 9, (10), 1966 LINK https://doi.org/10.1016/j.catcom.2008.03.021
    [Google Scholar]
  98. Y.-Y. Liu, K. Leus, Z. Sun, X. Li, H. Depauw, A. Wang, J. Zhang, P. Van Der Voort, Microporous Mesoporous Mater., 2019, 277, 245 LINK https://doi.org/10.1016/j.micromeso.2018.11.004
    [Google Scholar]
  99. D. Wang, N. Liu, J. Zhang, X. Zhao, W. Zhang, M. Zhang, J. Mol. Catal. A Chem., 2014, 393, 47 LINK https://doi.org/10.1016/j.molcata.2014.05.026
    [Google Scholar]
  100. K.-S. Cho, Y.-K. Lee, Appl. Catal. B Environ., 2014, 147, 35 LINK https://doi.org/10.1016/j.apcatb.2013.08.017
    [Google Scholar]
  101. M. H. Al-Dahhan, F. Larachi, M. P. Dudukovic, A. Laurent, Ind. Eng. Chem. Res., 1997, 36, (8), 3292 LINK https://doi.org/10.1021/ie9700829
    [Google Scholar]
  102. M. R. Khadilkar, M. H. Al-Dahhan, M. P. Duduković, Ind. Eng. Chem. Res., 2005, 44, (16), 6354 LINK https://doi.org/10.1021/ie0402261
    [Google Scholar]
  103. K. D. P. Nigam, F. Larachi, Chem. Eng. Sci., 2005, 60, (22), 5880 LINK https://doi.org/10.1016/j.ces.2005.04.061
    [Google Scholar]
  104. C. N. Satterfield, AIChE J., 1975, 21, (2), 209 LINK https://doi.org/10.1002/aic.690210202
    [Google Scholar]
  105. K. Mohammadbeigi, M. Tajerian, Pet. Coal, 2004, 46, (1), 17
    [Google Scholar]
  106. H. R. Mohammed, S. A. Gheni, K. I. Hamad, S. M. R. Ahmed, O. A. Habeeb, M. A. Mahmood, Process Saf. Environ. Prot., 2022, 163, 513 LINK https://doi.org/10.1016/j.psep.2022.05.049
    [Google Scholar]
  107. A. E. Mohammed, S. A. Gheni, W. T. Mohammed, S. M. R. Ahmed, D. Y. Aqar, H. R. Mohammed, M. M. Ali, M. H. Mohammed, N. T. Karakullukcu, H. M. Hmood, M. A. Mahmood, Diam. Relat. Mater., 2024, 142, 110723 LINK https://doi.org/10.1016/j.diamond.2023.110723
    [Google Scholar]
  108. S. S. Cheng, ‘Ultra Clean Fuels Via Modified UAOD Process With Room Temperature Ionic Liquid (RTIL) & Solid Catalyst Polishing’, PhD Thesis, University of Southern California, USA, May, 2008
  109. T. Napanang, T. Sooknoi, Catal. Commun., 2009, 11, (1), 1 LINK https://doi.org/10.1016/j.catcom.2009.07.022
    [Google Scholar]
  110. M. A. Sobati, A. M. Dehkordi, M. Shahrokhi, A. A. Ebrahimi, Ind. Eng. Chem. Res., 2010, 49, (19), 9339 LINK https://doi.org/10.1021/ie101065q
    [Google Scholar]
  111. M. D. G. de Luna, C. M. Futalan, R. A. Dayrit, A. E. S. Choi, M.-W. Wan, J. Clean. Prod., 2018, 203, 664 LINK https://doi.org/10.1016/j.jclepro.2018.08.287
    [Google Scholar]
  112. H. Khalfalla, I. Mujtaba, M. Elgarni, H. A. El-Akrami, Chem. Eng. Trans., 2007, 11, 53
    [Google Scholar]
  113. H. A. Khalfalla, I. M. Mujtaba, M. M. El-Garni, H. A. El-Akrami, Comput. Aided Chem. Eng., 2008, 25, 859 LINK https://doi.org/10.1016/s1570-7946(08)80149-6
    [Google Scholar]
  114. B. R. Fox, B. L. Brinich, J. L. Male, R. L. Hubbard, M. N. Siddiqui, T. A. Saleh, D. R. Tyler, Fuel, 2015, 156, 142 LINK https://doi.org/10.1016/j.fuel.2015.04.028
    [Google Scholar]
  115. D. Huang, Y. C. Lu, Y. J. Wang, L. Yang, G. S. Luo, Ind. Eng. Chem. Res., 2008, 47, (11), 3870 LINK https://doi.org/10.1021/ie701781r
    [Google Scholar]
  116. A. M. Madrid, ‘Catalytic Oxidative Desulfurization: A Comparison of Reactors’, PhD Thesis, Louisiana State University and Agricultural and Mechanical College, USA, 2012 http://dx.doi.org/10.31390/gradschool_theses.2154
  117. A. E. S. Choi, S. Roces, N. Dugos, M.-W. Wan, Fuel, 2016, 180, 127 LINK https://doi.org/10.1016/j.fuel.2016.04.014
    [Google Scholar]
  118. Z. Wu, B. Ondruschka, Ultrason. Sonochem., 2010, 17, (6), 1027 LINK https://doi.org/10.1016/j.ultsonch.2009.11.005
    [Google Scholar]
  119. A. Afzalinia, A. Mirzaie, A. Nikseresht, T. Musabeygi, Ultrason. Sonochem., 2017, 34, 713 LINK https://doi.org/10.1016/j.ultsonch.2016.07.006
    [Google Scholar]
  120. R. Javadli, A. de Klerk, Appl. Petrochem. Res., 2012, 1, (1–4), 3 LINK https://doi.org/10.1007/s13203-012-0006-6
    [Google Scholar]
  121. H. Mei, B. W. Mei, T. F. Yen, Fuel, 2003, 82, (4), 405 LINK https://doi.org/10.1016/s0016-2361(02)00318-6
    [Google Scholar]
  122. M. R. Jalali, M. A. Sobati, Appl. Therm. Eng., 2017, 111, 1158 LINK https://doi.org/10.1016/j.applthermaleng.2016.10.015
    [Google Scholar]
  123. P. J. Gildo, N. Dugos, S. Roces, M.-W. Wan, MATEC Web Conf., 2018, 156, 03045 LINK https://doi.org/10.1051/matecconf/201815603045
    [Google Scholar]
  124. O. Etemadi, T. F. Yen, Energy Fuels, 2007, 21, (4), 2250 LINK https://doi.org/10.1021/ef0700174
    [Google Scholar]
  125. M.-W. Wan, T.-F. Yen, Appl. Catal. A Gen., 2007, 319, 237 LINK https://doi.org/10.1016/j.apcata.2006.12.008
    [Google Scholar]
  126. J. Lin, X. Yang, X. Gu, X. Hong, Y. Li, J. Liaoning Petrochem. Univ., 2005, 25, (1), 23 LINK https://journal.lnpu.edu.cn/EN/Y2005/V25/I1/23
    [Google Scholar]
  127. P. de A. Mello, F. A. Duarte, M. A. G. Nunes, M. S. Alencar, E. M. Moreira, M. Korn, V. L. Dressler, É. M. M. Flores, Ultrason. Sonochem., 2009, 16, (6), 732 LINK https://doi.org/10.1016/j.ultsonch.2009.03.002
    [Google Scholar]
  128. D. Margeta, K. Sertić-Bionda, L. Foglar, Appl. Acoust., 2016, 103, (B), 202 LINK https://doi.org/10.1016/j.apacoust.2015.07.004
    [Google Scholar]
  129. C. Zhou, Y. Wang, X. Huang, Y. Wu, J. Chen, Chem. Eng. Process. Process Intensif., 2020, 147, 107789 LINK https://doi.org/10.1016/j.cep.2019.107789
    [Google Scholar]
  130. A. E. S. Choi, S. A. Roces, N. P. Dugos, M. W. Wan, Comput. Chem. Eng., 2022, 166, 107965 LINK https://doi.org/10.1016/j.compchemeng.2022.107965
    [Google Scholar]
  131. H. Ghahremani, Z. Nasri, M. H. Eikani, J. Pet. Sci. Eng., 2021, 204, 108709 LINK https://doi.org/10.1016/j.petrol.2021.108709
    [Google Scholar]
  132. M. Y. Mohammed, A. M. Ali, T. M. Albayati, Chem. Eng. Res. Des., 2022, 182, 659 LINK https://doi.org/10.1016/j.cherd.2022.03.047
    [Google Scholar]
  133. K. Keynejad, M. Nikazar, B. Dabir, Pet. Sci. Technol., 2018, 36, (11), 718 LINK https://doi.org/10.1080/10916466.2018.1445099
    [Google Scholar]
  134. M. Zhao, P. Han, X. Lu, Pet. Sci. Technol., 2018, 36, (1), 29 LINK https://doi.org/10.1080/10916466.2017.1403447
    [Google Scholar]
  135. M.-W. Wan, T.-F. Yen, Energy Fuels, 2008, 22, (2), 1130 LINK https://doi.org/10.1021/ef7006358
    [Google Scholar]
  136. M. S. R. Abbott, A. P. Harvey, G. V. Perez, M. K. Theodorou, Interface Focus, 2013, 3, (1), 20120036 LINK https://doi.org/10.1098/rsfs.2012.0036
    [Google Scholar]
  137. A. P. Harvey, M. R. Mackley, T. Seliger, J. Chem. Technol. Biotechnol., 2003, 78, (2–3), 338 LINK https://doi.org/10.1002/jctb.782
    [Google Scholar]
  138. A. N. Phan, A. P. Harvey, V. Eze, Chem. Eng. Technol., 2012, 35, (7), 1214 LINK https://doi.org/10.1002/ceat.201200031
    [Google Scholar]
  139. A. P. Harvey, M. R. Mackley, P. Stonestreet, Ind. Eng. Chem. Res., 2001, 40, (23), 5371 LINK https://doi.org/10.1021/ie0011223
    [Google Scholar]
  140. R. M. Dewes, K. Mc Carogher, J. Van Olmen, S. Kuhn, T. Van Gerven, J. Adv. Manuf. Process., 2025, 7, e10185 LINK https://doi.org/10.1002/amp2.10185
    [Google Scholar]
  141. H. Jian, X. Ni, Chem. Eng. Res. Des., 2005, 83, (10), 1163 LINK https://doi.org/10.1205/cherd.03312
    [Google Scholar]
  142. N. Masngut, A. P. Harvey, J. Ikwebe, Biofuels, 2010, 1, (4), 605 LINK https://doi.org/10.4155/bfs.10.38
    [Google Scholar]
  143. J. P. Solano, R. Herrero, S. Espín, A. N. Phan, A. P. Harvey, Chem. Eng. Res. Des., 2012, 90, (6), 732 LINK https://doi.org/10.1016/j.cherd.2012.03.017
    [Google Scholar]
  144. P. Stonestreet, P. M. J. Van Der Veeken, Chem. Eng. Res. Des., 1999, 77, (8), 671 LINK https://doi.org/10.1205/026387699526809
    [Google Scholar]
  145. H. K. Gaidhani, B. McNeil, X. Ni, Chem. Eng. Res. Des., 2005, 83, (6), 640 LINK https://doi.org/10.1205/cherd.04355
    [Google Scholar]
  146. G. Rossi, Hydrometallurgy, 2001, 59, (2–3), 217 LINK https://doi.org/10.1016/s0304-386x(00)00161-4
    [Google Scholar]
  147. P. Stonestreet, A. P. Harvey, Chem. Eng. Res. Des., 2002, 80, (1), 31 LINK https://doi.org/10.1205/026387602753393204
    [Google Scholar]
  148. X. Ni, J. A. Cosgrove, A. D. Arnott, C. A. Greated, R. H. Cumming, Chem. Eng. Sci., 2000, 55, (16), 3195 LINK https://doi.org/10.1016/s0009-2509(99)00577-1
    [Google Scholar]
  149. S. M. R. Ahmed, A. N. Phan, A. P. Harvey, Chem. Eng. Process. Process Intensif., 2018, 130, 229 LINK https://doi.org/10.1016/j.cep.2018.06.016
    [Google Scholar]
  150. R. Murotani, T. Horie, S. Fujioka, E. Okita, M. Yasuda, Chem. Eng. Process. Process Intensif., 2025, 212, 110279 LINK https://doi.org/10.1016/j.cep.2025.110279
    [Google Scholar]
  151. C. J. Anderson, M. C. Harris, D. A. Deglon, Miner. Eng., 2009, 22, (12), 1079 LINK https://doi.org/10.1016/j.mineng.2009.04.007
    [Google Scholar]
  152. X. Ni, S. Gao, R. H. Cumming, D. W. Pritchard, Chem. Eng. Sci., 1995, 50, (13), 2127 LINK https://doi.org/10.1016/0009-2509(95)00050-f
    [Google Scholar]
  153. M. R. Hewgill, M. R. Mackley, A. B. Pandit, S. S. Pannu, Chem. Eng. Sci., 1993, 48, (4), 799 LINK https://doi.org/10.1016/0009-2509(93)80145-g
    [Google Scholar]
  154. M. R. Mackley, P. Stonestreet, Chem. Eng. Sci., 1995, 50, (14), 2211 LINK https://doi.org/10.1016/0009-2509(95)00088-m
    [Google Scholar]
  155. K. B. Smith, M. R. Mackley, Chem. Eng. Res. Des., 2006, 84, (11), 1001 LINK https://doi.org/10.1205/cherd.05054
    [Google Scholar]
  156. J. I. Humadi, W. T. Mohammed, Johnson Matthey Technol. Rev., 2026, 70, (2), in press LINK https://doi.org/10.1595/205651326X17539747239869
    [Google Scholar]
/content/journals/10.1595/205651326X17539747239841
Loading
/content/journals/10.1595/205651326X17539747239841
Loading

Data & Media loading...

Supplements

  • Article Type: Review Article
Keyword(s): desulfurisation technologies; ODS process; oscillatory baffled reactor; reactor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test