Skip to content
1887
Volume 63, Issue 2
  • ISSN: 2056-5135

Abstract

The present article reviews the synthesis routes and applications of platinum-based nanoparticles in emerging fields such as energy harvesting, health care applications and sensors. Increasingly, more useful, novel and multifunctional materials are needed with fewer side effects. This article provides an overview of Pt-based nanoparticles along with recent applications in electrochemistry, photochemistry, biosensors and gas sensors. In particular, platinum dioxide (Adams’ catalyst) has been used in many chemical reactions including hydrogenation, oxidation and reduction.

Loading

Article metrics loading...

/content/journals/10.1595/205651319X15498900266305
2019-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/63/2/Prabha_16a_Imp.html?itemId=/content/journals/10.1595/205651319X15498900266305&mimeType=html&fmt=ahah

References

  1. Bernardi F., Alves M. C. M., and Morais J. J. Phys. Chem. C, 2010, 114, (49), 21434 LINK https://doi.org/10.1021/jp106134r [Google Scholar]
  2. Muller O., and Roy R. J. Less Common Metals, 1968, 16, (2), 129 LINK https://doi.org/10.1016/0022-5088(68)90070-2 [Google Scholar]
  3. Ono L. K., Yuan B., Heinrich H., and Cuenya B. R. J. Phys. Chem. C, 2010, 114, (50), 22119 LINK https://doi.org/10.1021/jp1086703 [Google Scholar]
  4. He B., Ha Y., Liu H., Wang K., and Liew K. Y. J. Colloid Interface Sci., 2007, 308, (1), 105 LINK https://doi.org/10.1016/j.jcis.2006.12.031 [Google Scholar]
  5. Rabis A., Kramer D., Fabbri E., Worsdale M., Kötz R., and Schmidt T. J. J. Phys. Chem. C, 2014, 118, (21), 11292 LINK https://doi.org/10.1021/jp4120139 [Google Scholar]
  6. Rabis A., Rodriguez P., and Schmidt T. J. ACS Catal., 2012, 2, (5), 864 LINK https://doi.org/10.1021/cs3000864 [Google Scholar]
  7. Hu G., Yang N., Xu G., and Xu J. J. Appl. Geophys., 2018, 150, 118 LINK https://doi.org/10.1016/j.jappgeo.2017.12.011 [Google Scholar]
  8. Li H., Lin B., Yang W., Zheng C., Hong Y., Gao Y., Liu T., and Wu S. Int. J. Coal Geol., 2016, 154–155, 82 LINK https://doi.org/10.1016/j.coal.2015.12.010 [Google Scholar]
  9. Datta K. J., Datta K. K. R., Gawande M. B., Ranc V., Čépe K., Malgras V., Yamauchi Y., Varma R. S., and Zboril R. Chem. Eur. J., 2016, 22, (5), 1577 LINK https://doi.org/10.1002/chem.201503441 [Google Scholar]
  10. Goswami A., K A., Aparicio C., Tomanec O., Petr M., Pocklanova R., Gawande M. B., Varma R. S., and Zboril R. ACS Appl. Mater. Interfaces, 2017, 9, (3), 2815 LINK https://doi.org/10.1021/acsami.6b13138 [Google Scholar]
  11. Hsia C.-F., Madasu M., and Huang M. H. Chem. Mater., 2016, 28, (9), 3073 LINK https://doi.org/10.1021/acs.chemmater.6b00377 [Google Scholar]
  12. Song H. M., Anjum D. H., Sougrat R., Hedhili M. N., and Khashab N. M. J. Mater. Chem., 2012, 22, (48), 25003 LINK https://doi.org/10.1039/c2jm35281h [Google Scholar]
  13. Hong J. W., Kang S. W., Choi B.-S., Kim D., Lee S. B., and Han S. W. ACS Nano, 2012, 6, (3), 2410 LINK https://doi.org/10.1021/nn2046828 [Google Scholar]
  14. Georgakilas V., Otyepka M., B A., Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., and Kim K. S. Chem. Rev., 2012, 112, (11), 6156 LINK https://doi.org/10.1021/cr3000412 [Google Scholar]
  15. Georgakilas V., N J., C K., A J., B A., Kim K. S., and Zboril R. Chem. Rev., 2016, 116, (9), 5464 LINK https://doi.org/10.1021/acs.chemrev.5b00620 [Google Scholar]
  16. Abe Y., Kawamura M., and Sasaki K. Jpn. J. Appl. Phys., Part 1, 1999, 38, (4A), 2092 LINK https://doi.org/10.1143/jjap.38.2092 [Google Scholar]
  17. Nagano Y. J. Therm. Anal. Calorim., 2002, 69, (3), 831 LINK https://doi.org/10.1023/a:1020651805170 [Google Scholar]
  18. Seriani N., Pompe W., and Ciacchi L. C. J. Phys. Chem. B, 2006, 110, (30), 14860 LINK https://doi.org/10.1021/jp063281r [Google Scholar]
  19. Zhensheng J., Chanjuan X., Qingmei Z., Feng Y., Jiazheng Z., and Jinzhen X. J. Mol. Catal. A: Chem., 2003, 191, (1), 61 LINK https://doi.org/10.1016/s1381-1169(02)00029-8 [Google Scholar]
  20. Tian N., Zhou Z.-Y., Sun S.-G., Ding Y., and Wang Z. L. Science, 2007, 316, (5825), 732 LINK https://doi.org/10.1126/science.1140484 [Google Scholar]
  21. Osorio-Guillén J., Lany S., Barabash S. V., and Zunger A. Phys. Rev. Lett., 2006, 96, (10), 107203 LINK https://doi.org/10.1103/physrevlett.96.107203 [Google Scholar]
  22. Chan J. A., Lany S., and Zunger A. Phys. Rev. Lett., 2009, 103, (1), 016404 LINK https://doi.org/10.1103/physrevlett.103.016404 [Google Scholar]
  23. Hu J., Zhang Z., Zhao M., Qin H., and Jiang M. Appl. Phys. Lett., 2008, 93, (19), 192503 LINK https://doi.org/10.1063/1.3021085 [Google Scholar]
  24. Ganduglia-Pirovano M. V., Hofmann A., and Sauer J. Surf. Sci. Rep., 2007, 62, (6), 219 LINK https://doi.org/10.1016/j.surfrep.2007.03.002 [Google Scholar]
  25. Hong N. H., Poirot N., and Sakai J. Phys. Rev. B, 2008, 77, (3), 033205 LINK https://doi.org/10.1103/physrevb.77.033205 [Google Scholar]
  26. Das Pemmaraju C., and Sanvito S. Phys. Rev. Lett., 2005, 94, (21), 217205 LINK https://doi.org/10.1103/physrevlett.94.217205 [Google Scholar]
  27. Dev P., Xue Y., and Zhang P. Phys. Rev. Lett., 2008, 100, (11), 117204 LINK https://doi.org/10.1103/physrevlett.100.117204 [Google Scholar]
  28. Palacios J. J., Fernández-Rossier J., and Brey L. Phys. Rev. B, 2008, 77, (19), 195428 LINK https://doi.org/10.1103/physrevb.77.195428 [Google Scholar]
  29. Range K.-J., Rau F., Klement U., and Heyns A. M. Mater. Res. Bull., 1987, 22, (11), 1541 LINK https://doi.org/10.1016/0025-5408(87)90220-0 [Google Scholar]
  30. Kresse G., and Furthmüller J. Phys. Rev. B, 1996, 54, (16), 11169 LINK https://doi.org/10.1103/physrevb.54.11169 [Google Scholar]
  31. Jung M. C., Kim H.-D., Han M., Jo W., and Kim D. C. Jpn. J. Appl. Phys., Part 1, 38, (8), 4872 LINK https://doi.org/10.1143/JJAP.38.4872 [Google Scholar]
  32. Yang Y., Sugino O., and Ohno T. Phys. Rev. B, 2012, 85, (3), 035204 LINK https://doi.org/10.1103/physrevb.85.035204 [Google Scholar]
  33. Pedersen T. M., Li W. X., and Hammer B. Phys. Chem. Chem. Phys., 2006, 8, (13), 1566 LINK https://doi.org/10.1039/b515166j [Google Scholar]
  34. Larsson E. M., Millet J., Gustafsson S., Skoglundh M., Zhdanov V. P., and Langhammer C. ACS Catal., 2012, 2, (2), 238 LINK https://doi.org/10.1021/cs200583u [Google Scholar]
  35. Hong H., Zhang H., Han T., He F., and Jin H. Energy Procedia, 2017, 114, 344 LINK https://doi.org/10.1016/j.egypro.2017.03.1175 [Google Scholar]
  36. Scheeren C. W., Domingos J. B., Machado G., and Dupont J. J. Phys. Chem. C, 2008, 112, (42), 16463 LINK https://doi.org/10.1021/jp804870j [Google Scholar]
  37. ‘Hydrosilylation of Alkynes and Their Derivatives – Regio- and Stereoselective Hydrosilylation of Alkynes Catalysed by Late Transition Metal Complexes’, in “Hydrosilylation – A Comprehensive Review on Recent Advances”, Vol. 1, ed. Marciniec B. Springer Science and Business Media BV, Dordrecht, The Netherlands, 2009, p. 57 [Google Scholar]
  38. Sabourault N., Mignani G., Wagner A., and Mioskowski C. Org. Lett., 2002, 4, (13), 2117 LINK https://doi.org/10.1021/ol025658r [Google Scholar]
  39. Putzien S., Louis E., Nuyken O., and Kühn F. E. Catal. Sci. Technol., 2012, 2, (4), 725 LINK https://doi.org/10.1039/c2cy00367h [Google Scholar]
  40. Kinoshita K. Thermochim. Acta, 1977, 20, (3), 297 LINK https://doi.org/10.1016/0040-6031(77)85084-3 [Google Scholar]
  41. Singh J., Nachtegaal M., Alayon E. M. C., Stötzel J., and van Bokhoven J. A. ChemCatChem, 2010, 2, (6), 653 LINK https://doi.org/10.1002/cctc.201000061 [Google Scholar]
  42. Hendriksen B. L. M., Bobaru S. C., and Frenken J. W. M. Catal. Today, 2005, 105, (2), 234 LINK https://doi.org/10.1016/j.cattod.2005.02.041 [Google Scholar]
  43. Hu Y.-S., Guo Y.-G., Sigle W., Hore S., Balaya P., and Maier J. Nature Mater., 2006, 5, (9), 713 LINK https://doi.org/10.1038/nmat1709 [Google Scholar]
  44. McDaniel C. L. J. Solid State Chem., 1974, 9, (2), 139 LINK https://doi.org/10.1016/0022-4596(74)90065-6 [Google Scholar]
  45. Lee A. F., Naughton J. N., Liu Z., and Wilson K. ACS Catal., 2012, 2, (11), 2235 LINK https://doi.org/10.1021/cs300450y [Google Scholar]
  46. Mostafa S., Behafarid F., R J., K L., Li L., Yang J. C., Frenkel A. I., and Cuenya B. R. J. Am. Chem. Soc., 2010, 132, (44), 15714 LINK https://doi.org/10.1021/ja106679z [Google Scholar]
  47. Xu R., Wang D., Zhang J., and Li Y. Chem. – An Asian J., 2006, 1, (6), 888 LINK https://doi.org/10.1002/asia.200600260 [Google Scholar]
  48. Komanicky V., Iddir H., Chang K.-C., Menzel A., Karapetrov G., Hennessy D., Zapol P., and You H. J. Am. Chem. Soc., 2009, 131, (16), 5732 LINK https://doi.org/10.1021/ja900459w [Google Scholar]
  49. Gökağaç G., and Kennedy B. J. Zeitschrift für Naturforsch. B, 2002, 57, (2), 193 LINK https://doi.org/10.1515/znb-2002-0211 [Google Scholar]
  50. Aricò A. S., Shukla A. K., El-Khatib K. M., Cretì P., and Antonucci V. J. Appl. Electrochem., 1999, 29, (6), 673 LINK https://doi.org/10.1023/a:1003538230286 [Google Scholar]
  51. Guo D.-J., and Li H.-L. J. Electroanal. Chem., 2004, 573, (1), 197 LINK https://doi.org/10.1016/s0022-0728(04)00369-9 [Google Scholar]
  52. Zhang J. H., Zhou X. L., and Wang J. A. J. Mol. Catal. A: Chem., 2006, 247, (1–2), 222 LINK https://doi.org/10.1016/j.molcata.2005.11.055 [Google Scholar]
  53. Burgos N., Paulis M., Mirari Antxustegi M., and Montes M. Appl. Catal. B: Environ., 2002, 38, (4), 251 LINK https://doi.org/10.1016/s0926-3373(01)00294-6 [Google Scholar]
  54. Parayil S. K., Kibombo H. S., Wu C.-M., Peng R., Kindle T., Mishra S., Ahrenkiel S. P., Baltrusaitis J., Dimitrijevic N. M., Rajh T., and Koodali R. T. J. Phys. Chem. C, 2013, 117, (33), 16850 LINK https://doi.org/10.1021/jp405727k [Google Scholar]
  55. Teoh W. Y., Mädler L., and Amal R. J. Catal., 2007, 251, (2), 271 LINK https://doi.org/10.1016/j.jcat.2007.08.008 [Google Scholar]
  56. Wang H., Wu Z., Liu Y., and Wang Y. Chemosphere, 2009, 74, (6), 773 LINK https://doi.org/10.1016/j.chemosphere.2008.10.032 [Google Scholar]
  57. Kibombo H. S., Wu C.-M., Peng R., Baltrusaitis J., and Koodali R. T. Appl. Catal. B: Environ., 2013, 136–137, 248 LINK https://doi.org/10.1016/j.apcatb.2013.01.062 [Google Scholar]
  58. Li F. B., and Li X. Z. Chemosphere, 2002, 48, (10), 1103 LINK https://doi.org/10.1016/s0045-6535(02)00201-1 [Google Scholar]
  59. Seriani N., Jin Z., Pompe W., and Ciacchi L. C. Phys. Rev. B, 2007, 76, (15), 155421 LINK https://doi.org/10.1103/physrevb.76.155421 [Google Scholar]
  60. Vorontsov A. V., Savinov E. N., and Zhensheng J. J. Photochem. Photobiol. A: Chem., 1999, 125, (1–3), 113 LINK https://doi.org/10.1016/s1010-6030(99)00073-8 [Google Scholar]
  61. Gao M.-R., Lin Z.-Y., Jiang J., Cui C.-H., Zheng Y.-R., and Yu S.-H. Chem. - A Eur. J., 2012, 18, (27), 8423 LINK https://doi.org/10.1002/chem.201200353 [Google Scholar]
  62. Svintsitskiy D. A., Kibis L. S., Stadnichenko A. I., Koscheev S. V., Zaikovskii V. I., and Boronin A. I. ChemPhysChem, 2015, 16, (15), 3318 LINK https://doi.org/10.1002/cphc.201500546 [Google Scholar]
  63. Sun B., Vorontsov A. V., and Smirniotis P. G. Langmuir, 2003, 19, (8), 3151 LINK https://doi.org/10.1021/la0264670 [Google Scholar]
  64. Emilio C. A., Litter M. I., Kunst M., Bouchard M., and Colbeau-Justin C. Langmuir, 2006, 22, (8), 3606 LINK https://doi.org/10.1021/la051962s [Google Scholar]
  65. Sun B., Smirniotis P. G., and Boolchand P. Langmuir, 2005, 21, (24), 11397 LINK https://doi.org/10.1021/la051262n [Google Scholar]
  66. Sarno M., and Ponticorvo E. Int. J. Hydrogen Energy, 2017, 42, (37), 23631 LINK https://doi.org/10.1016/j.ijhydene.2017.03.017 [Google Scholar]
  67. Miller D., Sanchez Casalongue H., Bluhm H., Ogasawara H., Nilsson A., and Kaya S. J. Am. Chem. Soc., 2014, 136, (17), 6340 LINK https://doi.org/10.1021/ja413125q [Google Scholar]
  68. Zhao G.-Y., and Li H.-L. Appl. Surf. Sci., 2008, 254, (10), 3232 LINK https://doi.org/10.1016/j.apsusc.2007.10.086 [Google Scholar]
  69. Guerrette J. P., Oja S. M., and Zhang B. Anal. Chem., 2012, 84, (3), 1609 LINK https://doi.org/10.1021/ac2028672 [Google Scholar]
  70. Cox J. T., Guerrette J. P., and Zhang B. Anal. Chem., 2012, 84, (20), 8797 LINK https://doi.org/10.1021/ac302219p [Google Scholar]
  71. Fosdick S. E., Knust K. N., Scida K., and Crooks R. M. Angew. Chem. Int. Ed., 2013, 52, (40), 10438 LINK https://doi.org/10.1002/anie.201300947 [Google Scholar]
  72. Lundgren A., Munktell S., Lacey M., Berglin M., and Björefors F. ChemElectroChem, 2016, 3, (3), 378 LINK https://doi.org/10.1002/celc.201500413 [Google Scholar]
  73. Hao R., and Zhang B. Anal. Chem., 2016, 88, (1), 614 LINK https://doi.org/10.1021/acs.analchem.5b03548 [Google Scholar]
  74. Clausmeyer J., and Schuhmann W. TrAC Trends Anal. Chem., 2016, 79, 46 LINK https://doi.org/10.1016/j.trac.2016.01.018 [Google Scholar]
  75. Li Y., Bergman D., and Zhang B. Anal. Chem., 2009, 81, (13), 5496 LINK https://doi.org/10.1021/ac900777n [Google Scholar]
  76. Green I. X., Tang W., Neurock M., and Yates J. T. Science, 2011, 333, (6043), 736 LINK https://doi.org/10.1126/science.1207272 [Google Scholar]
  77. Subramanian V., Wolf E. E., and Kamat P. V. J. Phys. Chem. B, 2003, 107, (30), 7479 LINK https://doi.org/10.1021/jp0275037 [Google Scholar]
  78. Sato S., Asahi R., Morikawa T., Ohwaki T., Aoki K., and Taga Y. Science, 2002, 295, (5555), 626 LINK https://doi.org/10.1126/science.295.5555.626 [Google Scholar]
  79. Nagarale R. K., Hoss U., and Heller A. J. Am. Chem. Soc., 2012, 134, (51), 20783 LINK https://doi.org/10.1021/ja3103549 [Google Scholar]
  80. Hennek J. W., Xia Y., Everaerts K., C M., Facchetti A., and Marks T. J. ACS Appl. Mater. Interfaces, 2012, 4, (3), 1614 LINK https://doi.org/10.1021/am201776p [Google Scholar]
  81. Dhavale V. M., and Kurungot S. J. Phys. Chem. C, 2012, 116, (13), 7318 LINK https://doi.org/10.1021/jp300628j [Google Scholar]
  82. Devi S. M., Nivetha A., and Prabha I. J. Supercond. Novel Magn., 2018, Review Paper LINK https://doi.org/10.1007/s10948-018-4929-8 [Google Scholar]
  83. Tracy J. B., Weiss D. N., Dinega D. P., and Bawendi M. G. Phys. Rev. B, 2005, 72, (6), 064404 LINK https://doi.org/10.1103/physrevb.72.064404 [Google Scholar]
  84. Behrens S., Bönnemann H., Matoussevitch N., Gorschinski A., Dinjus E., Habicht W., Bolle J., Zinoveva S., Palina N., Hormes J., Modrow H., Bahr S., and Kempter V. J. Phys.: Condens. Matter, 2006, 18, (38), S2543 LINK https://doi.org/10.1088/0953-8984/18/38/s02 [Google Scholar]
  85. Luo X., Morrin A., Killard A. J., and Smyth M. R. Electroanalysis, 2006, 18, (4), 319 LINK https://doi.org/10.1002/elan.200503415 [Google Scholar]
  86. Medintz I. L., Uyeda H. T., Goldman E. R., and Mattoussi H. Nature Mater., 2005, 4, (6), 435 LINK https://doi.org/10.1038/nmat1390 [Google Scholar]
  87. Heller A., and Feldman B. Chem. Rev., 2008, 108, (7), 2482 LINK https://doi.org/10.1021/cr068069y [Google Scholar]
  88. Meng L., Jin J., Yang G., Lu T., Zhang H., and Cai C. Anal. Chem., 2009, 81, (17), 7271 LINK https://doi.org/10.1021/ac901005p [Google Scholar]
  89. Jia W.-Z., Wang K., Zhu Z.-J., Song H.-T., and Xia X.-H. Langmuir, 2007, 23, (23), 11896 LINK https://doi.org/10.1021/la7020269 [Google Scholar]
  90. Homola J. Sensors Actuators B: Chem., 1997, 41, (1–3), 207 LINK https://doi.org/10.1016/s0925-4005(97)80297-3 [Google Scholar]
  91. Sharma A. K., and Gupta B. D. Sensors Actuators B: Chem., 2004, 100, (3), 423 LINK https://doi.org/10.1016/j.snb.2004.02.013 [Google Scholar]
  92. Lal S., Link S., and Halas N. J. Nature Photonics, 2007, 1, (11), 641 LINK https://doi.org/10.1038/nphoton.2007.223 [Google Scholar]
  93. Hurly J., and Wedepohl P. T. J. Mater. Sci., 1993, 28, (20), 5648 LINK https://doi.org/10.1007/bf00367841 [Google Scholar]
  94. Velichkina L. M., Pestryakov A. N., Vosmerikov A. V., Tuzovskaya I. V., Bogdanchikova N. E., Avalos M., Farias M., and Tiznado H. Pet. Chem., 2008, 48, (3), 201 LINK https://doi.org/10.1134/s0965544108030055 [Google Scholar]
  95. Chen A., and Holt-Hindle P. Chem. Rev., 2010, 110, (6), 3767 LINK https://doi.org/10.1021/cr9003902 [Google Scholar]
  96. Yin H., Cui L., Ai S., Fan H., and Zhu L. Electrochim. Acta, 2010, 55, (3), 603 LINK https://doi.org/10.1016/j.electacta.2009.09.020 [Google Scholar]
  97. Klečka G. M., Staples C. A., Clark K. E., van der Hoeven N., Thomas D. E., and Hentges S. G. Environ. Sci. Technol., 2009, 43, (16), 6145 LINK https://doi.org/10.1021/es900598e [Google Scholar]
  98. Vandenberg L. N., Hauser R., Marcus M., Olea N., and Welshons W. V. Reprod. Toxicol., 2007, 24, (2), 139 LINK https://doi.org/10.1016/j.reprotox.2007.07.010 [Google Scholar]
  99. Mielke H., and Gundert-Remy U. Toxicol. Lett., 2009, 190, (1), 32 LINK https://doi.org/10.1016/j.toxlet.2009.06.861 [Google Scholar]
  100. Ragavan K. V., Rastogi N. K., and Thakur M. S. TrAC Trends Anal. Chem., 2013, 52, 248 LINK https://doi.org/10.1016/j.trac.2013.09.006 [Google Scholar]
  101. Rather J. A., and De Wael K. Sensors Actuators B: Chem., 2013, 176, 110 LINK https://doi.org/10.1016/j.snb.2012.08.081 [Google Scholar]
  102. Hu L., Fong C.-C., Zhang X., Chan L. L., Lam P. K. S., Chu P. K., Wong K.-Y., and Yang M. Environ. Sci. Technol., 2016, 50, (8), 4430 LINK https://doi.org/10.1021/acs.est.5b05857 [Google Scholar]
  103. Zheng Z., Du Y., Wang Z., Feng Q., and Wang C. Analyst, 2013, 138, (2), 693 LINK https://doi.org/10.1039/c2an36569c [Google Scholar]
  104. Wannapob R., Thavarungkul P., Dawan S., Numnuam A., Limbut W., and Kanatharana P. Electroanalysis, 2017, 29, (2), 472 LINK https://doi.org/10.1002/elan.201600371 [Google Scholar]
  105. Malgras V., Ataee-Esfahani H., Wang H., Jiang B., Li C., Wu K. C.-W., Kim J. H., and Yamauchi Y. Adv. Mater., 2015, 28, (6), 993 LINK https://doi.org/10.1002/adma.201502593 [Google Scholar]
  106. Shen Q., Jiang L., Zhang H., Min Q., Hou W., and Zhu J.-J. J. Phys. Chem. C, 2008, 112, (42), 16385 LINK https://doi.org/10.1021/jp8060043 [Google Scholar]
  107. Park D.-S., Won M.-S., Goyal R. N., and Shim Y.-B. Sensors Actuators B: Chem., 2012, 174, 45 LINK https://doi.org/10.1016/j.snb.2012.08.017 [Google Scholar]
  108. Zafarani H. R., Rassaei L., Sudhölter E. J. R., Aaronson B. D. B., and Marken F. Sensors Actuators B: Chem., 2018, 255, 2904 LINK https://doi.org/10.1016/j.snb.2017.09.110 [Google Scholar]
  109. Bae I. T., Yeager E., Xing X., and Liu C. C. J. Electroanal. Chem. Interfacial Electrochem., 1991, 309, (1–2), 131 LINK https://doi.org/10.1016/0022-0728(91)87009-s [Google Scholar]
  110. Dong C., Liu X., Xiao X., Chen G., Wang Y., and Djerdj I. J. Mater. Chem. A, 2014, 2, (47), 20089 LINK https://doi.org/10.1039/c4ta04251d [Google Scholar]
  111. Shao S., Chen Y., Huang S., Jiang F., Wang Y., and Koehn R. RSC Adv., 2017, 7, (63), 39859 LINK https://doi.org/10.1039/c7ra07478f [Google Scholar]
  112. Yang B., Liu J., Qin H., Liu Q., Jing X., Zhang H., Li R., Huang G., and Wang J. Ceram. Int., 2018, 44, (9), 10426 LINK https://doi.org/10.1016/j.ceramint.2018.03.059 [Google Scholar]
  113. Murata N., Suzuki T., Kobayashi M., Togoh F., and Asakura K. Phys. Chem. Chem. Phys., 2013, 15, (41), 17938 LINK https://doi.org/10.1039/c3cp52490f [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651319X15498900266305
Loading
/content/journals/10.1595/205651319X15498900266305
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error