Skip to content
1887
Volume 64, Issue 2
  • ISSN: 2056-5135

Abstract

Understanding the manufacture and operation of automotive emissions control particulate filters is important in the optimised design of these emissions control systems. Here we show how magnetic resonance imaging (MRI) can be used to understand the drying process, which is part of the manufacture of catalysed particulate filters. Comparison between a wall-flow particulate filter substrate and a flow-through monolith (FTM) has been performed, with MRI giving spatial information on the drying process. We have also used MRI to study the fluid dynamics of a gasoline particulate filter (GPF). Inlet and outlet channel gas velocities have been measured for a clean GPF and two GPF samples loaded with particulate matter (PM) to understand the effect of PM on the filter flow profiles and porous wall permeability as soot is deposited.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15754757907469
2020-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/2/York_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15754757907469&mimeType=html&fmt=ahah

References

  1. Commission Regulation (EU) 459/2012, Official J. Eur. Union, 2012, 55, (L142), 16 LINK http://data.europa.eu/eli/reg/2012/459/oj [Google Scholar]
  2. Nijhuis T. A., Beers A. E. W., Vergunst T., Hoek I., Kapteijn F., and Moulijn J. A. Catal. Rev. Sci. Eng., 2001, 43, (4), 345 LINK https://doi.org/10.1081/CR-120001807 [Google Scholar]
  3. Vergunst T., Kapteijn F., and Moulijn J. A. Appl. Catal. A: Gen., 2001, 213, (2), 179 LINK https://doi.org/10.1016/S0926-860X(00)00896-6 [Google Scholar]
  4. Wahlberg A., Pettersson L. J., Bruce K., Andersson M., and Jansson K. Appl. Catal. B: Environ., 1999, 23, (4), 271 LINK https://doi.org/10.1016/S0926-3373(99)00083-1 [Google Scholar]
  5. Ismagilov Z. R., Yashnik S. A., Matveev A. A., Koptyug I. V., and Moulijn J. A. Catal. Today, 2005, 105, (3–4), 484 LINK https://doi.org/10.1016/j.cattod.2005.06.054 [Google Scholar]
  6. Mujumdar A. S. “Handbook of Industrial Drying”, 3rd Edn., ed. Taylor and Francis Group LLC, 2007, 1280 pp [Google Scholar]
  7. Bissett E. J. Chem. Eng. Sci., 1984, 39, (7–8), 1233 LINK https://doi.org/10.1016/0009-2509(84)85084-8 [Google Scholar]
  8. Konstandopoulos A. G., and Johnson J. H. SAE Technical Paper 890405, SAE International, Warrendale, USA, 1st February, 1989 LINK https://doi.org/10.4271/890405 [Google Scholar]
  9. Bissett E. J., Kostoglou M., and Konstandopoulos A. G. Chem. Eng. Sci., 2012, 84, 255 LINK https://doi.org/10.1016/j.ces.2012.08.012 [Google Scholar]
  10. York A. P. E., Watling T. C., Ahmadinejad M., Bergeal D., Phillips P. R., and Swallow D. SAE Int. J. Fuels Lubr., 2009, 2, (1), 578 LINK https://doi.org/10.4271/2009-01-1266 [Google Scholar]
  11. Gladden L. F. Am. Inst. Chem. Eng. J., 2004, 49, (1), 2 LINK https://doi.org/10.1002/aic.690490102 [Google Scholar]
  12. Hollewand M. P., and Gladden L. F. Magn. Reson. Imaging, 1994, 12, (2), 291 LINK https://doi.org/10.1016/0730-725X(94)91538-5 [Google Scholar]
  13. Yu Khitrina L., Koptyug I. V., Pakhomov N. A., Sagdeev R. Z., and Parmon V. N. J. Phys. Chem. B, 2000, 104, (9), 1966 LINK https://doi.org/10.1021/jp994412 [Google Scholar]
  14. Koptyug I. V., Kabanikhin S. I., Iskakov K. T., Fenelonov V. B., Yu Khitrina L., Sagdeev R. Z., and Parmon V. N. Chem. Eng. Sci., 2000, 55, (9), 1559 LINK https://doi.org/10.1016/S0009-2509(99)00404-2 [Google Scholar]
  15. Koptyug I. V., Yu Khitrina L., Parmon V. N., and Sagdeev R. Z. Magn. Reson. Imaging, 2001, 19, (3–4), 531 LINK https://doi.org/10.1016/S0730-725X(01)00286-7 [Google Scholar]
  16. Lysova A. A., Koptyug I. V., Sagdeev R. Z., Parmon V. N., Bergwerff J. A., and Weckhuysen B. M. J. Am. Chem. Soc., 2005, 127, (34), 11916 LINK https://doi.org/10.1021/ja053456v [Google Scholar]
  17. Enjilela R., Cano-Barrita P. F. J., Komar A., Boyd A. J., and Balcom B. J. Mater. Struct., 2017, 50, (2), 151 LINK https://doi.org/10.1617/s11527-017-1017-7 [Google Scholar]
  18. Guillot G., Trokiner A., Darrasse L., and Saint-Jalmes H. J. Phys. D.: Appl. Phys., 1989, 22, (11), 1646 LINK https://doi.org/10.1088/0022-3727/22/11/013 [Google Scholar]
  19. Song K. M., Mitchell J., Jaffel H., and Gladden L. F. J. Mater. Sci., 2010, 45, (19), 5282 LINK https://doi.org/10.1007/s10853-010-4572-7 [Google Scholar]
  20. Mantle M. D. Int. J. Pharm., 2011, 417, (1–2), 173 LINK https://doi.org/10.1016/j.ijpharm.2010.11.035 [Google Scholar]
  21. Zhang Q., Gladden L., Avalle P., and Mantle M. J. Control. Release, 2011, 156, (3), 345 LINK https://doi.org/10.1016/j.jconrel.2011.08.039 [Google Scholar]
  22. Griffith J. D., Bayly A. E., and Johns M. L. Chem. Eng. Sci., 2008, 63, (13), 3449 LINK https://doi.org/10.1016/j.ces.2008.03.043 [Google Scholar]
  23. Griffith J. D., Bayly A. E., and Johns M. L. J. Colloid Interface Sci., 2007, 315, (1), 223 LINK https://doi.org/10.1016/J.JCIS.2007.06.050 [Google Scholar]
  24. Adiletta G., Iannone G., Russo P., Patimo G., De Pasquale S., and Di Matteo M. Int. J. Food Sci. Technol., 2014, 49, (12), 2602 LINK https://doi.org/10.1111/ijfs.12591 [Google Scholar]
  25. Manzocco L., Anese M., Marzona S., Innocente N., Lagazio C., and Nicoli M. C. Food Chem., 2013, 141, (3), 2246 LINK https://doi.org/10.1016/j.foodchem.2013.04.068 [Google Scholar]
  26. Tsuruta T., Tanigawa H., and Sashi H. Dry. Technol., 2015, 33, (15–16), 1830 LINK https://doi.org/10.1080/07373937.2015.1036286 [Google Scholar]
  27. Mantle M. D., Reis N. C., Griffiths R. F., and Gladden L. F. Magn. Reson. Imaging, 2003, 21, (3–4), 293 LINK https://doi.org/10.1016/S0730-725X(03)00157-7 [Google Scholar]
  28. Reis N. C., Griffiths R. F., Mantle M. D., and Gladden L. F. Int. J. Heat Mass Trans., 2003, 46, (7), 1279 LINK https://doi.org/10.1016/S0017-9310(02)00395-2 [Google Scholar]
  29. Reis N. C., Griffiths R. F., Mantle M. D., Gladden L. F., and Santos J. M. Int. J. Heat Mass Trans., 2006, 49, (5–6), 951 LINK https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2005.09.014 [Google Scholar]
  30. van der Heijden G. H. A., Huinink H. P., Pel L., and Kopinga K. Chem. Eng. Sci., 2009, 64, (12), 3010 LINK https://doi.org/10.1016/J.CES.2009.03.012 [Google Scholar]
  31. Koptyug I. V. Prog. Nucl. Magn. Reson. Spectrosc., 2012, 65, 1 LINK https://doi.org/10.1016/j.pnmrs.2011.12.001 [Google Scholar]
  32. Koptyug I. V., Altobelli S., Fukushima E., Matveev A. V., and Sagdeev R. Z. J. Magn. Reson., 2000, 147, (1), 36 LINK https://doi.org/10.1006/jmre.2000.2186 [Google Scholar]
  33. Koptyug I. V., Yu Ilyina L., Matveev A. V., Sagdeev R. Z., Parmon V. N., and Altobelli S. A. Catal. Today, 2001, 69, (1–4), 385 LINK http://doi.org/10.1016/S0920-5861(01)00396-0 [Google Scholar]
  34. Koptyug I. V., Matveev A. V., and Altobelli S. A. Appl. Magn. Reson., 2002, 22, (2), 187 LINK https://doi.org/10.1007/BF03166102 [Google Scholar]
  35. Codd S. L., and Altobelli S. A. J. Magn. Reson., 2003, 163, (1), 16 LINK https://doi.org/10.1016/S1090-7807(03)00111-3 [Google Scholar]
  36. Ramskill N. P., York A. P. E., Sederman A. J., and Gladden L. F. Chem. Eng. Sci., 2017, 158, 490 LINK https://doi.org/10.1016/j.ces.2016.10.017 [Google Scholar]
  37. Lustig M., Donoho D., and Pauly J. M. Magn. Reson. Med., 2007, 58, (6), 1182 LINK https://doi.org/10.1002/mrm.21391 [Google Scholar]
  38. Lustig M. ‘Sparse MRI’, PhD thesis, Department of Electrical Engineering, Stanford University, Stanford, USA, 2008, 131 pp [Google Scholar]
  39. Holland D. J., Bostock M. J., Gladden L. F., and Nietlispach D. Angew. Chem. Int. Ed., 2011, 50, (29), 6548 LINK https://doi.org/10.1002/anie.201100440 [Google Scholar]
  40. Wu Y., D’Agostino C., Holland D. J., and Gladden L. F. Chem. Commun., 2014, 50, (91), 14137 LINK https://doi.org/10.1039/c4cc06051b [Google Scholar]
  41. Holland D. J., and Gladden L. F. Angew. Chem. Int. Ed., 2014, 53, (49), 13330 LINK https://doi.org/10.1002/anie.201400535 [Google Scholar]
  42. Callaghan P. T. “Principles of Nuclear Magnetic Resonance Microscopy”, Oxford University Press, Oxford, UK, 1993, 492 pp [Google Scholar]
  43. Haacke E. M., Brown R. W., Thompson M. R., and Venkatesan R. “Magnetic Resonance Imaging – Physical Principles and Sequence Design”, John Wiley and Sons Inc, New York, USA, 1999, 914 pp [Google Scholar]
  44. Mantle M. D., and Sederman A. J. Prog. Nucl. Magn. Reson. Spectrosc., 2003, 43, (1–2), 3 LINK https://doi.org/10.1016/S0079-6565(03)00005-0 [Google Scholar]
  45. Caprihan A., and Fukushima E. Phys. Rep., 1990, 198, (4), 195 LINK https://doi.org/10.1016/0370-1573(90)90046-5 [Google Scholar]
  46. Perry R. H., and Green D. W. “Perry’s Chemical Engineers’ Handbook”, 8th Edn., eds. McGraw-Hill Education, New York, USA, 2008 [Google Scholar]
  47. Hennig J., Nauerth A., and Friedburg H. Magn. Reson. Med., 1986, 3, (6), 823 LINK https://doi.org/10.1002/mrm.1910030602 [Google Scholar]
  48. Schejbal M., Marek M., Kubíček M., and Kočí P. Chem. Eng. J., 2009, 154, (1–3), 219 LINK https://doi.org/10.1016/j.cej.2009.04.056 [Google Scholar]
  49. Yu M., Luss D., and Balakotaiah V. Chem. Eng. J., 2013, 226, 68 LINK https://doi.org/10.1016/j.cej.2013.04.026 [Google Scholar]
  50. Bond G., Moyes R. B., Pollington S. D., and Whan D. A. Stud. Surf. Sci. Catal., 1993, 75, 1805 LINK https://doi.org/10.1016/S0167-2991(08)64539-5 [Google Scholar]
  51. de Jong K. P. Stud. Surf. Sci. Catal., 1991, 63, 19 LINK https://doi.org/10.1016/S0167-2991(08)64569-3 [Google Scholar]
  52. Bensaid S., Marchisio D. L., and Fino D. Chem. Eng. Sci., 2010, 65, (1), 357 LINK https://doi.org/10.1016/j.ces.2009.06.051 [Google Scholar]
  53. York A. P. E., Watling T. C., Ramskill N. P., Gladden L. F., Sederman A. J., Tsolakis A., Herreros J. M., and Lefort I. SAE Technical Paper 2015-01-2009, SAE International, Warrendale, USA, 1st September, 2015 LINK https://doi.org/10.4271/2015-01-2009 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15754757907469
Loading
/content/journals/10.1595/205651320X15754757907469
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error