Skip to content
1887
Volume 65, Issue 1
  • ISSN: 2056-5135

Abstract

Deformation and fracture behaviour of cold drawing iridium wire under tension at room temperature is examined. High purity polycrystalline iridium was manufactured using pyrometallurgical technology. During the initial stage of cold rolling, iridium wire has its usual grain structure and exhibits brittle deformation behaviour: poor plasticity and brittle transgranular fracture (BTF). However, the wire begins demonstrating high plasticity including necking in spite of the brittle fracture mode when the lamellar structure has been formed in iridium during cold drawing.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15815921428640
2021-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/1/Panfilov_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15815921428640&mimeType=html&fmt=ahah

References

  1. Brookes C. A., Greenwood J. H., and Routbort J. L. J. Appl. Phys., 1968, 39, (5), 2391 LINK https://doi.org/10.1063/1.1656565 [Google Scholar]
  2. Hunt L. B. Platinum Metals Rev., 1987, 31, (1), 32 LINK https://www.technology.matthey.com/article/31/1/32-41/ [Google Scholar]
  3. Shabalin I. L. ‘Iridium’, in “Ultra-High Temperature Materials I: Carbon (Graphene/Graphite) and Refractory Metals”, Ch. 9, Springer Science and Business Media, Dordrecht, The Netherlands, 2014, pp. 609–650 LINK https://doi.org/10.1007/978-94-007-7587-9_9 [Google Scholar]
  4. Franco-Ferreira E. A., Goodwin G. M., George T. G., and Rinehart G. H. Platinum Metals Rev., 1997, 41, (4), 154 LINK https://www.technology.matthey.com/article/41/4/154-163/ [Google Scholar]
  5. Handley J. R. Platinum Metals Rev., 1986, 30, (1), 12 LINK https://www.technology.matthey.com/article/30/1/12-13/ [Google Scholar]
  6. Ragaini J. D., ‘Iridium Refining’, in “Iridium”, eds. Ohriner E. K., Lanam R. D., Panfilov P., and Harada H. 129th Annual Meeting and Exhibition, 12th–16th March, 2000, Nashville, Tennessee, USA,Metals and Materials Society (TMS), Warrendale, Pennsylvania, USA, pp. 333–337 [Google Scholar]
  7. Ohriner E. K. Platinum Metals Rev., 2008, 52, (3), 186 LINK https://www.technology.matthey.com/article/52/3/186-197/ [Google Scholar]
  8. Richardson F. D. Platinum Metals Rev., 1958, 2, (3), 83 LINK https://www.technology.matthey.com/article/2/3/83-85/ [Google Scholar]
  9. Douglass R. W., and Jaffee R. I. ‘Elevated-Temperature Properties of Rhodium, Iridium and Ruthenium’, ASTM Proc., 1962, 62, pp. 627–638 [Google Scholar]
  10. Reinacher G. Metall., 1964, 18, 731 [Google Scholar]
  11. Mordike B. L., and Brookes C. A. Platinum Metals Rev., 1960, 4, (3), 94 LINK https://www.technology.matthey.com/article/4/3/94-99/ [Google Scholar]
  12. Brookes C. A., Greenwood J. H., and Routbort J. L. J. Inst. Metals, 1970, 98, 27 [Google Scholar]
  13. Honeycombe R. W. K. “The Plastic Deformation of Metals”, Edward Arnold, London, UK, 1968 [Google Scholar]
  14. Argon A. S. “Strengthening Mechanisms in Crystal Plasticity”, Oxford University Press, Oxford, UK, 2008, 403 pp LINK https://doi.org/10.1093/acprof:oso/9780198516002.001.0001 [Google Scholar]
  15. Douglass R. W., Krier A., and Jaffee R. I. “High-Temperature Properties and Alloying Behavior of the Refractory Platinum-Group Metals”, Report NP-10939, Batelle Memorial Institute, Columbus, USA,31st August, 1961 [Google Scholar]
  16. Hieber H., Mordike B. L., and Haasen P. Platinum Metals Rev., 1964, 8, (3), 102 LINK https://www.technology.matthey.com/article/8/3/102-106/ [Google Scholar]
  17. Haasen P., Hieber H., and Mordike B. L. Z. Metallkde, 1965, 56, (12), 832 [Google Scholar]
  18. Reid C. N., and Routbort J. L. Metall. Trans., 1972, 3, 2257 [Google Scholar]
  19. Hecker S. S., Rohr D. L., and Stein D. F. Metall. Trans. A, 1978, 9, (4), 481 LINK https://doi.org/10.1007/BF02646403 [Google Scholar]
  20. Gandhi C., and Ashby M. F. Scripta Metall., 1979, 13, (5), 371 LINK https://doi.org/10.1016/0036-9748(79)90227-8 [Google Scholar]
  21. MacFarlane R. E., Rayne J. A., and Jones C. K. Phys. Lett., 1966, 20, (3), 234 LINK https://doi.org/10.1016/0031-9163(66)90340-4 [Google Scholar]
  22. Gornostyrev Yu. N., Katsnelson M. I., Medvedeva N. I., Mryasov O. N., Freeman A. J., and Trefilov A. V. Phys. Rev. B., 2000, 62, (12), 7802 LINK https://doi.org/10.1103/PhysRevB.62.7802 [Google Scholar]
  23. Cawkwell M. J., Nguyen-Manh D., Woodward C., Pettifor D. G., and Vitek V. Science, 2000, 309, (5737), 1059 LINK https://doi.org/10.1126/science.1114704 [Google Scholar]
  24. Chen S. P. Phil. Mag. A, 1992, 66, (1), 1 LINK https://doi.org/10.1080/01418619208201509 [Google Scholar]
  25. Yermakov A. V., Koltygin V. M., and Fatyushina E. V Platinum Metals Rev., 1992, 36, (3), 146 LINK https://www.technology.matthey.com/article/36/3/146-149/ [Google Scholar]
  26. Panfilov P., Yermakov A., Dmitriev V., and Timofeev N. Platinum Metals Rev., 1991, 35, (4), 196 LINK https://www.technology.matthey.com/article/35/4/196-200/ [Google Scholar]
  27. Timofeev N. I., Yermakov A. V., Dmitriev V. A., and Panfilov P. E. “Metallurgy and Mechanical Behavior of Iridium”, Urals Branch of Russian Academy of Science, Ekaterinburg, Russia, 1996 [Google Scholar]
  28. Yermakov A., Panfilov P., and Adamesku R. J. Mater. Sci. Lett., 1990, 9, (6), 696 LINK https://doi.org/10.1007/BF00721807 [Google Scholar]
  29. Panfilov P., Novgorodov V., and Yermakov A. J. Mater. Sci. Lett., 1994, 13, (2), 137 LINK https://doi.org/10.1007/BF00416826 [Google Scholar]
  30. Adamesku R. A., Barkhatov V. A., and Yermakov A. V. Vysokochistye Veschestva, 1990, (3), 219 (in Russian) [Google Scholar]
  31. Panfilov P., and Yermakov A. J. Mater. Sci., 2004, 39, (14), 4543 LINK https://doi.org/10.1023/B:JMSC.0000034148.03387.71 [Google Scholar]
  32. Panfilov P. J. Mater. Sci., 2005, 40, (22), 5983 LINK https://doi.org/10.1007/s10853-005-1296-1 [Google Scholar]
  33. Liu C. T., Inouye H., and Schaffhauser A. C. Metall. Trans. A, 1981, 12, (6), 993 LINK https://doi.org/10.1007/BF02643480 [Google Scholar]
  34. George E. P., McKamey C. G., Ohriner E. K., and Lee E. H. Mater. Sci. Eng.: A, 2001, 319–321, 466 LINK https://doi.org/10.1016/S0921-5093(01)01082-6 [Google Scholar]
  35. Panfilov P., Yermakov A., and Baturin G. J. Mater. Sci. Lett., 1990, 9, (10), 1162 LINK https://doi.org/10.1007/BF00721877 [Google Scholar]
  36. Panfilov P., Novgorodov V., and Baturin G. J. Mater. Sci. Lett., 1992, 11, (4), 229 LINK https://doi.org/10.1007/BF00741429 [Google Scholar]
  37. Panfilov P. J. Mater. Sci., 2007, 42, (19), 8230 LINK https://doi.org/10.1007/s10853-007-1722-7 [Google Scholar]
  38. Panfilov P., Yermakov A., Antonova O. V., and Pilyugin V. P. Platinum Metals Rev., 2009, 53, (3), 138 LINK https://www.technology.matthey.com/article/53/3/138-146/ [Google Scholar]
  39. Wang P., Yu J., Zhou X., and Chen J. Rare Metal Mater. Eng., 2015, 44, (10), 2363 LINK https://doi.org/10.1016/S1875-5372(16)30021-2 [Google Scholar]
  40. Scapin M., Peroni L., Torregrosa C., Perillo-Marcone A., Calviani M., Gomez-Pereira L., Leaux F., and Meyer M. Int. J. Impact Eng., 2017, 106, 191 LINK http://dx.doi.org/10.1016/j.ijimpeng.2017.03.019 [Google Scholar]
  41. Wang B., Li S., Wang Y., Zhong H., Hua R., Liu Y., and Luo X. Vacuum, 2018, 154, 141 LINK https://doi.org/10.1016/j.vacuum.2018.05.009 [Google Scholar]
  42. Yang J., Wang H., Hu R., Zhang F., Li S., Liu Y., and Luo X. Rare Metal Mater. Eng., 2019, 48, (5),, 1380 LINK http://www.rmme.ac.cn/rmme/ch/reader/view_abstract.aspx?file_no=20171196&flag=1 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15815921428640
Loading
/content/journals/10.1595/205651320X15815921428640
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error