Skip to content
1887
Volume 65, Issue 1
  • ISSN: 2056-5135

Abstract

The present article considers the lattice dynamical study of platinum by use of the Van der Waals three body force shell model (VTBFSM) due to high stiffness constant C and C. The model uses the frequencies of the optical and vibrational branches in the direction [100] and phonon density of states (DOS). The study of phonon spectra is important in determining the mechanical, electrical and thermodynamic properties of elements and their alloys. The present model incorporates the effect of Van der Waals interactions (VWI) and three-body interactions (TBI) into the rigid shell model (RSM) with face-centred cubic (fcc) structure, operative up to the second neighbours in short range interactions. The available measured data for platinum agrees well with our results.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15843541021642
2021-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/1/Srivastava_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15843541021642&mimeType=html&fmt=ahah

References

  1. Kellerman E. W. Philos. Trans. R. Soc. London Ser. A, 1940, 238, (798), 513 LINK https://doi.org/10.1098/rsta.1940.0005 [Google Scholar]
  2. Löwdin P. O. Ark. Mat. Astr. Fys., 1947, 35A, 30 [Google Scholar]
  3. Löwdin P. O. Philos. Mag. Suppl., 1956, 5, (1) [Google Scholar]
  4. Lundqvist S. O. Ark. Fys., 1952, 6, (3), 25 [Google Scholar]
  5. Lundqvist S. O. Ark. Fys., 1955, 9, 435 [Google Scholar]
  6. Lundqvist S. O. Ark. Fys., 1957, 12, 263 [Google Scholar]
  7. Woods A. D. B., Cochran W., and Brockhouse B. N. Phys. Rev., 1960, 119, (3), 980 LINK https://doi.org/10.1103/PhysRev.119.980 [Google Scholar]
  8. Rolandson S., and Raunio G. J. Phys. C: Solid State Phys., 1971, 4, (9), 958 LINK https://doi.org/10.1088/0022-3719/4/9/016 [Google Scholar]
  9. Raunio G., and Rolandson S. J. Phys. C: Solid State Phys., 1970, 3, (5), 1013 LINK https://doi.org/10.1088/0022-3719/3/5/016 [Google Scholar]
  10. Raunio G., and Rolandson S. Phys. Status Solidi B, 1970, 40, (2), 749 LINK https://doi.org/10.1002/pssb.19700400235 [Google Scholar]
  11. Tessman J. R., Kahn A. H., and Shockley W. Phys. Rev., 1953, 92, (4), 890 LINK https://doi.org/10.1103/physrev.92.890 [Google Scholar]
  12. Gupta H. N., and Upadhyaya R. S. Phys. Status Solidi B, 1980, 102, (1), 143 LINK https://doi.org/10.1002/pssb.2221020111 [Google Scholar]
  13. Singh R. K., and Gupta H. N. Proc. R. Soc. London Ser. A, 1976, 349, (1658), 289 LINK https://doi.org/10.1098/rspa.1976.0074 [Google Scholar]
  14. Mishra V., Sanyal S. P., and Singh R. K. Philos. Mag. A, 1987, 55, (5), 583 LINK https://doi.org/10.1080/01418618708214370 [Google Scholar]
  15. Singh R. K., Gupta H. N., and Sanyal S. P. Nuov. Cim. B, 1980, 60, 89 LINK https://doi.org/10.1007/bf02723070 [Google Scholar]
  16. Lal H. H., and Verma M. P. J. Phys. C: Solid State Phys., 1972, 5, (5), 543 LINK https://doi.org/10.1088/0022-3719/5/5/006 [Google Scholar]
  17. Karo A. M., and Hardy J. R. J. Chem. Phys., 1968, 48, (7), 3173 LINK https://doi.org/10.1063/1.1669590 [Google Scholar]
  18. Dick B. G., and Overhauser A. W. Phys. Rev., 1958, 112, (1), 90 LINK https://doi.org/10.1103/physrev.112.90 [Google Scholar]
  19. Schröder U. Solid State Commun., 1966, 4, (7), 347 LINK https://doi.org/10.1016/0038-1098(66)90185-2 [Google Scholar]
  20. Basu A. N., and Sengupta S. Phys. Status Solidi B, 1968, 29, (1), 367 LINK https://doi.org/10.1002/pssb.19680290137 [Google Scholar]
  21. Verma M. P., and Singh R. K. Phys. Status Solidi B, 1969, 33, (2) 769 LINK https://doi.org/10.1002/pssb.19690330230 [Google Scholar]
  22. Singh R. K., and Verma M. P. Phys. Status Solidi B, 1969, 36, (1), 335 LINK https://doi.org/10.1002/pssb.19690360134 [Google Scholar]
  23. Singh R. K., and Verma M. P. Phys. Status Solidi B, 1970, 38, (2), 851 LINK https://doi.org/10.1002/pssb.19700380236 [Google Scholar]
  24. Singh R. K., Gupta H. N., and Agrawal M. K. Phys. Rev. B, 1978, 17, (2), 894 LINK https://doi.org/10.1103/physrevb.17.894 [Google Scholar]
  25. Upadhyaya K. S., Yadav M., and Upadhyaya G. K. Phys. Status Solidi B, 2002, 229, (3), 1129 LINK https://doi.org/10.1002/1521-3951(200202)229:3<1129::aid-pssb1129>3.0.co;2-6 [Google Scholar]
  26. Macfarlane R. F., Rayne J. A., and Jones C. K. Phys. Lett., 1965, 18, (2), 91 LINK https://doi.org/10.1016/0031-9163(65)90659-1 [Google Scholar]
  27. Closs H., and Shukla M. M. Nuovo Cim. B, 1977, 42, 213 LINK https://doi.org/10.1007/bf02898750 [Google Scholar]
  28. Konti A. J. Chem. Phys., 1971, 55, (8), 3997 LINK https://doi.org/10.1063/1.1676691 [Google Scholar]
  29. Raunio G., and Rolandson S. Phys. Rev. B, 1970, 2, (6), 2098 LINK https://doi.org/10.1103/physrevb.2.2098 [Google Scholar]
  30. Sharma L. P. Agra University, Agra, Uttar Pradesh, India, 1979
  31. Rollefson R. J., and Peressini P. P. J. Appl. Phys., 1972, 43, (2), 727 LINK https://doi.org/10.1063/1.1661186 [Google Scholar]
  32. Tiwari S. K., Pandey L. K., Shukla L. J., and Upadhyaya K. S. Phys. Scr., 2009, 80, (6), 065603 LINK https://doi.org/10.1088/0031-8949/80/06/065603 [Google Scholar]
  33. Srivastava U. C., and Upadhyaya K. S. Optoelectron. Adv. Mater., Rapid Commun., 2010, 4, (9), 1336 LINK https://oam-rc.inoe.ro/articles/van-der-waals-three-body-force-shell-model-vtsm-for-the-lattice-dynamical-studies-of-potassium-fluoride/ [Google Scholar]
  34. Srivastava U. C., and Upadhyaya K. S. Phys. Rev. Res. Int., 2011, 1, (1), 16 [Google Scholar]
  35. Srivastava U. C. Optoelectron. Adv. Mater., Rapid Commun., 2013, 7, (9–10), 698 LINK https://oam-rc.inoe.ro/articles/study-of-cohesive-energy-for-kxxf-cl-br-i-crystal-structure/ [Google Scholar]
  36. Dubey J. P., Tiwari R. K., Upadhyaya K. S., and Pandey P. K. Turk. J. Phys., 2015, 39, 242 LINK https://doi.org/10.3906/fiz-1412-11 [Google Scholar]
  37. Das R. K., Neog B. C., and Saikia B. J. IOSR J. Appl. Phys., 2015, 7, (3), 6 LINK https://www.iosrjournals.org/iosr-jap/papers/Vol7-issue3/Version-3/B07330610.pdf [Google Scholar]
  38. Dubey J. P., Tiwari R. K., Upadhyaya K. S., and Pandey P. K. Turk. J. Phys., 2016, 40, 201 LINK https://doi.org/10.3906/fiz-1509-18 [Google Scholar]
  39. Srivastava U. C. Int. J. Mod Phys. B, 2017, 31, (4), 1750020 LINK https://doi.org/10.1142/S0217979217500205 [Google Scholar]
  40. Srivastava U. C. J. Sci. Arts, 2017, 2, (39), 309 [Google Scholar]
  41. Dubey J. P., Pandey P. K., and Upadhyaya K. S. AASCIT J. Phys., 2018, 4, (1), 1 [Google Scholar]
  42. Srivastava U. C., and Srivastava M. P. J. Sci. Arts, 2019, 1, (46), 235 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15843541021642
Loading
/content/journals/10.1595/205651320X15843541021642
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error