Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135
  • oa A Comparison of Different Approaches to the Conversion of Carbon Dioxide into Useful Products: Part I

    CO reduction by electrocatalytic, thermocatalytic and biological routes

  • Authors: Annette Alcasabas1, Peter R. Ellis2, Iain Malone3,4, Gareth Williams5 and Chris Zalitis5
  • Affiliations: 1 Johnson Matthey, 260 Cambridge Science ParkMilton Road, Cambridge, CB4 0WEUK 2 Johnson Matthey, Blounts Court, Sonning CommonReading, RG4 9NHUK 3 Johnson Matthey, Blounts Court, Sonning CommonReading, RG4 9NHUK 4 Department of Chemistry, University of YorkHeslington, York, YO10 5DDUK 5 Johnson Matthey, Blounts Court, Sonning CommonReading, RG4 9NHUK
  • Source: Johnson Matthey Technology Review, Volume 65, Issue 2, Apr 2021, p. 180 - 196
  • DOI: https://doi.org/10.1595/205651321X16081175586719
    • Published online: 01 Jan 2021

Abstract

The reduction of carbon dioxide into useful products such as fuels and chemicals is a topic of intense research activity at present, driven by the need to reduce atmospheric CO levels and avoid catastrophic temperature rises across the world. In this review, we consider a range of different technological approaches to CO conversion, their current status and the molecules which each approach is best suited to making. In Part I, the biological, catalytic and electrocatalytic routes are presented.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16081175586719
2021-01-01
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Ellis_16a_Imp-PART_I.html?itemId=/content/journals/10.1595/205651321X16081175586719&mimeType=html&fmt=ahah

References

  1. ‘Global CO2 Emissions in 2019’, The Energy Mix, International Energy Agency, Paris, France, 11th February, 2020 LINK https://www.iea.org/articles/global-co2-emissions-in-2019 [Google Scholar]
  2. C. Hepburn, E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. Mac Dowell, J. C. Minx, P. Smith, C. K. Williams, Nature, 2019, 575, (7781), 87 LINK https://doi.org/10.1038/s41586-019-1681-6 [Google Scholar]
  3. A. S. Reis Machado, M. Nunes da Ponte, Curr. Opin. Green Sustain. Chem., 2018, 11, 86 LINK https://doi.org/10.1016/j.cogsc.2018.05.009 [Google Scholar]
  4. “20 Years of Carbon Capture and Storage: Accelerating Future Deployment”,International Energy Agency, Paris, France, 22nd November, 2016, 115 pp LINK https://doi.org/10.1787/9789264267800-en [Google Scholar]
  5. “Putting CO2 to Use: Creating Value from Emissions”,International Energy Agency (IEA), Paris, France, 1st October, 2019, 86 pp LINK https://doi.org/10.1787/dfeabbf4-en [Google Scholar]
  6. E. I. Koytsoumpa, C. Bergins, E. Kakaras, J. Supercrit. Fluids, 2018, 132, 3 LINK https://doi.org/10.1016/j.supflu.2017.07.029 [Google Scholar]
  7. N. Mac Dowell, P. S. Fennell, N. Shah, G. C. Maitland, Nature Clim. Chang., 2017, 7, (4), 243 LINK https://doi.org/10.1038/nclimate3231 [Google Scholar]
  8. D. Pletcher, Electrochem. Commun., 2015, 61, 97 LINK https://doi.org/10.1016/j.elecom.2015.10.006 [Google Scholar]
  9. M. Aresta, A. Dibenedetto, A. Angelini, J. CO2 Util., 2013, 3–4, 65 LINK https://doi.org/10.1016/j.jcou.2013.08.001 [Google Scholar]
  10. M. Bailera, P. Lisbona, L. M. Romeo, S. Espatolero, Renew. Sustain. Energy Rev., 2017, 69, 292 LINK https://doi.org/10.1016/j.rser.2016.11.130 [Google Scholar]
  11. S. Brynolf, M. Taljegard, M. Grahn, J. Hansson, Renew. Sustain. Energy Rev., 2018, 81, (2), 1887 LINK https://doi.org/10.1016/j.rser.2017.05.288 [Google Scholar]
  12. M. Thema, F. Bauer, M. Sterner, Renew. Sustain. Energy Rev., 2019, 112, 775 LINK https://doi.org/10.1016/j.rser.2019.06.030 [Google Scholar]
  13. LanzaTech,, Skokie, USA:https://www.LanzaTech.com/ (Accessed on 20th July 2020)
  14. Electrochaea,, Planegg, Germany:http://www.electrochaea.com/ (Accessed on 20th July 2020)
  15. “CRC Handbook of Chemistry and Physics”, 89th Edn., ed. D. R. Lide, CRC Press, Boca Raton, USA, 2008 [Google Scholar]
  16. Z. Jiang, T. Xiao, V. L. Kuznetsov, P. P. Edwards, Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci., 2010, 368, (1923), 3343 LINK https://doi.org/10.1098/rsta.2010.0119 [Google Scholar]
  17. M. D. Burkart, N. Hazari, C. L. Tway, E. L. Zeitler, ACS Catal., 2019, 9, (9), 7937 LINK https://doi.org/10.1021/acscatal.9b02113 [Google Scholar]
  18. ‘Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the use of Energy from Renewable Sources’, Official J. Eur. Union, L 328/82, 21st December, 2018 LINK http://data.europa.eu/eli/dir/2018/2001/oj [Google Scholar]
  19. ‘A European Green Deal: Striving to be the First Climate-Neutral Continent’, European Commission, Brussels, Belgium:https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (Accessed on 30th July, 2020) [Google Scholar]
  20. Carbon Recycling International, Kópavogur, Iceland:https://www.carbonrecycling.is/ (Accessed on 3rd July 2020)
  21. G. Williams, Johnson Matthey Technol. Rev., 2018, 62, (4), 389 LINK https://www.technology.matthey.com/article/62/4/389-394/ [Google Scholar]
  22. D. W. Keith, G. Holmes, D. St. Angelo, K. Heidel, Joule, 2018, 2, (8), 1573 LINK https://doi.org/10.1016/j.joule.2018.05.006 [Google Scholar]
  23. C. Beuttler, L. Charles, J. Wurzbacher, Front. Clim., 2019, 1, 10 LINK https://doi.org/10.3389/fclim.2019.00010 [Google Scholar]
  24. K. Z. House, A. C. Baclig, M. Ranjan, E. A. van Nierop, J. Wilcox, H. J. Herzog, Proc. Natl. Acad. Sci., 2011, 108, (51), 20428 LINK https://doi.org/10.1073/pnas.1012253108 [Google Scholar]
  25. N. J. Claassens, D. Z. Sousa, V. A. P. M. dos Santos, W. M. de Vos, J. van der Oost, Nature Rev. Microbiol., 2016, 14, (11), 692 LINK https://doi.org/10.1038/nrmicro.2016.130 [Google Scholar]
  26. P. Dürre, FEMS Microbiol. Lett., 2016, 363, (6), fnw040 LINK https://doi.org/10.1093/femsle/fnw040 [Google Scholar]
  27. S. A. Razzak, S. A. M. Ali, M. M. Hossain, H. deLasa, Renew. Sustain. Energy Rev., 2017, 76, 379 LINK https://doi.org/10.1016/j.rser.2017.02.038 [Google Scholar]
  28. X. Liu, R. Miao, P. Lindberg, P. Lindblad, Energy Environ. Sci., 2019, 12, (9), 2765 LINK https://doi.org/10.1039/c9ee01214a [Google Scholar]
  29. Phytonix Corp, Black Mountain, USA:https://phytonix.com (Accessed 28th July 2020)
  30. N. Antonovsky, S. Gleizer, E. Noor, Y. Zohar, E. Herz, U. Barenholz, L. Zelcbuch, S. Amram, A. Wides, N. Tepper, D. Davidi, Y. Bar-On, T. Bareia, D. G. Wernick, I. Shani, S. Malitsky, G. Jona, A. Bar-Even, R. Milo, Cell, 2016, 166, (1), 115 LINK https://doi.org/10.1016/j.cell.2016.05.064 [Google Scholar]
  31. V. Guadalupe-Medina, H. Wisselink, M. A. H. Luttik, E. de Hulster, J.-M. Daran, J. T. Pronk, A. J. A. van Maris, Biotechnol. Biofuels, 2013, 6, 125 LINK https://doi.org/10.1186/1754-6834-6-125 [Google Scholar]
  32. T. Gassler, M. Sauer, B. Gasser, M. Egermeier, C. Troyer, T. Causon, S. Hann, D. Mattanovich, M. G. Steiger, Nature Biotechnol., 2020, 38, (2), 210 LINK https://doi.org/10.1038/s41587-019-0363-0 [Google Scholar]
  33. P. Hu, S. Chakraborty, A. Kumar, B. Woolston, H. Liu, D. Emerson, G. Stephanopoulos, Proc. Natl. Acad. Sci., 2016, 113, (14), 3773 LINK https://doi.org/10.1073/pnas.1516867113 [Google Scholar]
  34. P. Frontera, A. Macario, M. Ferraro, P. Antonucci, Catalysts, 2017, 7, (2), 59 LINK https://doi.org/10.3390/catal7020059 [Google Scholar]
  35. M. Bowker, ChemCatChem, 2019, 11, (17), 4238 LINK https://doi.org/10.1002/cctc.201900401 [Google Scholar]
  36. L. C. Grabow, M. Mavrikakis, ACS Catal., 2011, 1, (4), 365 LINK https://doi.org/10.1021/cs200055d [Google Scholar]
  37. R. Guil-López, N. Mota, J. Llorente, E. Millán, B. Pawelec, J. L. G. Fierro, R. M. Navarro, Materials, 2019, 12, (23), 3902 LINK https://doi.org/10.3390/ma12233902 [Google Scholar]
  38. A. S. Malik, S. F. Zaman, A. A. Al-Zahrani, M. A. Daous, H. Driss, L. A. Petrov, Appl. Catal. A: Gen., 2018, 560, 42 LINK https://doi.org/10.1016/j.apcata.2018.04.036 [Google Scholar]
  39. O. Martin, A. J. Martín, C. Mondelli, S. Mitchell, T. F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, Angew. Chem. Int. Ed., 2016, 55, (21), 6261 LINK https://doi.org/10.1002/anie.201600943 [Google Scholar]
  40. J. Kothandaraman, A. Goeppert, M. Czaun, G. A. Olah, G. K. S. Prakash, J. Am. Chem. Soc., 2016, 138, (3), 778 LINK https://doi.org/10.1021/jacs.5b12354 [Google Scholar]
  41. E. M. Lane, Y. Zhang, N. Hazari, W. H. Bernskoetter, Organometallics, 2019, 38, (15), 3084 LINK https://doi.org/10.1021/acs.organomet.9b00413 [Google Scholar]
  42. M. R. Gogate, Pet. Sci. Technol., 2019, 37, (5), 559 LINK https://doi.org/10.1080/10916466.2018.1555589 [Google Scholar]
  43. A. Haynes, ‘Catalytic Methanol Carbonylation’, in “Advances in Catalysis”, Vol. 53, Ch. 1, Elsevier Inc Amsterdam, The Netherlands, 2010, pp 1–45 LINK https://doi.org/10.1016/s0360-0564(10)53001-3 [Google Scholar]
  44. S. , H. Silva, L. Brandão, J. M. Sousa, A. Mendes, Appl. Catal. B: Environ., 2010, 99, (1–2), 43 LINK https://doi.org/10.1016/j.apcatb.2010.06.015 [Google Scholar]
  45. Y. Wang, J. Zhang, Q. Qian, B. B. A. Bediako, M. Cui, G. Yang, J. Yan, B. Han, Green Chem., 2019, 21, (3), 589LINK https://doi.org/10.1039/c8gc03320j [Google Scholar]
  46. E. Kianfar, S. Hajimirzaee, S. mousavian, A. S. Mehr, Microchem. J., 2020, 156, 104822LINK https://doi.org/10.1016/j.microc.2020.104822 [Google Scholar]
  47. H. Bateni, C. Able, Catal. Ind., 2019, 11, (1), 7LINK https://doi.org/10.1134/s2070050419010045 [Google Scholar]
  48. A. P. V. Soares, M. F. Portela, A. Kiennemann, Catal. Rev., 2005, 47, (1), 125 LINK https://doi.org/10.1081/cr-200049088 [Google Scholar]
  49. Y. A. Daza, J. N. Kuhn, RSC Adv., 2016, 6, (55), 49675 LINK https://doi.org/10.1039/c6ra05414e [Google Scholar]
  50. C. Álvarez Galván, J. Schumann, M. Behrens, J. L. G. Fierro, R. Schlögl, E. Frei, Appl. Catal. B: Environ., 2016, 195, 104 LINK https://doi.org/10.1016/j.apcatb.2016.05.007 [Google Scholar]
  51. G. Zhou, F. Xie, L. Deng, G. Zhang, H. Xie, Int. J. Hydrogen Energy, 2020, 45, (19), 11380 LINK https://doi.org/10.1016/j.ijhydene.2020.02.058 [Google Scholar]
  52. C.-Y. Chou, J. A. Loiland, R. F. Lobo, Catalysts, 2019, 9, (9), 773 LINK https://doi.org/10.3390/catal9090773 [Google Scholar]
  53. L. Yang, L. Pastor-Pérez, S. Gu, A. Sepúlveda-Escribano, T. R. Reina, Appl. Catal. B: Environ., 2018, 232, 464 LINK https://doi.org/10.1016/j.apcatb.2018.03.091 [Google Scholar]
  54. X. Chen, X. Su, H. Duan, B. Liang, Y. Huang, T. Zhang, Catal. Today, 2017, 281, (2), 312 LINK https://doi.org/10.1016/j.cattod.2016.03.020 [Google Scholar]
  55. M. Juneau, M. Vonglis, J. Hartvigsen, L. Frost, D. Bayerl, M. Dixit, G. Mpourmpakis, J. R. Morse, J. W. Baldwin, H. D. Willauer, M. D. Porosoff, Energy Environ. Sci., 2020, 13, (8), 2524 LINK https://doi.org/10.1039/d0ee01457e [Google Scholar]
  56. L. Wang, L. Wang, J. Zhang, X. Liu, H. Wang, W. Zhang, Q. Yang, J. Ma, X. Dong, S. J. Yoo, J.-G. Kim, X. Meng, F.-S. Xiao, Angew. Chem. Int. Ed., 2018, 57, (21), 6104 LINK https://doi.org/10.1002/anie.201800729 [Google Scholar]
  57. S. Bai, Q. Shao, P. Wang, Q. Dai, X. Wang, X. Huang, J. Am. Chem. Soc., 2017, 139, (20), 6827 LINK https://doi.org/10.1021/jacs.7b03101 [Google Scholar]
  58. Y. Li, X. Cui, K. Dong, K. Junge, M. Beller, ACS Catal., 2017, 7, (2), 1077 LINK https://doi.org/10.1021/acscatal.6b02715 [Google Scholar]
  59. T. Sakakura, Y. Saito, M. Okano, J.-C. Choi, T. Sako, J. Org. Chem., 1998, 63, (20), 7095 LINK https://doi.org/10.1021/jo980460z [Google Scholar]
  60. R. R. Shaikh, S. Pornpraprom, V. D’Elia, ACS Catal., 2018, 8, (1), 419 LINK https://doi.org/10.1021/acscatal.7b03580 [Google Scholar]
  61. J. Hofmann, S. Braun, A. Wolf, Covestro Deutschland AG,, ‘Method for Producing Polyether Carbonate Polyols’,US Patent Appl. 2019/0085121 [Google Scholar]
  62. C. G. Visconti, M. Martinelli, L. Falbo, L. Fratalocchi, L. Lietti, Catal. Today, 2016, 277, (1), 161 LINK https://doi.org/10.1016/j.cattod.2016.04.010 [Google Scholar]
  63. C. G. Visconti, M. Martinelli, L. Falbo, A. Infantes-Molina, L. Lietti, P. Forzatti, G. Iaquaniello, E. Palo, B. Picutti, F. Brignoli, Appl. Catal. B: Environ., 2017, 200, 530 LINK https://doi.org/10.1016/j.apcatb.2016.07.047 [Google Scholar]
  64. J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Nature Commun., 2017, 8, 15174 LINK https://doi.org/10.1038/ncomms15174 [Google Scholar]
  65. Y. Xu, T. Wang, C. Shi, B. Liu, F. Jiang, X. Liu, Ind. Eng. Chem. Res., 2020, 59, (18), 8581 LINK https://doi.org/10.1021/acs.iecr.0c00992 [Google Scholar]
  66. J. Brauns, T. Turek, Processes, 2020, 8, (2), 248 LINK https://doi.org/10.3390/pr8020248 [Google Scholar]
  67. S. S. Kumar, V. Himabindu, Mater. Sci. Energy Technol., 2019, 2, (3), 442 LINK https://doi.org/10.1016/j.mset.2019.03.002 [Google Scholar]
  68. ‘CO2 for a Clean Performance: Rheticus Research Project Enters Phase 2’,Evonik, Essen, Germany, 19th October, 2019 LINK https://corporate.evonik.com/en/media/press-releases/corporate/cosub2-sub-for-a-clean-performance-rheticus-research-project-enters-phase-2-118328.html [Google Scholar]
  69. ‘Volta Technology’,Avantium, Amsterdam, The Netherlands:https://www.avantium.com/technologies/volta/ (Accessed on 12th January 2021)
  70. K. P. Kuhl, E. R. Cave, G. Leonard, Opus 12 Inc,, ‘Reactor with Advanced Architecture for the Electrochemical Reaction of CO2 and other Chemical Compounds’,US Patent 10,648,091; 2020 [Google Scholar]
  71. Cert Systems Inc, Toronto, Canada:https://co2cert.com/about/cert-technology/ (Accessed on 12th January 2020)
  72. Skyre, East Hartford, USA:https://www.skyre-inc.com/ (Accessed on 12th January 2020)
  73. Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, Chem. Soc. Rev., 2017, 46, (5), 1427 LINK https://doi.org/10.1039/c6cs00403b [Google Scholar]
  74. R. Küngas, J. Electrochem. Soc., 2020, 167, (4), 044508 LINK https://doi.org/10.1149/1945-7111/ab7099 [Google Scholar]
  75. Y. Hori, R. White, ‘Electrochemical CO2 Reduction on Metal Electrodes’, in “Modern Aspects of Electrochemistry: No. 42”, eds. C. C. Vayenas, M. E. Gamboa-Aldeco, Springer Science and Business Media LLC, New York, USA, 2008, pp. 89–189 LINK https://doi.org/10.1007/978-0-387-49489-0_3 [Google Scholar]
  76. A. Bagger, W. Ju, A. S. Varela, P. Strasser, J. Rossmeisl, ChemPhysChem, 2017, 18, (22), 3266 LINK https://doi.org/10.1002/cphc.201700736 [Google Scholar]
  77. Y. Li, Q. Sun, Adv. Energy Mater., 2016, 6, (17), 1600463 LINK https://doi.org/10.1002/aenm.201600463 [Google Scholar]
  78. W. Li, ‘Electrocatalytic Reduction of CO2 to Small Organic Molecule Fuels on Metal Catalysts’, in “Advances in CO2 Conversion and Utilization”, ACS Symposium Series, Vol. 1056, Ch. 5, American Chemical Society, Washington, DC, USA, 2010, pp. 55–76 LINK https://doi.org/10.1021/bk-2010-1056.ch005 [Google Scholar]
  79. I. V. Chernyshova, P. Somasundaran, S. Ponnurangam, Proc. Natl. Acad. Sci., 2018, 115, (40), E9261 LINK https://doi.org/10.1073/pnas.1802256115 [Google Scholar]
  80. H.-J. Freund, M. W. Roberts, Surf. Sci. Rep., 1996, 25, (8), 225 LINK https://doi.org/10.1016/s0167-5729(96)00007-6 [Google Scholar]
  81. M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem., 2006, 594, (1), 1 LINK https://doi.org/10.1016/j.jelechem.2006.05.013 [Google Scholar]
  82. X. Lu, D. Y. C. Leung, H. Wang, M. K. H. Leung, J. Xuan, ChemElectroChem, 2014, 1, (5), 836 LINK https://doi.org/10.1002/celc.201300206 [Google Scholar]
  83. J. J. Kaczur, H. Yang, Z. Liu, S. D. Sajjad, R. I. Masel, Front. Chem., 2018, 6, 263 LINK https://doi.org/10.3389/fchem.2018.00263 [Google Scholar]
  84. Y. Chen, A. Vise, W. E. Klein, F. C. Cetinbas, D. J. Myers, W. A. Smith, T. G. Deutsch, K. C. Neyerlin, ACS Energy Lett., 2020, 5, (6), 1825 LINK https://doi.org/10.1021/acsenergylett.0c00860 [Google Scholar]
  85. A. Liu, M. Gao, X. Ren, F. Meng, Y. Yang, L. Gao, Q. Yang, T. Ma, J. Mater. Chem. A, 2020, 8, (7), 3541 LINK https://doi.org/10.1039/c9ta11966c [Google Scholar]
  86. Y. Ye, H. Yang, J. Qian, H. Su, K.-J. Lee, T. Cheng, H. Xiao, J. Yano, W. A. Goddard, E. J. Crumlin, Nature Commun., 2019, 10, 1875 LINK https://doi.org/10.1038/s41467-019-09846-y [Google Scholar]
  87. S. Ma, R. Luo, J. I. Gold, A. Z. Yu, B. Kim, P. J. A. Kenis, J. Mater. Chem. A, 2016, 4, (22), 8573 LINK https://doi.org/10.1039/c6ta00427j [Google Scholar]
  88. P. Jeanty, C. Scherer, E. Magori, K. Wiesner-Fleischer, O. Hinrichsen, M. Fleischer, J. CO2 Util., 2018, 24, 454 LINK https://doi.org/10.1016/j.jcou.2018.01.011 [Google Scholar]
  89. K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ. Sci., 2012, 5, (5), 7050 LINK https://doi.org/10.1039/c2ee21234j [Google Scholar]
  90. S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev., 2019, 119, (12), 7610 LINK https://doi.org/10.1021/acs.chemrev.8b00705 [Google Scholar]
  91. J. Zhao, S. Xue, J. Barber, Y. Zhou, J. Meng, X. Ke, J. Mater. Chem. A, 2020, 8, (9), 4700 LINK https://doi.org/10.1039/c9ta11778d [Google Scholar]
  92. C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, Science, 2018, 360, (6390), 783 LINK https://doi.org/10.1126/science.aas9100 [Google Scholar]
  93. F. P. García de Arquer, C.-T. Dinh, A. Ozden, J. Wicks, C. McCallum, A. R. Kirmani, D.-H. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y. C. Li, F. Li, J. Edwards, L. J. Richter, S. J. Thorpe, D. Sinton, E. H. Sargent, Science, 2020, 367, (6478), 661 LINK https://doi.org/10.1126/science.aay4217 [Google Scholar]
  94. M. Luo, Z. Wang, Y. C. Li, J. Li, F. Li, Y. Lum, D.-H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C.-T. Dinh, Y. Wang, Y. Wang, D. Sinton, E. H. Sargent, Nature Commun., 2019, 10, 5814 LINK https://doi.org/10.1038/s41467-019-13833-8 [Google Scholar]
  95. C. G. Morales-Guio, E. R. Cave, S. A. Nitopi, J. T. Feaster, L. Wang, K. P. Kuhl, A. Jackson, N. C. Johnson, D. N. Abram, T. Hatsukade, C. Hahn, T. F. Jaramillo, Nature Catal., 2018, 1, (10), 764 LINK https://doi.org/10.1038/s41929-018-0139-9 [Google Scholar]
  96. F. Li, Y. C. Li, Z. Wang, J. Li, D.-H. Nam, Y. Lum, M. Luo, X. Wang, A. Ozden, S.-F. Hung, B. Chen, Y. Wang, J. Wicks, Y. Xu, Y. Li, C. M. Gabardo, C.-T. Dinh, Y. Wang, T.-T. Zhuang, D. Sinton, E. H. Sargent, Nature Catal., 2020, 3, (1), 75 LINK https://doi.org/10.1038/s41929-019-0383-7 [Google Scholar]
  97. J. Albo, A. Irabien, J. Catal., 2016, 343, 232 LINK https://doi.org/10.1016/j.jcat.2015.11.014 [Google Scholar]
  98. L. Lu, X. Sun, J. Ma, D. Yang, H. Wu, B. Zhang, J. Zhang, B. Han, Angew. Chem. Int. Ed., 2018, 57, (43), 14149 LINK https://doi.org/10.1002/anie.201808964 [Google Scholar]
  99. D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu, B. Han, Nature Commun., 2019, 10, 677 LINK https://doi.org/10.1038/s41467-019-08653-9 [Google Scholar]
  100. S. Mezzavilla, Y. Katayama, R. Rao, J. Hwang, A. Regoutz, Y. Shao-Horn, I. Chorkendorff, I. E. L. Stephens, J. Phys. Chem. C, 2019, 123, (29), 17765 LINK https://doi.org/10.1021/acs.jpcc.9b01431 [Google Scholar]
  101. K. Manthiram, B. J. Beberwyck, A. P. Alivisatos, J. Am. Chem. Soc., 2014, 136, (38), 13319 LINK https://doi.org/10.1021/ja5065284 [Google Scholar]
  102. R. S. Costa, B. S. R. Aranha, A. Ghosh, A. O. Lobo, E. T. S. G. da Silva, D. C. B. Alves, B. C. Viana, J. Phys. Chem. Solids, 2020, 147, 109678 LINK https://doi.org/10.1016/j.jpcs.2020.109678 [Google Scholar]
  103. D. Ren, N. T. Wong, A. D. Handoko, Y. Huang, B. S. Yeo, J. Phys. Chem. Lett., 2016, 7, (1), 20 LINK https://doi.org/10.1021/acs.jpclett.5b02554 [Google Scholar]
  104. K. U. D. Calvinho, A. B. Laursen, K. M. K. Yap, T. A. Goetjen, S. Hwang, N. Murali, B. Mejia-Sosa, A. Lubarski, K. M. Teeluck, E. S. Hall, E. Garfunkel, M. Greenblatt, G. C. Dismukes, Energy Environ. Sci., 2018, 11, (9), 2550 LINK https://doi.org/10.1039/c8ee00936h [Google Scholar]
  105. R. Francke, B. Schille, M. Roemelt, Chem. Rev., 2018, 118, (9), 4631 LINK https://doi.org/10.1021/acs.chemrev.7b00459 [Google Scholar]
  106. K. Torbensen, D. Joulié, S. Ren, M. Wang, D. Salvatore, C. P. Berlinguette, M. Robert, ACS Energy Lett., 2020, 5, (5), 1512 LINK https://doi.org/10.1021/acsenergylett.0c00536 [Google Scholar]
  107. X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, S. Wang, H. Liu, S. Dou, Adv. Mater., 2017, 29, (41), 1701784 LINK https://doi.org/10.1002/adma.201701784 [Google Scholar]
  108. J. Wu, S. Ma, J. Sun, J. I. Gold, C. Tiwary, B. Kim, L. Zhu, N. Chopra, I. N. Odeh, R. Vajtai, A. Z. Yu, R. Luo, J. Lou, G. Ding, P. J. A. Kenis, P. M. Ajayan, Nature Commun., 2016, 7, 13869 LINK https://doi.org/10.1038/ncomms13869 [Google Scholar]
  109. S. Garg, M. Li, A. Z. Weber, L. Ge, L. Li, V. Rudolph, G. Wang, T. E. Rufford, J. Mater. Chem. A, 2020, 8, (4), 1511 LINK https://doi.org/10.1039/c9ta13298h [Google Scholar]
  110. H.-R. Jhong, S. Ma, P. J. A. Kenis, Curr. Opin. Chem. Eng., 2013, 2, (2), 191 LINK https://doi.org/10.1016/j.coche.2013.03.005 [Google Scholar]
  111. M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res., 2018, 57, (6), 2165 LINK https://doi.org/10.1021/acs.iecr.7b03514 [Google Scholar]
  112. S. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi, P. J. A. Kenis, J. Power Sources, 2016, 301, 219 LINK https://doi.org/10.1016/j.jpowsour.2015.09.124 [Google Scholar]
  113. S. A. Francis, J. M. Velazquez, I. M. Ferrer, D. A. Torelli, D. Guevarra, M. T. McDowell, K. Sun, X. Zhou, F. H. Saadi, J. John, M. H. Richter, F. P. Hyler, K. M. Papadantonakis, B. S. Brunschwig, N. S. Lewis, Chem. Mater., 2018, 30, (15), 4902 LINK https://doi.org/10.1021/acs.chemmater.7b04428 [Google Scholar]
  114. D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang, C. P. Berlinguette, Acc. Chem. Res., 2018, 51, (4), 910 LINK https://doi.org/10.1021/acs.accounts.8b00010 [Google Scholar]
  115. J.-B. Vennekoetter, R. Sengpiel, M. Wessling, Chem. Eng. J., 2019, 364, 89 LINK https://doi.org/10.1016/j.cej.2019.01.045 [Google Scholar]
  116. M. R. Singh, Y. Kwon, Y. Lum, J. W. Ager, A. T. Bell, J. Am. Chem. Soc., 2016, 138, (39), 13006 LINK https://doi.org/10.1021/jacs.6b07612 [Google Scholar]
  117. U. O. Nwabara, E. R. Cofell, S. Verma, E. Negro, P. J. A. Kenis, ChemSusChem, 2020, 13, (5), 855 LINK https://doi.org/10.1002/cssc.201902933 [Google Scholar]
  118. N. S. Romero Cuellar, K. Wiesner-Fleischer, M. Fleischer, A. Rucki, O. Hinrichsen, Electrochim. Acta, 2019, 307, 164 LINK https://doi.org/10.1016/j.electacta.2019.03.142 [Google Scholar]
  119. X. Li, P. Anderson, H.-R. M. Jhong, M. Paster, J. F. Stubbins, P. J. A. Kenis, Energy Fuels, 2016, 30, (7), 5980 LINK https://doi.org/10.1021/acs.energyfuels.6b00665 [Google Scholar]
  120. H. Li, P. H. Opgenorth, D. G. Wernick, S. Rogers, T.-Y. Wu, W. Higashide, P. Malati, Y.-X. Huo, K. M. Cho, J. C. Liao, Science, 2012, 335, (6076), 1596 LINK https://doi.org/10.1126/science.1217643 [Google Scholar]
  121. A. Alcasabas, P. R. Ellis, I. Malone, G. Williams, C. Zalitis, Johnson Matthey Technol. Rev., 2021, 65, (2), 197 LINK https://www.technology.matthey.com/article/65/2/197-206/ [Google Scholar]
/content/journals/10.1595/205651321X16081175586719
Loading
/content/journals/10.1595/205651321X16081175586719
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test