Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135
  • oa A Comparison of Different Approaches to the Conversion of Carbon Dioxide into Useful Products: Part II

    More routes to CO reduction

  • Authors: Annette Alcasabas1, Peter R. Ellis2, Iain Malone3, Gareth Williams5 and Chris Zalitis5
  • Affiliations: 1 Johnson Matthey, 260 Cambridge Science Park, Milton RoadCambridge, CB4 0WEUK 2 Johnson Matthey, Blounts Court, Sonning CommonReading, RG4 9NHUK 3 Johnson Matthey, Blounts Court, Sonning CommonReading, RG4 9NHUK 4 Department of Chemistry, University of York, Heslington, YorkYO10 5DDUK 5 Johnson Matthey, Blounts Court, Sonning CommonReading, RG4 9NHUK
  • Source: Johnson Matthey Technology Review, Volume 65, Issue 2, Apr 2021, p. 197 - 206
  • DOI: https://doi.org/10.1595/205651321X16112390198879
    • Published online: 01 Jan 2021

Abstract

In this review, we consider a range of different technological approaches to carbon dioxide conversion, their current status and the molecules which each approach is best suited to making. Part II presents the photochemical, photoelectrochemical, plasma and microbial electrosynthetic routes to CO reduction and discusses the technological options together with proposals for future research needs from an industry perspective.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16112390198879
2021-01-01
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Ellis_16a_Imp-PART_II.html?itemId=/content/journals/10.1595/205651321X16112390198879&mimeType=html&fmt=ahah

References

  1. A. Alcasabas, P. R. Ellis, I. Malone, G. Williams, C. Zalitis, Johnson Matthey Technol. Rev., 2021, 65, (2), 180 LINK https://www.technology.matthey.com/article/65/2/180-196/ [Google Scholar]
  2. P. R. Yaashikaa, P. Senthil Kumar, S. J. Varjani, A. Saravanan, J. CO2 Util., 2019, 33, 131LINK https://doi.org/10.1016/j.jcou.2019.05.017 [Google Scholar]
  3. M. Khalil, J. Gunlazuardi, T. A. Ivandini, A. Umar, Renew. Sustain. Energy Rev., 2019, 113, 109246 LINK https://doi.org/10.1016/j.rser.2019.109246 [Google Scholar]
  4. H. Shen, T. Peppel, J. Strunk, Z. Sun, Solar RRL, 2020, 4, (8), 1900546 LINK https://doi.org/10.1002/solr.201900546 [Google Scholar]
  5. Q. Zhu, Clean Energy, 2019, 3, (2), 85 LINK https://doi.org/10.1093/ce/zkz008 [Google Scholar]
  6. J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today, 2020, 32, 222 LINK https://doi.org/10.1016/j.mattod.2019.06.009 [Google Scholar]
  7. S. Castro, J. Albo, A. Irabien, ACS Sustain. Chem. Eng., 2018, 6, (12), 15877 LINK https://doi.org/10.1021/acssuschemeng.8b03706 [Google Scholar]
  8. Y. Liu, L. Guo, J. Chem. Phys., 2020, 152, (10), 100901 LINK https://doi.org/10.1063/1.5141390 [Google Scholar]
  9. B. Ashford, X. Tu, Curr. Opin. Green Sustain. Chem., 2017, 3, 45 LINK https://doi.org/10.1016/j.cogsc.2016.12.001 [Google Scholar]
  10. R. Snoeckx, A. Bogaerts, Chem. Soc. Rev., 2017, 46, (19), 5805 LINK https://doi.org/10.1039/c6cs00066e [Google Scholar]
  11. R. G. Grim, Z. Huang, M. T. Guarnieri, J. R. Ferrell, L. Tao, J. A. Schaidle, Energy Environ. Sci., 2020, 13, (2), 472 LINK https://doi.org/10.1039/c9ee02410g [Google Scholar]
  12. W. Wang, R. Snoeckx, X. Zhang, M. S. Cha, A. Bogaerts, J. Phys. Chem. C, 2018, 122, (16), 8704 LINK https://doi.org/10.1021/acs.jpcc.7b10619 [Google Scholar]
  13. L. Wang, Y. Yi, H. Guo, X. Tu, ACS Catal., 2018, 8, (1), 90 LINK https://doi.org/10.1021/acscatal.7b02733 [Google Scholar]
  14. I. Michielsen, Y. Uytdenhouwen, J. Pype, B. Michielsen, J. Mertens, F. Reniers, V. Meynen, A. Bogaerts, Chem. Eng. J., 2017, 326, 477 LINK https://doi.org/10.1016/j.cej.2017.05.177 [Google Scholar]
  15. A. Bogaerts, G. Centi, Front. Energy Res., 2020, 8, 111 LINK https://doi.org/10.3389/fenrg.2020.00111 [Google Scholar]
  16. A. Prévoteau, J. M. Carvajal-Arroyo, R. Ganigué, K. Rabaey, Curr. Opin. Biotechnol., 2020, 62, 48 LINK https://doi.org/10.1016/j.copbio.2019.08.014 [Google Scholar]
  17. K. P. Nevin, T. L. Woodard, A. E. Franks, Z. M. Summers, D. R. Lovley, mBio, 2010, 1, (2), e00103-10 LINK https://doi.org/10.1128/mBio.00103-10 [Google Scholar]
  18. L. Jourdin, T. Grieger, J. Monetti, V. Flexer, S. Freguia, Y. Lu, J. Chen, M. Romano, G. G. Wallace, J. Keller, Environ. Sci. Technol., 2015, 49, (22), 13566 LINK https://doi.org/10.1021/acs.est.5b03821 [Google Scholar]
  19. A. Andersson, J. Holmberg, R. Häggblad, Top. Catal., 2016, 59, (17–18), 1589 LINK https://doi.org/10.1007/s11244-016-0680-1 [Google Scholar]
  20. J. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann, H. Kieczka, ‘Formic Acid’, in “Ullman’s Encyclopedia of Industrial Chemistry”,Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2016, 23 pp LINK https://doi.org/10.1002/14356007.a12_013.pub3 [Google Scholar]
  21. A. Álvarez, A. Bansode, A. Urakawa, A. V Bavykina, T. A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Chem. Rev., 2017, 117, (14), 9804 LINK https://doi.org/10.1021/acs.chemrev.6b00816 [Google Scholar]
  22. J. J. Kaczur, H. Yang, Z. Liu, S. D. Sajjad, R. I. Masel, Front. Chem., 2018, 6, 263 LINK https://doi.org/10.3389/fchem.2018.00263 [Google Scholar]
  23. Y. Chen, A. Vise, W. E. Klein, F. C. Cetinbas, D. J. Myers, W. A. Smith, T. G. Deutsch, K. C. Neyerlin, ACS Energy Lett., 2020, 5, (6), 1825 LINK https://doi.org/10.1021/acsenergylett.0c00860 [Google Scholar]
  24. H. Bateni, C. Able, Catal. Ind., 2019, 11, (1), 7 LINK https://doi.org/10.1134/s2070050419010045 [Google Scholar]
  25. C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, Science, 2018, 360, (6390), 783 LINK https://doi.org/10.1126/science.aas9100 [Google Scholar]
  26. F. P. García de Arquer, C.-T. Dinh, A. Ozden, J. Wicks, C. McCallum, A. R. Kirmani, D.-H. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y. C. Li, F. Li, J. Edwards, L. J. Richter, S. J. Thorpe, D. Sinton, E. H. Sargent, Science, 2020, 367, (6478), 661 LINK https://doi.org/10.1126/science.aay4217 [Google Scholar]
  27. K. P. Kuhl, E. R. Cave, G. Leonard, Opus 12 Inc,, ‘Reactor with Advanced Architecture for the Electrochemical Reaction of CO2 and other Chemical Compounds’,US Patent 10,648,091; 2020
  28. S. A. Francis, J. M. Velazquez, I. M. Ferrer, D. A. Torelli, D. Guevarra, M. T. McDowell, K. Sun, X. Zhou, F. H. Saadi, J. John, M. H. Richter, F. P. Hyler, K. M. Papadantonakis, B. S. Brunschwig, N. S. Lewis, Chem. Mater., 2018, 3v, (15), 4902 LINK https://doi.org/10.1021/acs.chemmater.7b04428 [Google Scholar]
  29. L. Jourdin, S. M. T. Raes, C. J. N. Buisman, D. P. B. T. B. Strik, Front. Energy Res., 2018, 6, 7 LINK https://doi.org/10.3389/fenrg.2018.00007 [Google Scholar]
  30. N. Chu, Q. Liang, W. Zhang, Z. Ge, W. Hao, Y. Jiang, R. J. Zeng, ACS Sustain. Chem. Eng., 2020, 8, (23), 8773 LINK https://doi.org/10.1021/acssuschemeng.0c02515 [Google Scholar]
  31. J. T. Kozlowski, R. J. Davis, ACS Catal., 2013, 3, (7), 1588 LINK https://doi.org/10.1021/cs400292f [Google Scholar]
  32. H. Li, P. H. Opgenorth, D. G. Wernick, S. Rogers, T.-Y. Wu, W. Higashide, P. Malati, Y.-X. Huo, K. M. Cho, J. C. Liao, Science, 2012, 335, (6076), 1596 LINK https://doi.org/10.1126/science.1217643 [Google Scholar]
  33. C. A. R. Cotton, N. J. Claassens, S. Benito-Vaquerizo, A. Bar-Even, Curr. Opin. Biotechnol., 2020, 62, 168 LINK https://doi.org/10.1016/j.copbio.2019.10.002 [Google Scholar]
  34. T. Haas, R. Krause, R. Weber, M. Demler, G. Schmid, Nature Catal., 2018, 1, (1), 32 LINK https://doi.org/10.1038/s41929-017-0005-1 [Google Scholar]
  35. L. Wang, L. Wang, J. Zhang, X. Liu, H. Wang, W. Zhang, Q. Yang, J. Ma, X. Dong, S. J. Yoo, J.-G. Kim, X. Meng, F.-S. Xiao, Angew. Chem. Int. Ed., 2018, 57, (21), 6104 LINK https://doi.org/10.1002/anie.201800729 [Google Scholar]
  36. Y. Wang, J. Zhang, Q. Qian, B. B. A. Bediako, M. Cui, G. Yang, J. Yan, B. Han, Green Chem., 2019, 21, (3), 589 LINK https://doi.org/10.1039/c8gc03320j [Google Scholar]
  37. J. K. Heffernan, K. Valgepea, R. de Souza Pinto Lemgruber, I. Casini, M. Plan, R. Tappel, S. D. Simpson, M. Köpke, L. K. Nielsen, E. Marcellin, Front. Bioeng. Biotechnol., 2020, 8, 204 LINK https://doi.org/10.3389/fbioe.2020.00204 [Google Scholar]
  38. F. Li, Y. C. Li, Z. Wang, J. Li, D.-H. Nam, Y. Lum, M. Luo, X. Wang, A. Ozden, S.-F. Hung, B. Chen, Y. Wang, J. Wicks, Y. Xu, Y. Li, C. M. Gabardo, C.-T. Dinh, Y. Wang, T.-T. Zhuang, D. Sinton, E. H. Sargent, Nature Catal., 2020, 3, (1), 75 LINK https://doi.org/10.1038/s41929-019-0383-7 [Google Scholar]
  39. K. Valgepea, R. de Souza Pinto Lemgruber, K. Meaghan, R. W. Palfreyman, T. Abdalla, B. D. Heijstra, J. B. Behrendorff, R. Tappel, M. Köpke, S. D. Simpson, L. K. Nielsen, E. Marcellin, Cell Syst., 2017, 4, (5), 505 LINK https://doi.org/10.1016/j.cels.2017.04.008 [Google Scholar]
/content/journals/10.1595/205651321X16112390198879
Loading
/content/journals/10.1595/205651321X16112390198879
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test