Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135

Abstract

In this review, we consider a range of different technological approaches to carbon dioxide conversion, their current status and the molecules which each approach is best suited to making. Part II presents the photochemical, photoelectrochemical, plasma and microbial electrosynthetic routes to CO reduction and discusses the technological options together with proposals for future research needs from an industry perspective.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16112390198879
2021-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Ellis_16a_Imp-PART_II.html?itemId=/content/journals/10.1595/205651321X16112390198879&mimeType=html&fmt=ahah

References

  1. Alcasabas A., Ellis P. R., Malone I., Williams G., and Zalitis C. Johnson Matthey Technol. Rev., 2021, 65, (2), 180 LINK https://www.technology.matthey.com/article/65/2/180-196/ [Google Scholar]
  2. Yaashikaa P. R., Senthil Kumar P., Varjani S. J., and Saravanan A. J. CO2 Util., 2019, 33, 131LINK https://doi.org/10.1016/j.jcou.2019.05.017 [Google Scholar]
  3. Khalil M., Gunlazuardi J., Ivandini T. A., and Umar A. Renew. Sustain. Energy Rev., 2019, 113, 109246 LINK https://doi.org/10.1016/j.rser.2019.109246 [Google Scholar]
  4. Shen H., Peppel T., Strunk J., and Sun Z. Solar RRL, 2020, 4, (8), 1900546 LINK https://doi.org/10.1002/solr.201900546 [Google Scholar]
  5. Zhu Q. Clean Energy, 2019, 3, (2), 85 LINK https://doi.org/10.1093/ce/zkz008 [Google Scholar]
  6. Fu J., Jiang K., Qiu X., Yu J., and Liu M. Mater. Today, 2020, 32, 222 LINK https://doi.org/10.1016/j.mattod.2019.06.009 [Google Scholar]
  7. Castro S., Albo J., and Irabien A. ACS Sustain. Chem. Eng., 2018, 6, (12), 15877 LINK https://doi.org/10.1021/acssuschemeng.8b03706 [Google Scholar]
  8. Liu Y., and Guo L. J. Chem. Phys., 2020, 152, (10), 100901 LINK https://doi.org/10.1063/1.5141390 [Google Scholar]
  9. Ashford B., and Tu X. Curr. Opin. Green Sustain. Chem., 2017, 3, 45 LINK https://doi.org/10.1016/j.cogsc.2016.12.001 [Google Scholar]
  10. Snoeckx R., and Bogaerts A. Chem. Soc. Rev., 2017, 46, (19), 5805 LINK https://doi.org/10.1039/c6cs00066e [Google Scholar]
  11. Grim R. G., Huang Z., Guarnieri M. T., Ferrell J. R., Tao L., and Schaidle J. A. Energy Environ. Sci., 2020, 13, (2), 472 LINK https://doi.org/10.1039/c9ee02410g [Google Scholar]
  12. Wang W., Snoeckx R., Zhang X., Cha M. S., and Bogaerts A. J. Phys. Chem. C, 2018, 122, (16), 8704 LINK https://doi.org/10.1021/acs.jpcc.7b10619 [Google Scholar]
  13. Wang L., Yi Y., Guo H., and Tu X. ACS Catal., 2018, 8, (1), 90 LINK https://doi.org/10.1021/acscatal.7b02733 [Google Scholar]
  14. Michielsen I., Uytdenhouwen Y., Pype J., Michielsen B., Mertens J., Reniers F., Meynen V., and Bogaerts A. Chem. Eng. J., 2017, 326, 477 LINK https://doi.org/10.1016/j.cej.2017.05.177 [Google Scholar]
  15. Bogaerts A., and Centi G. Front. Energy Res., 2020, 8, 111 LINK https://doi.org/10.3389/fenrg.2020.00111 [Google Scholar]
  16. Prévoteau A., Carvajal-Arroyo J. M., Ganigué R., and Rabaey K. Curr. Opin. Biotechnol., 2020, 62, 48 LINK https://doi.org/10.1016/j.copbio.2019.08.014 [Google Scholar]
  17. Nevin K. P., Woodard T. L., Franks A. E., Summers Z. M., and Lovley D. R. mBio, 2010, 1, (2), e00103-10 LINK https://doi.org/10.1128/mBio.00103-10 [Google Scholar]
  18. Jourdin L., Grieger T., Monetti J., Flexer V., Freguia S., Lu Y., Chen J., Romano M., Wallace G. G., and Keller J. Environ. Sci. Technol., 2015, 49, (22), 13566 LINK https://doi.org/10.1021/acs.est.5b03821 [Google Scholar]
  19. Andersson A., Holmberg J., and Häggblad R. Top. Catal., 2016, 59, (17–18), 1589 LINK https://doi.org/10.1007/s11244-016-0680-1 [Google Scholar]
  20. Hietala J., Vuori A., Johnsson P., Pollari I., Reutemann W., and Kieczka H. ‘Formic Acid’, in “Ullman’s Encyclopedia of Industrial Chemistry”,Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2016, 23 pp LINK https://doi.org/10.1002/14356007.a12_013.pub3 [Google Scholar]
  21. Álvarez A., Bansode A., Urakawa A., Bavykina A. V, Wezendonk T. A., Makkee M., Gascon J., and Kapteijn F. Chem. Rev., 2017, 117, (14), 9804 LINK https://doi.org/10.1021/acs.chemrev.6b00816 [Google Scholar]
  22. Kaczur J. J., Yang H., Liu Z., Sajjad S. D., and Masel R. I. Front. Chem., 2018, 6, 263 LINK https://doi.org/10.3389/fchem.2018.00263 [Google Scholar]
  23. Chen Y., Vise A., Klein W. E., Cetinbas F. C., Myers D. J., Smith W. A., Deutsch T. G., and Neyerlin K. C. ACS Energy Lett., 2020, 5, (6), 1825 LINK https://doi.org/10.1021/acsenergylett.0c00860 [Google Scholar]
  24. Bateni H., and Able C. Catal. Ind., 2019, 11, (1), 7 LINK https://doi.org/10.1134/s2070050419010045 [Google Scholar]
  25. Dinh C.-T., Burdyny T., Kibria M. G., Seifitokaldani A., Gabardo C. M., García de Arquer F. P., Kiani A., Edwards J. P., De Luna P., Bushuyev O. S., Zou C., Quintero-Bermudez R., Pang Y., Sinton D., and Sargent E. H. Science, 2018, 360, (6390), 783 LINK https://doi.org/10.1126/science.aas9100 [Google Scholar]
  26. García de Arquer F. P., Dinh C.-T., Ozden A., Wicks J., McCallum C., Kirmani A. R., Nam D.-H., Gabardo C., Seifitokaldani A., Wang X., Li Y. C., Li F., Edwards J., Richter L. J., Thorpe S. J., Sinton D., and Sargent E. H. Science, 2020, 367, (6478), 661 LINK https://doi.org/10.1126/science.aay4217 [Google Scholar]
  27. Kuhl K. P., Cave E. R., and Leonard G. Opus 12 Inc, ‘Reactor with Advanced Architecture for the Electrochemical Reaction of CO2 and other Chemical Compounds’,US Patent 10,648,091; 2020
  28. Francis S. A., Velazquez J. M., Ferrer I. M., Torelli D. A., Guevarra D., McDowell M. T., Sun K., Zhou X., Saadi F. H., John J., Richter M. H., Hyler F. P., Papadantonakis K. M., Brunschwig B. S., and Lewis N. S. Chem. Mater., 2018, 3v, (15), 4902 LINK https://doi.org/10.1021/acs.chemmater.7b04428 [Google Scholar]
  29. Jourdin L., Raes S. M. T., Buisman C. J. N., and Strik D. P. B. T. B. Front. Energy Res., 2018, 6, 7 LINK https://doi.org/10.3389/fenrg.2018.00007 [Google Scholar]
  30. Chu N., Liang Q., Zhang W., Ge Z., Hao W., Jiang Y., and Zeng R. J. ACS Sustain. Chem. Eng., 2020, 8, (23), 8773 LINK https://doi.org/10.1021/acssuschemeng.0c02515 [Google Scholar]
  31. Kozlowski J. T., and Davis R. J. ACS Catal., 2013, 3, (7), 1588 LINK https://doi.org/10.1021/cs400292f [Google Scholar]
  32. Li H., Opgenorth P. H., Wernick D. G., Rogers S., Wu T.-Y., Higashide W., Malati P., Huo Y.-X., Cho K. M., and Liao J. C. Science, 2012, 335, (6076), 1596 LINK https://doi.org/10.1126/science.1217643 [Google Scholar]
  33. Cotton C. A. R., Claassens N. J., Benito-Vaquerizo S., and Bar-Even A. Curr. Opin. Biotechnol., 2020, 62, 168 LINK https://doi.org/10.1016/j.copbio.2019.10.002 [Google Scholar]
  34. Haas T., Krause R., Weber R., Demler M., and Schmid G. Nature Catal., 2018, 1, (1), 32 LINK https://doi.org/10.1038/s41929-017-0005-1 [Google Scholar]
  35. Wang L., Wang L., Zhang J., Liu X., Wang H., Zhang W., Yang Q., Ma J., Dong X., Yoo S. J., Kim J.-G., Meng X., and Xiao F.-S. Angew. Chem. Int. Ed., 2018, 57, (21), 6104 LINK https://doi.org/10.1002/anie.201800729 [Google Scholar]
  36. Wang Y., Zhang J., Qian Q., Bediako B. B. A., Cui M., Yang G., Yan J., and Han B. Green Chem., 2019, 21, (3), 589 LINK https://doi.org/10.1039/c8gc03320j [Google Scholar]
  37. Heffernan J. K., Valgepea K., de Souza Pinto Lemgruber R., Casini I., Plan M., Tappel R., Simpson S. D., Köpke M., Nielsen L. K., and Marcellin E. Front. Bioeng. Biotechnol., 2020, 8, 204 LINK https://doi.org/10.3389/fbioe.2020.00204 [Google Scholar]
  38. Li F., Li Y. C., Wang Z., Li J., Nam D.-H., Lum Y., Luo M., Wang X., Ozden A., Hung S.-F., Chen B., Wang Y., Wicks J., Xu Y., Li Y., Gabardo C. M., Dinh C.-T., Wang Y., Zhuang T.-T., Sinton D., and Sargent E. H. Nature Catal., 2020, 3, (1), 75 LINK https://doi.org/10.1038/s41929-019-0383-7 [Google Scholar]
  39. Valgepea K., de Souza Pinto Lemgruber R., Meaghan K., Palfreyman R. W., Abdalla T., Heijstra B. D., Behrendorff J. B., Tappel R., Köpke M., Simpson S. D., Nielsen L. K., and Marcellin E. Cell Syst., 2017, 4, (5), 505 LINK https://doi.org/10.1016/j.cels.2017.04.008 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16112390198879
Loading
/content/journals/10.1595/205651321X16112390198879
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error