Skip to content
Volume 65, Issue 2
  • ISSN: 2056-5135


The reduction of carbon dioxide into useful products such as fuels and chemicals is a topic of intense research activity at present, driven by the need to reduce atmospheric CO levels and avoid catastrophic temperature rises across the world. In this review, we consider a range of different technological approaches to CO conversion, their current status and the molecules which each approach is best suited to making. In Part I, the biological, catalytic and electrocatalytic routes are presented.


Article metrics loading...

Loading full text...

Full text loading...



  1. ‘Global CO2 Emissions in 2019’, The Energy Mix, International Energy Agency, Paris, France, 11th February, 2020 LINK [Google Scholar]
  2. Hepburn C., Adlen E., Beddington J., Carter E. A., Fuss S., Mac Dowell N., Minx J. C., Smith P., and Williams C. K. Nature, 2019, 575, (7781), 87 LINK [Google Scholar]
  3. Reis Machado A. S., and Nunes da Ponte M. Curr. Opin. Green Sustain. Chem., 2018, 11, 86 LINK [Google Scholar]
  4. “20 Years of Carbon Capture and Storage: Accelerating Future Deployment”,International Energy Agency, Paris, France, 22nd November, 2016, 115 pp LINK [Google Scholar]
  5. “Putting CO2 to Use: Creating Value from Emissions”,International Energy Agency (IEA), Paris, France, 1st October, 2019, 86 pp LINK [Google Scholar]
  6. Koytsoumpa E. I., Bergins C., and Kakaras E. J. Supercrit. Fluids, 2018, 132, 3 LINK [Google Scholar]
  7. Mac Dowell N., Fennell P. S., Shah N., and Maitland G. C. Nature Clim. Chang., 2017, 7, (4), 243 LINK [Google Scholar]
  8. Pletcher D. Electrochem. Commun., 2015, 61, 97 LINK [Google Scholar]
  9. Aresta M., Dibenedetto A., and Angelini A. J. CO2 Util., 2013, 3–4, 65 LINK [Google Scholar]
  10. Bailera M., Lisbona P., Romeo L. M., and Espatolero S. Renew. Sustain. Energy Rev., 2017, 69, 292 LINK [Google Scholar]
  11. Brynolf S., Taljegard M., Grahn M., and Hansson J. Renew. Sustain. Energy Rev., 2018, 81, (2), 1887 LINK [Google Scholar]
  12. Thema M., Bauer F., and Sterner M. Renew. Sustain. Energy Rev., 2019, 112, 775 LINK [Google Scholar]
  13. LanzaTech, Skokie, USA: (Accessed on 20th July 2020)
  14. Electrochaea, Planegg, Germany: (Accessed on 20th July 2020)
  15. “CRC Handbook of Chemistry and Physics”, 89th Edn., ed. Lide D. R. CRC Press, Boca Raton, USA, 2008 [Google Scholar]
  16. Jiang Z., Xiao T., Kuznetsov V. L., and Edwards P. P. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci., 2010, 368, (1923), 3343 LINK [Google Scholar]
  17. Burkart M. D., Hazari N., Tway C. L., and Zeitler E. L. ACS Catal., 2019, 9, (9), 7937 LINK [Google Scholar]
  18. ‘Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the use of Energy from Renewable Sources’, Official J. Eur. Union, L 328/82, 21st December, 2018 LINK [Google Scholar]
  19. ‘A European Green Deal: Striving to be the First Climate-Neutral Continent’, European Commission, Brussels, Belgium: (Accessed on 30th July, 2020) [Google Scholar]
  20. Carbon Recycling International, Kópavogur, Iceland: (Accessed on 3rd July 2020)
  21. Williams G. Johnson Matthey Technol. Rev., 2018, 62, (4), 389 LINK [Google Scholar]
  22. Keith D. W., Holmes G., Angelo D. St., and Heidel K. Joule, 2018, 2, (8), 1573 LINK [Google Scholar]
  23. Beuttler C., Charles L., and Wurzbacher J. Front. Clim., 2019, 1, 10 LINK [Google Scholar]
  24. House K. Z., Baclig A. C., Ranjan M., van Nierop E. A., Wilcox J., and Herzog H. J. Proc. Natl. Acad. Sci., 2011, 108, (51), 20428 LINK [Google Scholar]
  25. Claassens N. J., Sousa D. Z., dos Santos V. A. P. M., de Vos W. M., and van der Oost J. Nature Rev. Microbiol., 2016, 14, (11), 692 LINK [Google Scholar]
  26. Dürre P. FEMS Microbiol. Lett., 2016, 363, (6), fnw040 LINK [Google Scholar]
  27. Razzak S. A., Ali S. A. M., Hossain M. M., and deLasa H. Renew. Sustain. Energy Rev., 2017, 76, 379 LINK [Google Scholar]
  28. Liu X., Miao R., Lindberg P., and Lindblad P. Energy Environ. Sci., 2019, 12, (9), 2765 LINK [Google Scholar]
  29. Phytonix Corp, Black Mountain, USA: (Accessed 28th July 2020)
  30. Antonovsky N., Gleizer S., Noor E., Zohar Y., Herz E., Barenholz U., Zelcbuch L., Amram S., Wides A., Tepper N., Davidi D., Bar-On Y., Bareia T., Wernick D. G., Shani I., Malitsky S., Jona G., Bar-Even A., and Milo R. Cell, 2016, 166, (1), 115 LINK [Google Scholar]
  31. Guadalupe-Medina V., Wisselink H., Luttik M. A. H., de Hulster E., Daran J.-M., Pronk J. T., and van Maris A. J. A. Biotechnol. Biofuels, 2013, 6, 125 LINK [Google Scholar]
  32. Gassler T., Sauer M., Gasser B., Egermeier M., Troyer C., Causon T., Hann S., Mattanovich D., and Steiger M. G. Nature Biotechnol., 2020, 38, (2), 210 LINK [Google Scholar]
  33. Hu P., Chakraborty S., Kumar A., Woolston B., Liu H., Emerson D., and Stephanopoulos G. Proc. Natl. Acad. Sci., 2016, 113, (14), 3773 LINK [Google Scholar]
  34. Frontera P., Macario A., Ferraro M., and Antonucci P. Catalysts, 2017, 7, (2), 59 LINK [Google Scholar]
  35. Bowker M. ChemCatChem, 2019, 11, (17), 4238 LINK [Google Scholar]
  36. Grabow L. C., and Mavrikakis M. ACS Catal., 2011, 1, (4), 365 LINK [Google Scholar]
  37. Guil-López R., Mota N., Llorente J., Millán E., Pawelec B., Fierro J. L. G., and Navarro R. M. Materials, 2019, 12, (23), 3902 LINK [Google Scholar]
  38. Malik A. S., Zaman S. F., Al-Zahrani A. A., Daous M. A., Driss H., and Petrov L. A. Appl. Catal. A: Gen., 2018, 560, 42 LINK [Google Scholar]
  39. Martin O., Martín A. J., Mondelli C., Mitchell S., Segawa T. F., Hauert R., Drouilly C., Curulla-Ferré D., and Pérez-Ramírez J. Angew. Chem. Int. Ed., 2016, 55, (21), 6261 LINK [Google Scholar]
  40. Kothandaraman J., Goeppert A., Czaun M., Olah G. A., and Prakash G. K. S. J. Am. Chem. Soc., 2016, 138, (3), 778 LINK [Google Scholar]
  41. Lane E. M., Zhang Y., Hazari N., and Bernskoetter W. H. Organometallics, 2019, 38, (15), 3084 LINK [Google Scholar]
  42. Gogate M. R. Pet. Sci. Technol., 2019, 37, (5), 559 LINK [Google Scholar]
  43. Haynes A. ‘Catalytic Methanol Carbonylation’, in “Advances in Catalysis”, Vol. 53, Ch. 1, Elsevier Inc Amsterdam, The Netherlands, 2010, pp 1–45 LINK [Google Scholar]
  44. S., Silva H., Brandão L., Sousa J. M., and Mendes A. Appl. Catal. B: Environ., 2010, 99, (1–2), 43 LINK [Google Scholar]
  45. Wang Y., Zhang J., Qian Q., Bediako B. B. A., Cui M., Yang G., Yan J., and Han B. Green Chem., 2019, 21, (3), 589LINK [Google Scholar]
  46. Kianfar E., Hajimirzaee S., mousavian S., and Mehr A. S. Microchem. J., 2020, 156, 104822LINK [Google Scholar]
  47. Bateni H., and Able C. Catal. Ind., 2019, 11, (1), 7LINK [Google Scholar]
  48. Soares A. P. V., Portela M. F., and Kiennemann A. Catal. Rev., 2005, 47, (1), 125 LINK [Google Scholar]
  49. Daza Y. A., and Kuhn J. N. RSC Adv., 2016, 6, (55), 49675 LINK [Google Scholar]
  50. Álvarez Galván C., Schumann J., Behrens M., Fierro J. L. G., Schlögl R., and Frei E. Appl. Catal. B: Environ., 2016, 195, 104 LINK [Google Scholar]
  51. Zhou G., Xie F., Deng L., Zhang G., and Xie H. Int. J. Hydrogen Energy, 2020, 45, (19), 11380 LINK [Google Scholar]
  52. Chou C.-Y., Loiland J. A., and Lobo R. F. Catalysts, 2019, 9, (9), 773 LINK [Google Scholar]
  53. Yang L., Pastor-Pérez L., Gu S., Sepúlveda-Escribano A., and Reina T. R. Appl. Catal. B: Environ., 2018, 232, 464 LINK [Google Scholar]
  54. Chen X., Su X., Duan H., Liang B., Huang Y., and Zhang T. Catal. Today, 2017, 281, (2), 312 LINK [Google Scholar]
  55. Juneau M., Vonglis M., Hartvigsen J., Frost L., Bayerl D., Dixit M., Mpourmpakis G., Morse J. R., Baldwin J. W., Willauer H. D., and Porosoff M. D. Energy Environ. Sci., 2020, 13, (8), 2524 LINK [Google Scholar]
  56. Wang L., Wang L., Zhang J., Liu X., Wang H., Zhang W., Yang Q., Ma J., Dong X., Yoo S. J., Kim J.-G., Meng X., and Xiao F.-S. Angew. Chem. Int. Ed., 2018, 57, (21), 6104 LINK [Google Scholar]
  57. Bai S., Shao Q., Wang P., Dai Q., Wang X., and Huang X. J. Am. Chem. Soc., 2017, 139, (20), 6827 LINK [Google Scholar]
  58. Li Y., Cui X., Dong K., Junge K., and Beller M. ACS Catal., 2017, 7, (2), 1077 LINK [Google Scholar]
  59. Sakakura T., Saito Y., Okano M., Choi J.-C., and Sako T. J. Org. Chem., 1998, 63, (20), 7095 LINK [Google Scholar]
  60. Shaikh R. R., Pornpraprom S., and D’Elia V. ACS Catal., 2018, 8, (1), 419 LINK [Google Scholar]
  61. Hofmann J., Braun S., and Wolf A. Covestro Deutschland AG, ‘Method for Producing Polyether Carbonate Polyols’,US Patent Appl. 2019/0085121 [Google Scholar]
  62. Visconti C. G., Martinelli M., Falbo L., Fratalocchi L., and Lietti L. Catal. Today, 2016, 277, (1), 161 LINK [Google Scholar]
  63. Visconti C. G., Martinelli M., Falbo L., Infantes-Molina A., Lietti L., Forzatti P., Iaquaniello G., Palo E., Picutti B., and Brignoli F. Appl. Catal. B: Environ., 2017, 200, 530 LINK [Google Scholar]
  64. Wei J., Ge Q., Yao R., Wen Z., Fang C., Guo L., Xu H., and Sun J. Nature Commun., 2017, 8, 15174 LINK [Google Scholar]
  65. Xu Y., Wang T., Shi C., Liu B., Jiang F., and Liu X. Ind. Eng. Chem. Res., 2020, 59, (18), 8581 LINK [Google Scholar]
  66. Brauns J., and Turek T. Processes, 2020, 8, (2), 248 LINK [Google Scholar]
  67. Kumar S. S., and Himabindu V. Mater. Sci. Energy Technol., 2019, 2, (3), 442 LINK [Google Scholar]
  68. ‘CO2 for a Clean Performance: Rheticus Research Project Enters Phase 2’,Evonik, Essen, Germany, 19th October, 2019 LINK [Google Scholar]
  69. ‘Volta Technology’,Avantium, Amsterdam, The Netherlands: (Accessed on 12th January 2021)
  70. Kuhl K. P., Cave E. R., and Leonard G. Opus 12 Inc, ‘Reactor with Advanced Architecture for the Electrochemical Reaction of CO2 and other Chemical Compounds’,US Patent 10,648,091; 2020 [Google Scholar]
  71. Cert Systems Inc, Toronto, Canada: (Accessed on 12th January 2020)
  72. Skyre, East Hartford, USA: (Accessed on 12th January 2020)
  73. Zheng Y., Wang J., Yu B., Zhang W., Chen J., Qiao J., and Zhang J. Chem. Soc. Rev., 2017, 46, (5), 1427 LINK [Google Scholar]
  74. Küngas R. J. Electrochem. Soc., 2020, 167, (4), 044508 LINK [Google Scholar]
  75. Hori Y., White R., ‘Electrochemical CO2 Reduction on Metal Electrodes’, in “Modern Aspects of Electrochemistry: No. 42”, eds. Vayenas C. C., and Gamboa-Aldeco M. E. Springer Science and Business Media LLC, New York, USA, 2008, pp. 89–189 LINK [Google Scholar]
  76. Bagger A., Ju W., Varela A. S., Strasser P., and Rossmeisl J. ChemPhysChem, 2017, 18, (22), 3266 LINK [Google Scholar]
  77. Li Y., and Sun Q. Adv. Energy Mater., 2016, 6, (17), 1600463 LINK [Google Scholar]
  78. Li W. ‘Electrocatalytic Reduction of CO2 to Small Organic Molecule Fuels on Metal Catalysts’, in “Advances in CO2 Conversion and Utilization”, ACS Symposium Series, Vol. 1056, Ch. 5, American Chemical Society, Washington, DC, USA, 2010, pp. 55–76 LINK [Google Scholar]
  79. Chernyshova I. V., Somasundaran P., and Ponnurangam S. Proc. Natl. Acad. Sci., 2018, 115, (40), E9261 LINK [Google Scholar]
  80. Freund H.-J., and Roberts M. W. Surf. Sci. Rep., 1996, 25, (8), 225 LINK [Google Scholar]
  81. Gattrell M., Gupta N., and Co A. J. Electroanal. Chem., 2006, 594, (1), 1 LINK [Google Scholar]
  82. Lu X., Leung D. Y. C., Wang H., Leung M. K. H., and Xuan J. ChemElectroChem, 2014, 1, (5), 836 LINK [Google Scholar]
  83. Kaczur J. J., Yang H., Liu Z., Sajjad S. D., and Masel R. I. Front. Chem., 2018, 6, 263 LINK [Google Scholar]
  84. Chen Y., Vise A., Klein W. E., Cetinbas F. C., Myers D. J., Smith W. A., Deutsch T. G., and Neyerlin K. C. ACS Energy Lett., 2020, 5, (6), 1825 LINK [Google Scholar]
  85. Liu A., Gao M., Ren X., Meng F., Yang Y., Gao L., Yang Q., and Ma T. J. Mater. Chem. A, 2020, 8, (7), 3541 LINK [Google Scholar]
  86. Ye Y., Yang H., Qian J., Su H., Lee K.-J., Cheng T., Xiao H., Yano J., Goddard W. A., and Crumlin E. J. Nature Commun., 2019, 10, 1875 LINK [Google Scholar]
  87. Ma S., Luo R., Gold J. I., Yu A. Z., Kim B., and Kenis P. J. A. J. Mater. Chem. A, 2016, 4, (22), 8573 LINK [Google Scholar]
  88. Jeanty P., Scherer C., Magori E., Wiesner-Fleischer K., Hinrichsen O., and Fleischer M. J. CO2 Util., 2018, 24, 454 LINK [Google Scholar]
  89. Kuhl K. P., Cave E. R., Abram D. N., and Jaramillo T. F. Energy Environ. Sci., 2012, 5, (5), 7050 LINK [Google Scholar]
  90. Nitopi S., Bertheussen E., Scott S. B., Liu X., Engstfeld A. K., Horch S., Seger B., Stephens I. E. L., Chan K., Hahn C., Nørskov J. K., Jaramillo T. F., and Chorkendorff I. Chem. Rev., 2019, 119, (12), 7610 LINK [Google Scholar]
  91. Zhao J., Xue S., Barber J., Zhou Y., Meng J., and Ke X. J. Mater. Chem. A, 2020, 8, (9), 4700 LINK [Google Scholar]
  92. Dinh C.-T., Burdyny T., Kibria M. G., Seifitokaldani A., Gabardo C. M., García de Arquer F. P., Kiani A., Edwards J. P., De Luna P., Bushuyev O. S., Zou C., Quintero-Bermudez R., Pang Y., Sinton D., and Sargent E. H. Science, 2018, 360, (6390), 783 LINK [Google Scholar]
  93. García de Arquer F. P., Dinh C.-T., Ozden A., Wicks J., McCallum C., Kirmani A. R., Nam D.-H., Gabardo C., Seifitokaldani A., Wang X., Li Y. C., Li F., Edwards J., Richter L. J., Thorpe S. J., Sinton D., and Sargent E. H. Science, 2020, 367, (6478), 661 LINK [Google Scholar]
  94. Luo M., Wang Z., Li Y. C., Li J., Li F., Lum Y., Nam D.-H., Chen B., Wicks J., Xu A., Zhuang T., Leow W. R., Wang X., Dinh C.-T., Wang Y., Wang Y., Sinton D., and Sargent E. H. Nature Commun., 2019, 10, 5814 LINK [Google Scholar]
  95. Morales-Guio C. G., Cave E. R., Nitopi S. A., Feaster J. T., Wang L., Kuhl K. P., Jackson A., Johnson N. C., Abram D. N., Hatsukade T., Hahn C., and Jaramillo T. F. Nature Catal., 2018, 1, (10), 764 LINK [Google Scholar]
  96. Li F., Li Y. C., Wang Z., Li J., Nam D.-H., Lum Y., Luo M., Wang X., Ozden A., Hung S.-F., Chen B., Wang Y., Wicks J., Xu Y., Li Y., Gabardo C. M., Dinh C.-T., Wang Y., Zhuang T.-T., Sinton D., and Sargent E. H. Nature Catal., 2020, 3, (1), 75 LINK [Google Scholar]
  97. Albo J., and Irabien A. J. Catal., 2016, 343, 232 LINK [Google Scholar]
  98. Lu L., Sun X., Ma J., Yang D., Wu H., Zhang B., Zhang J., and Han B. Angew. Chem. Int. Ed., 2018, 57, (43), 14149 LINK [Google Scholar]
  99. Yang D., Zhu Q., Chen C., Liu H., Liu Z., Zhao Z., Zhang X., Liu S., and Han B. Nature Commun., 2019, 10, 677 LINK [Google Scholar]
  100. Mezzavilla S., Katayama Y., Rao R., Hwang J., Regoutz A., Shao-Horn Y., Chorkendorff I., and Stephens I. E. L. J. Phys. Chem. C, 2019, 123, (29), 17765 LINK [Google Scholar]
  101. Manthiram K., Beberwyck B. J., and Alivisatos A. P. J. Am. Chem. Soc., 2014, 136, (38), 13319 LINK [Google Scholar]
  102. Costa R. S., Aranha B. S. R., Ghosh A., Lobo A. O., da Silva E. T. S. G., Alves D. C. B., and Viana B. C. J. Phys. Chem. Solids, 2020, 147, 109678 LINK [Google Scholar]
  103. Ren D., Wong N. T., Handoko A. D., Huang Y., and Yeo B. S. J. Phys. Chem. Lett., 2016, 7, (1), 20 LINK [Google Scholar]
  104. Calvinho K. U. D., Laursen A. B., Yap K. M. K., Goetjen T. A., Hwang S., Murali N., Mejia-Sosa B., Lubarski A., Teeluck K. M., Hall E. S., Garfunkel E., Greenblatt M., and Dismukes G. C. Energy Environ. Sci., 2018, 11, (9), 2550 LINK [Google Scholar]
  105. Francke R., Schille B., and Roemelt M. Chem. Rev., 2018, 118, (9), 4631 LINK [Google Scholar]
  106. Torbensen K., Joulié D., Ren S., Wang M., Salvatore D., Berlinguette C. P., and Robert M. ACS Energy Lett., 2020, 5, (5), 1512 LINK [Google Scholar]
  107. Duan X., Xu J., Wei Z., Ma J., Guo S., Wang S., Liu H., and Dou S. Adv. Mater., 2017, 29, (41), 1701784 LINK [Google Scholar]
  108. Wu J., Ma S., Sun J., Gold J. I., Tiwary C., Kim B., Zhu L., Chopra N., Odeh I. N., Vajtai R., Yu A. Z., Luo R., Lou J., Ding G., Kenis P. J. A., and Ajayan P. M. Nature Commun., 2016, 7, 13869 LINK [Google Scholar]
  109. Garg S., Li M., Weber A. Z., Ge L., Li L., Rudolph V., Wang G., and Rufford T. E. J. Mater. Chem. A, 2020, 8, (4), 1511 LINK [Google Scholar]
  110. Jhong H.-R., Ma S., and Kenis P. J. A. Curr. Opin. Chem. Eng., 2013, 2, (2), 191 LINK [Google Scholar]
  111. Jouny M., Luc W., and Jiao F. Ind. Eng. Chem. Res., 2018, 57, (6), 2165 LINK [Google Scholar]
  112. Ma S., Sadakiyo M., Luo R., Heima M., Yamauchi M., and Kenis P. J. A. J. Power Sources, 2016, 301, 219 LINK [Google Scholar]
  113. Francis S. A., Velazquez J. M., Ferrer I. M., Torelli D. A., Guevarra D., McDowell M. T., Sun K., Zhou X., Saadi F. H., John J., Richter M. H., Hyler F. P., Papadantonakis K. M., Brunschwig B. S., and Lewis N. S. Chem. Mater., 2018, 30, (15), 4902 LINK [Google Scholar]
  114. Weekes D. M., Salvatore D. A., Reyes A., Huang A., and Berlinguette C. P. Acc. Chem. Res., 2018, 51, (4), 910 LINK [Google Scholar]
  115. Vennekoetter J.-B., Sengpiel R., and Wessling M. Chem. Eng. J., 2019, 364, 89 LINK [Google Scholar]
  116. Singh M. R., Kwon Y., Lum Y., Ager J. W., and Bell A. T. J. Am. Chem. Soc., 2016, 138, (39), 13006 LINK [Google Scholar]
  117. Nwabara U. O., Cofell E. R., Verma S., Negro E., and Kenis P. J. A. ChemSusChem, 2020, 13, (5), 855 LINK [Google Scholar]
  118. Romero Cuellar N. S., Wiesner-Fleischer K., Fleischer M., Rucki A., and Hinrichsen O. Electrochim. Acta, 2019, 307, 164 LINK [Google Scholar]
  119. Li X., Anderson P., Jhong H.-R. M., Paster M., Stubbins J. F., and Kenis P. J. A. Energy Fuels, 2016, 30, (7), 5980 LINK [Google Scholar]
  120. Li H., Opgenorth P. H., Wernick D. G., Rogers S., Wu T.-Y., Higashide W., Malati P., Huo Y.-X., Cho K. M., and Liao J. C. Science, 2012, 335, (6076), 1596 LINK [Google Scholar]
  121. Alcasabas A., Ellis P. R., Malone I., Williams G., and Zalitis C. Johnson Matthey Technol. Rev., 2021, 65, (2), 197 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error