Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135
  • oa Critical Review of Platinum Group Metal-Free Materials for Water Electrolysis: Transition from the Laboratory to the Market

    Earth-abundant borides and phosphides as catalysts for sustainable hydrogen production

  • Authors: Alexey Serov1, Kirill Kovnir2,3, Michael Shatruk4,5 and Yury V. Kolen’ko6
  • Affiliations: 1 Pajarito PowderLLC, Albuquerque, New Mexico 87109USA 2 Department of Chemistry, Iowa State UniversityAmes, Iowa 50011USA 3 Ames Laboratory, US Department of EnergyAmes, Iowa 50011USA 4 Department of Chemistry and Biochemistry, Florida State UniversityTallahassee, Florida 32306USA 5 National High Magnetic Field LaboratoryTallahassee, Florida 32310USA 6 International Iberian Nanotechnology LaboratoryBraga 4715-330Portugal
  • Source: Johnson Matthey Technology Review, Volume 65, Issue 2, Apr 2021, p. 207 - 226
  • DOI: https://doi.org/10.1595/205651321X16067419458185
    • Published online: 01 Jan 2021

Abstract

To combat the global problem of carbon dioxide emissions, hydrogen is the desired energy vector for the transition to environmentally benign fuel cell power. Water electrolysis (WE) is the major technology for sustainable hydrogen production. Despite the use of renewable solar and wind power as sources of electricity, one of the main barriers for the widespread implementation of WE is the scarcity and high cost of platinum group metals (pgms) that are used to catalyse the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER). Hence, the critical pgm-based catalysts must be replaced with more sustainable alternatives for WE technologies to become commercially viable. This critical review describes the state-of-the-art pgm-free materials used in the WE application, with a major focus on phosphides and borides. Several emerging classes of HER and OER catalysts are reviewed and detailed structure–property correlations are comprehensively summarised. The influence of the crystallographic and electronic structures, morphology and bulk and surface chemistry of the catalysts on the activity towards OER and HER is discussed.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16067419458185
2021-01-01
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Kolenko_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16067419458185&mimeType=html&fmt=ahah

References

  1. S. A. Sherif, F. Barbir, T. N. Veziroglu, Electr. J., 2005, 18, (6), 62 LINK https://doi.org/10.1016/j.tej.2005.06.003 [Google Scholar]
  2. A. Saeedmanesh, M. A. Mac Kinnon, J. Brouwer, Curr. Opin. Electrochem., 2018, 12, 166 LINK https://doi.org/10.1016/j.coelec.2018.11.009 [Google Scholar]
  3. T. Sinigaglia, F. Lewiski, M. E. S. Martins, J. C. M. Siluk, Int. J. Hydrogen Energy, 2017, 42, (39), 24597 LINK https://doi.org/10.1016/j.ijhydene.2017.08.063 [Google Scholar]
  4. A. Buttler, H. Spliethoff, Renew. Sustain. Energy Rev., 2018, 82, (3), 2440 LINK https://doi.org/10.1016/j.rser.2017.09.003 [Google Scholar]
  5. E. Pomerantseva, C. Resini, K. Kovnir, Yu. V. Kolen’ko, Adv. Phys.: X, 2017, 2, (2), 211 LINK https://doi.org/10.1080/23746149.2016.1273796 [Google Scholar]
  6. J. Brauns, T. Turek, Processes, 2020, 8, (2), 248 LINK https://doi.org/10.3390/pr8020248 [Google Scholar]
  7. M. David, C. Ocampo-Martínez, R. Sánchez-Peña, J. Energy Storage, 2019, 23, 392 LINK https://doi.org/10.1016/j.est.2019.03.001 [Google Scholar]
  8. J. B. Hansen, Faraday Discuss., 2015, 182, 9 LINK https://doi.org/10.1039/c5fd90071a [Google Scholar]
  9. A. Hauch, R. Küngas, P. Blennow, A. B. Hansen, J. B. Hansen, B. V Mathiesen, M. B. Mogensen, Science, 2020, 370, (6513), eaba 6118 LINK https://doi.org/10.1126/science.aba6118 [Google Scholar]
  10. M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy, 2013, 38, (12), 4901 LINK https://doi.org/10.1016/j.ijhydene.2013.01.151 [Google Scholar]
  11. J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu, L. Zhuang, Energy Environ. Sci., 2014, 7, (10), 3135 LINK https://doi.org/10.1039/c4ee01303d [Google Scholar]
  12. I. Vincent, A. Kruger, D. Bessarabov, Int. J. Hydrogen Energy, 2017, 42, (16), 10752 LINK https://doi.org/10.1016/j.ijhydene.2017.03.069 [Google Scholar]
  13. K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar, M. Bornstein, Ann. Rev. Chem. Biomol. Eng., 2019, 10, 219 LINK https://doi.org/10.1146/annurev-chembioeng-060718-030241 [Google Scholar]
  14. I. Vincent, D. Bessarabov, Renew. Sustain. Energy Rev., 2018, 81, (2), 1690 LINK https://doi.org/10.1016/j.rser.2017.05.258 [Google Scholar]
  15. W. E. Mustain, P. A. Kohl, Nature Energy, 2020, 5, (5), 359 LINK https://doi.org/10.1038/s41560-020-0619-4 [Google Scholar]
  16. W. E. Mustain, M. Chatenet, M. Page, Y. S. Kim, Energy Environ. Sci., 2020, 13, (9), 2805 LINK https://doi.org/10.1039/d0ee01133a [Google Scholar]
  17. A. Zhegur-Khais, F. Kubannek, U. Krewer, D. R. Dekel, J. Membr. Sci., 2020, 612, 118461 LINK https://doi.org/10.1016/j.memsci.2020.118461 [Google Scholar]
  18. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, Int. J. Hydrogen Energy, 2017, 42, (52), 30470 LINK https://doi.org/10.1016/j.ijhydene.2017.10.045 [Google Scholar]
  19. J. Fan, A. G. Wright, B. Britton, T. Weissbach, T. J. G. Skalski, J. Ward, T. J. Peckham, S. Holdcroft, ACS Macro Lett., 2017, 6, (10), 1089 LINK https://doi.org/10.1021/acsmacrolett.7b00679 [Google Scholar]
  20. T. Nguyen, Z. Abdin, T. Holm, W. Mérida, Energy Convers. Manag., 2019, 200, 112108 LINK https://doi.org/10.1016/j.enconman.2019.112108 [Google Scholar]
  21. S. Z. Oener, M. J. Foster, S. W. Boettcher, Science, 2020, 369, (6507), 1099 LINK https://doi.org/10.1126/science.aaz1487 [Google Scholar]
  22. T. Shinagawa, A. T. Garcia-Esparza, K. Takanabe, Sci. Rep., 2015, 5, 13801 LINK https://doi.org/10.1038/srep13801 [Google Scholar]
  23. M. T. M. Koper, J. Electroanal. Chem., 2011, 660, (2), 254 LINK https://doi.org/10.1016/j.jelechem.2010.10.004 [Google Scholar]
  24. J. Greeley, Ann. Rev. Chem. Biomol. Eng., 2016, 7, 605 LINK https://doi.org/10.1146/annurev-chembioeng-080615-034413 [Google Scholar]
  25. J. Masa, W. Schuhmann, J. Solid State Electrochem., 2020, 24, (9), 2181 LINK https://doi.org/10.1007/s10008-020-04757-1 [Google Scholar]
  26. J. Kibsgaard, I. Chorkendorff, Nature Energy, 2019, 4, (6), 430 LINK https://doi.org/10.1038/s41560-019-0407-1 [Google Scholar]
  27. M. J. Craig, G. Coulter, E. Dolan, J. Soriano-López, E. Mates-Torres, W. Schmitt, M. García-Melchor, Nature Commun., 2019, 10, 4993 LINK https://doi.org/10.1038/s41467-019-12994-w [Google Scholar]
  28. C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc., 2015, 137, (13), 4347 LINK https://doi.org/10.1021/ja510442p [Google Scholar]
  29. L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov, T. F. Jaramillo, Science, 2016, 353, (6303), 1011 LINK https://doi.org/10.1126/science.aaf5050 [Google Scholar]
  30. C. Wei, R. R. Rao, J. Peng, B. Huang, I. E. L. Stephens, M. Risch, Z. J. Xu, Y. Shao-Horn, Adv. Mater., 2019, 31, (31), 1806296 LINK https://doi.org/10.1002/adma.201806296 [Google Scholar]
  31. D. Voiry, M. Chhowalla, Y. Gogotsi, N. A. Kotov, Y. Li, R. M. Penner, R. E. Schaak, P. S. Weiss, ACS Nano, 2018, 12, (10), 9635 LINK https://doi.org/10.1021/acsnano.8b07700 [Google Scholar]
  32. S. Anantharaj, S. R. Ede, K. Karthick, S. S. Sankar, K. Sangeetha, P. E. Karthik, S. Kundu, Energy Environ. Sci., 2018, 11, (4), 744 LINK https://doi.org/10.1039/c7ee03457a [Google Scholar]
  33. C. Wei, S. Sun, D. Mandler, X. Wang, S. Z. Qiao, Z. J. Xu, Chem. Soc. Rev., 2019, 48, (9), 2518 LINK https://doi.org/10.1039/c8cs00848e [Google Scholar]
  34. S. Sun, H. Li, Z. J. Xu, Joule, 2018, 2, (6), 1024 LINK https://doi.org/10.1016/j.joule.2018.05.003 [Google Scholar]
  35. S. Jin, ACS Energy Lett., 2017, 2, (8), 1937 LINK https://doi.org/10.1021/acsenergylett.7b00679 [Google Scholar]
  36. B. R. Wygant, K. Kawashima, C. B. Mullins, ACS Energy Lett., 2018, 3, (12), 2956 LINK https://doi.org/10.1021/acsenergylett.8b01774 [Google Scholar]
  37. W. Li, D. Xiong, X. Gao, L. Liu, Chem. Commun., 2019, 55, (60), 8744 LINK https://doi.org/10.1039/c9cc02845e [Google Scholar]
  38. L. K. Allerston, N. V Rees, Curr. Opin. Electrochem., 2018, 10, 31 LINK https://doi.org/10.1016/j.coelec.2018.03.020 [Google Scholar]
  39. Y. Zhu, J. Wang, H. Chu, Y.-C. Chu, H. M. Chen, ACS Energy Lett., 2020, 5, (4), 1281 LINK https://doi.org/10.1021/acsenergylett.0c00305 [Google Scholar]
  40. Y. Zhang, L. Song, ChemCatChem, 2020, 12, (14), 3621 LINK https://doi.org/10.1002/cctc.202000233 [Google Scholar]
  41. X. Peng, D. Kulkarni, Y. Huang, T. J. Omasta, B. Ng, Y. Zheng, L. Wang, J. M. LaManna, D. S. Hussey, J. R. Varcoe, I. V Zenyuk, W. E. Mustain, Nature Commun., 2020, 11, 3561 LINK https://doi.org/10.1038/s41467-020-17370-7 [Google Scholar]
  42. J. Li, J. Gong, Energy Environ. Sci., 2020, 13, (11), 3748 LINK https://doi.org/10.1039/d0ee01706j [Google Scholar]
  43. T. Asset, A. Roy, T. Sakamoto, M. Padilla, I. Matanovic, K. Artyushkova, A. Serov, F. Maillard, M. Chatenet, K. Asazawa, H. Tanaka, P. Atanassov, Electrochim. Acta, 2016, 215, 420 LINK https://doi.org/10.1016/j.electacta.2016.08.106 [Google Scholar]
  44. C. A. Campos-Roldán, L. Calvillo, M. Boaro, R. de Guadalupe González-Huerta, G. Granozzi, N. Alonso-Vante, ACS Appl. Energy Mater., 2020, 3, (5), 4746 LINK https://doi.org/10.1021/acsaem.0c00375 [Google Scholar]
  45. S. Kabir, K. Lemire, K. Artyushkova, A. Roy, M. Odgaard, D. Schlueter, A. Oshchepkov, A. Bonnefont, E. Savinova, D. C. Sabarirajan, P. Mandal, E. J. Crumlin, I. V. Zenyuk, P. Atanassov, A. Serov, J. Mater. Chem. A, 2017, 5, (46), 24433 LINK https://doi.org/10.1039/c7ta08718g [Google Scholar]
  46. A. N. Kuznetsov, A. A. Serov, Eur. J. Inorg. Chem., 2016, (3), 373 LINK https://doi.org/10.1002/ejic.201501197 [Google Scholar]
  47. A. N. Kuznetsov, E. A. Stroganova, A. A. Serov, D. I. Kirdyankin, V. M. Novotortsev, J. Alloys Compd., 2017, 696, 413 LINK https://doi.org/10.1016/j.jallcom.2016.11.292 [Google Scholar]
  48. D. Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, E. D. Baca, C. Fujimoto, H. T. Chung, Y. S. Kim, Nature Energy, 2020, 5, (5), 378 LINK https://doi.org/10.1038/s41560-020-0577-x [Google Scholar]
  49. A. Roy, M. R. Talarposhti, S. J. Normile, I. V Zenyuk, V. De Andrade, K. Artyushkova, A. Serov, P. Atanassov, Sustain. Energy Fuels, 2018, 2, (10), 2268 LINK https://doi.org/10.1039/c8se00261d [Google Scholar]
  50. P. Shang, Z. Ye, Y. Ding, Z. Zhu, X. Peng, G. Ma, D. Li, ACS Sustain. Chem. Eng., 2020, 8, (29), 10664 LINK https://doi.org/10.1021/acssuschemeng.0c00783 [Google Scholar]
  51. A. Zadick, L. Dubau, K. Artyushkova, A. Serov, P. Atanassov, M. Chatenet, Nano Energy, 2017, 37, 248 LINK https://doi.org/10.1016/j.nanoen.2017.05.035 [Google Scholar]
  52. N. I. Andersen, A. Serov, P. Atanassov, Appl. Catal. B: Environ., 2015, 163, 623 LINK https://doi.org/10.1016/j.apcatb.2014.08.033 [Google Scholar]
  53. W.-S. Choi, M. J. Jang, Y. S. Park, K. H. Lee, J. Y. Lee, M.-H. Seo, S. M. Choi, ACS Appl. Mater. Interfaces, 2018, 10, (45), 38663 LINK https://doi.org/10.1021/acsami.8b12478 [Google Scholar]
  54. E. Cossar, A. O. Barnett, F. Seland, E. A. Baranova, Catalysts, 2019, 9, (10), 814 LINK https://doi.org/10.3390/catal9100814 [Google Scholar]
  55. H. Koshikawa, H. Murase, T. Hayashi, K. Nakajima, H. Mashiko, S. Shiraishi, Y. Tsuji, ACS Catal., 2020, 10, (3), 1886 LINK https://doi.org/10.1021/acscatal.9b04505 [Google Scholar]
  56. E. López-Fernández, J. Gil-Rostra, J. P. Espinós, A. R. González-Elipe, F. Yubero, A. de Lucas-Consuegra, J. Power Sources, 2019, 415, 136 LINK https://doi.org/10.1016/j.jpowsour.2019.01.056 [Google Scholar]
  57. C. C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Angew. Chem. Int. Ed., 2013, 53, (5), 1378 LINK https://doi.org/10.1002/anie.201308099 [Google Scholar]
  58. A. Serov, N. I. Andersen, A. J. Roy, I. Matanovic, K. Artyushkova, P. Atanassov, J. Electrochem. Soc., 2015, 162, (4), F 449 LINK https://doi.org/10.1149/2.0921504jes [Google Scholar]
  59. H. A. Firouzjaie, W. E. Mustain, ACS Catal., 2020, 10, (1), 225 LINK https://doi.org/10.1021/acscatal.9b03892 [Google Scholar]
  60. S. M. Alia, K. S. Reeves, J. S. Baxter, D. A. Cullen, J. Electrochem. Soc., 2020, 167, (14), 144512 LINK https://doi.org/10.1149/1945-7111/abc746 [Google Scholar]
  61. D. Li, H. Liu, L. Feng, Energy Fuels, 2020, 34, (11), 13491 LINK https://doi.org/10.1021/acs.energyfuels.0c03084 [Google Scholar]
  62. H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Adv. Mater., 2020, 32, (44), 2002435 LINK https://doi.org/10.1002/adma.202002435 [Google Scholar]
  63. X. Bo, R. K. Hocking, S. Zhou, Y. Li, X. Chen, J. Zhuang, Y. Du, C. Zhao, Energy Environ. Sci., 2020, 13, (11), 4225 LINK https://doi.org/10.1039/d0ee01609h [Google Scholar]
  64. D. Y. Chung, P. P. Lopes, P. F. B. D. Martins, H. He, T. Kawaguchi, P. Zapol, H. You, D. Tripkovic, D. Strmcnik, Y. Zhu, S. Seifert, S. Lee, V. R. Stamenkovic, N. M. Markovic, Nature Energy, 2020, 5, (3), 222 LINK https://doi.org/10.1038/s41560-020-0576-y [Google Scholar]
  65. Y. Liu, X. Liang, L. Gu, Y. Zhang, G.-D. Li, X. Zou, J.-S. Chen, Nature Commun., 2018, 9, 2609 LINK https://doi.org/10.1038/s41467-018-05019-5 [Google Scholar]
  66. K. N. Dinh, Q. Liang, C.-F. Du, J. Zhao, A. I. Y. Tok, H. Mao, Q. Yan, Nano Today, 2019, 25, 99 LINK https://doi.org/10.1016/j.nantod.2019.02.008 [Google Scholar]
  67. Y. Sun, T. Zhang, C. Li, K. Xu, Y. Li, J. Mater. Chem. A, 2020, 8, (27), 13415 LINK https://doi.org/10.1039/d0ta05038e [Google Scholar]
  68. B. Owens-Baird, J. Xu, D. Y. Petrovykh, O. Bondarchuk, Y. Ziouani, N. González-Ballesteros, P. Yox, F. M. Sapountzi, H. Niemantsverdriet, Yu. V. Kolen’ko, K. Kovnir, Chem. Mater., 2019, 31, (9), 3407 LINK https://doi.org/10.1021/acs.chemmater.9b00565 [Google Scholar]
  69. B. Owens-Baird, Yu. V. Kolen’ko, K. Kovnir, Chem. Eur. J., 2018, 24, (29), 7928 LINK https://doi.org/10.1002/chem.201882962 [Google Scholar]
  70. J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K.-Y. Wong, Chem. Rev., 2020, 120, (2), 851 LINK https://doi.org/10.1021/acs.chemrev.9b00248 [Google Scholar]
  71. X. Wang, Yu. V. Kolen’ko, X.-Q. Bao, K. Kovnir, L. Liu, Angew. Chem. Int. Ed., 2015, 54, (28), 8188 LINK https://doi.org/10.1002/anie.201502577 [Google Scholar]
  72. J. D. Costa, J. L. Lado, E. Carbó-Argibay, E. Paz, J. Gallo, M. F. Cerqueira, C. Rodríguez-Abreu, K. Kovnir, Yu. V. Kolen’ko, J. Phys. Chem. C, 2016, 120, (30), 16537 LINK https://doi.org/10.1021/acs.jpcc.6b05783 [Google Scholar]
  73. B. Owens-Baird, J. P. S. Sousa, Y. Ziouani, D. Y. Petrovykh, N. A. Zarkevich, D. D. Johnson, Yu. V. Kolen’ko, K. Kovnir, Chem. Sci., 2020, 11, (19), 5007 LINK https://doi.org/10.1039/d0sc00676a [Google Scholar]
  74. F. M. Sapountzi, E. D. Orlova, J. P. S. Sousa, L. M. Salonen, O. I. Lebedev, G. Zafeiropoulos, M. N. Tsampas, H. J. W. Niemantsverdriet, Yu. V. Kolen’ko, Energy Fuels, 2020, 34, (5), 6423 LINK https://doi.org/10.1021/acs.energyfuels.0c00793 [Google Scholar]
  75. L. A. King, M. A. Hubert, C. Capuano, J. Manco, N. Danilovic, E. Valle, T. R. Hellstern, K. Ayers, T. F. Jaramillo, Nature Nanotechnol., 2019, 14, (11), 1071 LINK https://doi.org/10.1038/s41565-019-0550-7 [Google Scholar]
  76. H. Kim, J. Kim, S.-K. Kim, S. H. Ahn, Appl. Catal. B: Environ., 2018, 232, 93 LINK https://doi.org/10.1016/j.apcatb.2018.03.023 [Google Scholar]
  77. J. W. D. Ng, T. R. Hellstern, J. Kibsgaard, A. C. Hinckley, J. D. Benck, T. F. Jaramillo, ChemSusChem, 2015, 8, (20), 3512 LINK https://doi.org/10.1002/cssc.201500334 [Google Scholar]
  78. J. Xu, X.-K. Wei, J. D. Costa, J. L. Lado, B. Owens-Baird, L. P. L. Gonçalves, S. P. S. Fernandes, M. Heggen, D. Y. Petrovykh, R. E. Dunin-Borkowski, K. Kovnir, Yu. V. Kolen’ko, ACS Catal., 2017, 7, (8), 5450 LINK https://doi.org/10.1021/acscatal.7b01954 [Google Scholar]
  79. J. Xu, J. P. S. Sousa, N. E. Mordvinova, J. D. Costa, D. Y. Petrovykh, K. Kovnir, O. I. Lebedev, Yu. V. Kolen’ko, ACS Catal., 2018, 8, (3), 2595 LINK https://doi.org/10.1021/acscatal.7b03817 [Google Scholar]
  80. J. L. Lado, X. Wang, E. Paz, E. Carbó-Argibay, N. Guldris, C. Rodríguez-Abreu, L. Liu, K. Kovnir, Yu. V. Kolen’ko, ACS Catal., 2015, 5, (11), 6503 LINK https://doi.org/10.1021/acscatal.5b01761 [Google Scholar]
  81. T. E. Rosser, J. P. S. Sousa, Y. Ziouani, O. Bondarchuk, D. Y. Petrovykh, X.-K. Wei, J. J. L. Humphrey, M. Heggen, Yu. V. Kolen’ko, A. J. Wain, Catal. Sci. Technol., 2020, 10, (8), 2398 LINK https://doi.org/10.1039/d0cy00123f [Google Scholar]
  82. G. Akopov, M. T. Yeung, R. B. Kaner, Adv. Mater., 2017, 29, (21), 1604506 LINK https://doi.org/10.1002/adma.201604506 [Google Scholar]
  83. M. Shatruk, ‘Chemical Aspects of Itinerant Magnetism’, in “Encyclopedia of Inorganic and Bioinorganic Chemistry”, John Wiley & Sons Ltd, Chichester, UK, 2017 LINK https://doi.org/10.1002/9781119951438.eibc2494 [Google Scholar]
  84. F. A. Garcés-Pineda, M. Blasco-Ahicart, D. Nieto-Castro, N. López, J. R. Galán-Mascarós, Nature Energy, 2019, 4, (6), 519 LINK https://doi.org/10.1038/s41560-019-0404-4 [Google Scholar]
  85. E. Westsson, S. Picken, G. Koper, Front. Chem., 2020, 8, 163 LINK https://doi.org/10.3389/fchem.2020.00163 [Google Scholar]
  86. Y. Sun, J. Wang, Q. Liu, M. Xia, Y. Tang, F. Gao, Y. Hou, J. Tse, Y. Zhao, J. Mater. Chem. A, 2019, 7, (47), 27175 LINK https://doi.org/10.1039/c9ta08616a [Google Scholar]
  87. M. J. Hülsey, C. W. Lim, N. Yan, Chem. Sci., 2020, 11, (6), 1456 LINK https://doi.org/10.1039/c9sc05947d [Google Scholar]
  88. X. Zou, L. Wang, X. Ai, H. Chen, X. Zou, Chem. Commun., 2020, 56, (20), 3061 LINK https://doi.org/10.1039/d0cc00070a [Google Scholar]
  89. Y. Chen, G. Yu, W. Chen, Y. Liu, G.-D. Li, P. Zhu, Q. Tao, Q. Li, J. Liu, X. Shen, H. Li, X. Huang, D. Wang, T. Asefa, X. Zou, J. Am. Chem. Soc., 2017, 139, (36), 12370 LINK https://doi.org/10.1021/jacs.7b06337 [Google Scholar]
  90. H. Li, P. Wen, Q. Li, C. Dun, J. Xing, C. Lu, S. Adhikari, L. Jiang, D. L. Carroll, S. M. Geyer, Adv. Energy Mater., 2017, 7, (17), 1700513 LINK https://doi.org/10.1002/aenm.201700513 [Google Scholar]
  91. P. R. Jothi, Y. Zhang, K. Yubuta, D. B. Culver, M. Conley, B. P. T. Fokwa, ACS Appl. Energy Mater., 2019, 2, (1), 176 LINK https://doi.org/10.1021/acsaem.8b01615 [Google Scholar]
  92. Q. Li, X. Zou, X. Ai, H. Chen, L. Sun, X. Zou, Adv. Energy Mater., 2019, 9, 1803369 LINK https://doi.org/10.1002/aenm.201803369 [Google Scholar]
  93. H. Vrubel, X. Hu, Angew. Chem. Int. Ed., 2012, 51, (51), 12703 LINK https://doi.org/10.1002/anie.201207111 [Google Scholar]
  94. H. Park, A. Encinas, J. P. Scheifers, Y. Zhang, B. P. T. Fokwa, Angew. Chem. Int. Ed., 2017, 56, (20), 5575 LINK https://doi.org/10.1002/anie.201611756 [Google Scholar]
  95. Y. Jiang, Y. Lu, Nanoscale, 2020, 12, (17), 9327 LINK https://doi.org/10.1039/d0nr01279c [Google Scholar]
  96. L. T. Alameda, C. F. Holder, J. L. Fenton, R. E. Schaak, Chem. Mater., 2017, 29, (21), 8953 LINK https://doi.org/10.1021/acs.chemmater.7b02511 [Google Scholar]
  97. A.-M. Zieschang, J. D. Bocarsly, J. Schuch, C. V. Reichel, B. Kaiser, W. Jaegermann, R. Seshadri, B. Albert, Inorg. Chem., 2019, 58, (24), 16609 LINK https://doi.org/10.1021/acs.inorgchem.9b02617 [Google Scholar]
  98. D. K. Mann, J. Xu, N. E. Mordvinova, V. Yannello, Y. Ziouani, N. González-Ballesteros, J. P. S. Sousa, O. I. Lebedev, Yu. V. Kolen’ko, M. Shatruk, Chem. Sci., 2019, 10, (9), 2796 LINK https://doi.org/10.1039/c8sc04106g [Google Scholar]
  99. F. Guo, Y. Wu, H. Chen, Y. Liu, L. Yang, X. Ai, X. Zou, Energy Environ. Sci., 2019, 12, (2), 684 LINK https://doi.org/10.1039/c8ee03405b [Google Scholar]
  100. X. Tan, P. Chai, C. M. Thompson, M. Shatruk, J. Am. Chem. Soc., 2013, 135, (25), 9553 LINK https://doi.org/10.1021/ja404107p [Google Scholar]
  101. X. Ma, J. Wen, S. Zhang, H. Yuan, K. Li, F. Yan, X. Zhang, Y. Chen, ACS Sustain. Chem. Eng., 2017, 5, (11), 10266 LINK https://doi.org/10.1021/acssuschemeng.7b02281 [Google Scholar]
  102. J. Jiang, M. Wang, W. Yan, X. Liu, J. Liu, J. Yang, L. Sun, Nano Energy, 2017, 38, 175 LINK https://doi.org/10.1016/j.nanoen.2017.05.045 [Google Scholar]
  103. W.-J. Jiang, S. Niu, T. Tang, Q.-H. Zhang, X.-Z. Liu, Y. Zhang, Y.-Y. Chen, J.-H. Li, L. Gu, L.-J. Wan, J.-S. Hu, Angew. Chem. Int. Ed., 2017, 56, (23), 6572 LINK https://doi.org/10.1002/anie.201703183 [Google Scholar]
  104. Y. Yang, Y. Yang, Z. Pei, K.-H. Wu, C. Tan, H. Wang, L. Wei, A. Mahmood, C. Yan, J. Dong, S. Zhao, Y. Chen, Matter, 2020, 3, (5), 1442 LINK https://doi.org/10.1016/j.matt.2020.07.032 [Google Scholar]
  105. Y. Wang, H. Su, Y. He, L. Li, S. Zhu, H. Shen, P. Xie, X. Fu, G. Zhou, C. Feng, D. Zhao, F. Xiao, X. Zhu, Y. Zeng, M. Shao, S. Chen, G. Wu, J. Zeng, C. Wang, Chem. Rev., 2020, 120, (21), 12217 LINK https://doi.org/10.1021/acs.chemrev.0c00594 [Google Scholar]
  106. N. U. Hassan, M. Mandal, G. Huang, H. A. Firouzjaie, P. A. Kohl, W. E. Mustain, Adv. Energy Mater., 2020, 10, (40), 2001986 LINK https://doi.org/10.1002/aenm.202001986 [Google Scholar]
/content/journals/10.1595/205651321X16067419458185
Loading
/content/journals/10.1595/205651321X16067419458185
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test