Skip to content
Volume 65, Issue 2
  • ISSN: 2056-5135


To combat the global problem of carbon dioxide emissions, hydrogen is the desired energy vector for the transition to environmentally benign fuel cell power. Water electrolysis (WE) is the major technology for sustainable hydrogen production. Despite the use of renewable solar and wind power as sources of electricity, one of the main barriers for the widespread implementation of WE is the scarcity and high cost of platinum group metals (pgms) that are used to catalyse the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER). Hence, the critical pgm-based catalysts must be replaced with more sustainable alternatives for WE technologies to become commercially viable. This critical review describes the state-of-the-art pgm-free materials used in the WE application, with a major focus on phosphides and borides. Several emerging classes of HER and OER catalysts are reviewed and detailed structure–property correlations are comprehensively summarised. The influence of the crystallographic and electronic structures, morphology and bulk and surface chemistry of the catalysts on the activity towards OER and HER is discussed.


Article metrics loading...

Loading full text...

Full text loading...



  1. Sherif S. A., Barbir F., and Veziroglu T. N. Electr. J., 2005, 18, (6), 62 LINK [Google Scholar]
  2. Saeedmanesh A., Mac Kinnon M. A., and Brouwer J. Curr. Opin. Electrochem., 2018, 12, 166 LINK [Google Scholar]
  3. Sinigaglia T., Lewiski F., Martins M. E. S., and Siluk J. C. M. Int. J. Hydrogen Energy, 2017, 42, (39), 24597 LINK [Google Scholar]
  4. Buttler A., and Spliethoff H. Renew. Sustain. Energy Rev., 2018, 82, (3), 2440 LINK [Google Scholar]
  5. Pomerantseva E., Resini C., Kovnir K., and Kolen’ko Yu. V. Adv. Phys.: X, 2017, 2, (2), 211 LINK [Google Scholar]
  6. Brauns J., and Turek T. Processes, 2020, 8, (2), 248 LINK [Google Scholar]
  7. David M., Ocampo-Martínez C., and Sánchez-Peña R. J. Energy Storage, 2019, 23, 392 LINK [Google Scholar]
  8. Hansen J. B. Faraday Discuss., 2015, 182, 9 LINK [Google Scholar]
  9. Hauch A., Küngas R., Blennow P., Hansen A. B., Hansen J. B., Mathiesen B. V, and Mogensen M. B. Science, 2020, 370, (6513), eaba 6118 LINK [Google Scholar]
  10. Carmo M., Fritz D. L., Mergel J., and Stolten D. Int. J. Hydrogen Energy, 2013, 38, (12), 4901 LINK [Google Scholar]
  11. Varcoe J. R., Atanassov P., Dekel D. R., Herring A. M., Hickner M. A., Kohl P. A., Kucernak A. R., Mustain W. E., Nijmeijer K., Scott K., Xu T., and Zhuang L. Energy Environ. Sci., 2014, 7, (10), 3135 LINK [Google Scholar]
  12. Vincent I., Kruger A., and Bessarabov D. Int. J. Hydrogen Energy, 2017, 42, (16), 10752 LINK [Google Scholar]
  13. Ayers K., Danilovic N., Ouimet R., Carmo M., Pivovar B., and Bornstein M. Ann. Rev. Chem. Biomol. Eng., 2019, 10, 219 LINK [Google Scholar]
  14. Vincent I., and Bessarabov D. Renew. Sustain. Energy Rev., 2018, 81, (2), 1690 LINK [Google Scholar]
  15. Mustain W. E., and Kohl P. A. Nature Energy, 2020, 5, (5), 359 LINK [Google Scholar]
  16. Mustain W. E., Chatenet M., Page M., and Kim Y. S. Energy Environ. Sci., 2020, 13, (9), 2805 LINK [Google Scholar]
  17. Zhegur-Khais A., Kubannek F., Krewer U., and Dekel D. R. J. Membr. Sci., 2020, 612, 118461 LINK [Google Scholar]
  18. Schmidt O., Gambhir A., Staffell I., Hawkes A., Nelson J., and Few S. Int. J. Hydrogen Energy, 2017, 42, (52), 30470 LINK [Google Scholar]
  19. Fan J., Wright A. G., Britton B., Weissbach T., Skalski T. J. G., Ward J., Peckham T. J., and Holdcroft S. ACS Macro Lett., 2017, 6, (10), 1089 LINK [Google Scholar]
  20. Nguyen T., Abdin Z., Holm T., and Mérida W. Energy Convers. Manag., 2019, 200, 112108 LINK [Google Scholar]
  21. Oener S. Z., Foster M. J., and Boettcher S. W. Science, 2020, 369, (6507), 1099 LINK [Google Scholar]
  22. Shinagawa T., Garcia-Esparza A. T., and Takanabe K. Sci. Rep., 2015, 5, 13801 LINK [Google Scholar]
  23. Koper M. T. M. J. Electroanal. Chem., 2011, 660, (2), 254 LINK [Google Scholar]
  24. Greeley J. Ann. Rev. Chem. Biomol. Eng., 2016, 7, 605 LINK [Google Scholar]
  25. Masa J., and Schuhmann W. J. Solid State Electrochem., 2020, 24, (9), 2181 LINK [Google Scholar]
  26. Kibsgaard J., and Chorkendorff I. Nature Energy, 2019, 4, (6), 430 LINK [Google Scholar]
  27. Craig M. J., Coulter G., Dolan E., Soriano-López J., Mates-Torres E., Schmitt W., and García-Melchor M. Nature Commun., 2019, 10, 4993 LINK [Google Scholar]
  28. McCrory C. C. L., Jung S., Ferrer I. M., Chatman S. M., Peters J. C., and Jaramillo T. F. J. Am. Chem. Soc., 2015, 137, (13), 4347 LINK [Google Scholar]
  29. Seitz L. C., Dickens C. F., Nishio K., Hikita Y., Montoya J., Doyle A., Kirk C., Vojvodic A., Hwang H. Y., Norskov J. K., and Jaramillo T. F. Science, 2016, 353, (6303), 1011 LINK [Google Scholar]
  30. Wei C., Rao R. R., Peng J., Huang B., Stephens I. E. L., Risch M., Xu Z. J., and Shao-Horn Y. Adv. Mater., 2019, 31, (31), 1806296 LINK [Google Scholar]
  31. Voiry D., Chhowalla M., Gogotsi Y., Kotov N. A., Li Y., Penner R. M., Schaak R. E., and Weiss P. S. ACS Nano, 2018, 12, (10), 9635 LINK [Google Scholar]
  32. Anantharaj S., Ede S. R., Karthick K., Sankar S. S., Sangeetha K., Karthik P. E., and Kundu S. Energy Environ. Sci., 2018, 11, (4), 744 LINK [Google Scholar]
  33. Wei C., Sun S., Mandler D., Wang X., Qiao S. Z., and Xu Z. J. Chem. Soc. Rev., 2019, 48, (9), 2518 LINK [Google Scholar]
  34. Sun S., Li H., and Xu Z. J. Joule, 2018, 2, (6), 1024 LINK [Google Scholar]
  35. Jin S. ACS Energy Lett., 2017, 2, (8), 1937 LINK [Google Scholar]
  36. Wygant B. R., Kawashima K., and Mullins C. B. ACS Energy Lett., 2018, 3, (12), 2956 LINK [Google Scholar]
  37. Li W., Xiong D., Gao X., and Liu L. Chem. Commun., 2019, 55, (60), 8744 LINK [Google Scholar]
  38. Allerston L. K., and Rees N. V Curr. Opin. Electrochem., 2018, 10, 31 LINK [Google Scholar]
  39. Zhu Y., Wang J., Chu H., Chu Y.-C., and Chen H. M. ACS Energy Lett., 2020, 5, (4), 1281 LINK [Google Scholar]
  40. Zhang Y., and Song L. ChemCatChem, 2020, 12, (14), 3621 LINK [Google Scholar]
  41. Peng X., Kulkarni D., Huang Y., Omasta T. J., Ng B., Zheng Y., Wang L., LaManna J. M., Hussey D. S., Varcoe J. R., Zenyuk I. V, and Mustain W. E. Nature Commun., 2020, 11, 3561 LINK [Google Scholar]
  42. Li J., and Gong J. Energy Environ. Sci., 2020, 13, (11), 3748 LINK [Google Scholar]
  43. Asset T., Roy A., Sakamoto T., Padilla M., Matanovic I., Artyushkova K., Serov A., Maillard F., Chatenet M., Asazawa K., Tanaka H., and Atanassov P. Electrochim. Acta, 2016, 215, 420 LINK [Google Scholar]
  44. Campos-Roldán C. A., Calvillo L., Boaro M., de Guadalupe González-Huerta R., Granozzi G., and Alonso-Vante N. ACS Appl. Energy Mater., 2020, 3, (5), 4746 LINK [Google Scholar]
  45. Kabir S., Lemire K., Artyushkova K., Roy A., Odgaard M., Schlueter D., Oshchepkov A., Bonnefont A., Savinova E., Sabarirajan D. C., Mandal P., Crumlin E. J., Zenyuk I. V., Atanassov P., and Serov A. J. Mater. Chem. A, 2017, 5, (46), 24433 LINK [Google Scholar]
  46. Kuznetsov A. N., and Serov A. A. Eur. J. Inorg. Chem., 2016, (3), 373 LINK [Google Scholar]
  47. Kuznetsov A. N., Stroganova E. A., Serov A. A., Kirdyankin D. I., and Novotortsev V. M. J. Alloys Compd., 2017, 696, 413 LINK [Google Scholar]
  48. Li D., Park E. J., Zhu W., Shi Q., Zhou Y., Tian H., Lin Y., Serov A., Zulevi B., Baca E. D., Fujimoto C., Chung H. T., and Kim Y. S. Nature Energy, 2020, 5, (5), 378 LINK [Google Scholar]
  49. Roy A., Talarposhti M. R., Normile S. J., Zenyuk I. V, De Andrade V., Artyushkova K., Serov A., and Atanassov P. Sustain. Energy Fuels, 2018, 2, (10), 2268 LINK [Google Scholar]
  50. Shang P., Ye Z., Ding Y., Zhu Z., Peng X., Ma G., and Li D. ACS Sustain. Chem. Eng., 2020, 8, (29), 10664 LINK [Google Scholar]
  51. Zadick A., Dubau L., Artyushkova K., Serov A., Atanassov P., and Chatenet M. Nano Energy, 2017, 37, 248 LINK [Google Scholar]
  52. Andersen N. I., Serov A., and Atanassov P. Appl. Catal. B: Environ., 2015, 163, 623 LINK [Google Scholar]
  53. Choi W.-S., Jang M. J., Park Y. S., Lee K. H., Lee J. Y., Seo M.-H., and Choi S. M. ACS Appl. Mater. Interfaces, 2018, 10, (45), 38663 LINK [Google Scholar]
  54. Cossar E., Barnett A. O., Seland F., and Baranova E. A. Catalysts, 2019, 9, (10), 814 LINK [Google Scholar]
  55. Koshikawa H., Murase H., Hayashi T., Nakajima K., Mashiko H., Shiraishi S., and Tsuji Y. ACS Catal., 2020, 10, (3), 1886 LINK [Google Scholar]
  56. López-Fernández E., Gil-Rostra J., Espinós J. P., González-Elipe A. R., Yubero F., and de Lucas-Consuegra A. J. Power Sources, 2019, 415, 136 LINK [Google Scholar]
  57. Pavel C. C., Cecconi F., Emiliani C., Santiccioli S., Scaffidi A., Catanorchi S., and Comotti M. Angew. Chem. Int. Ed., 2013, 53, (5), 1378 LINK [Google Scholar]
  58. Serov A., Andersen N. I., Roy A. J., Matanovic I., Artyushkova K., and Atanassov P. J. Electrochem. Soc., 2015, 162, (4), F 449 LINK [Google Scholar]
  59. Firouzjaie H. A., and Mustain W. E. ACS Catal., 2020, 10, (1), 225 LINK [Google Scholar]
  60. Alia S. M., Reeves K. S., Baxter J. S., and Cullen D. A. J. Electrochem. Soc., 2020, 167, (14), 144512 LINK [Google Scholar]
  61. Li D., Liu H., and Feng L. Energy Fuels, 2020, 34, (11), 13491 LINK [Google Scholar]
  62. Chen H., Liang X., Liu Y., Ai X., Asefa T., and Zou X. Adv. Mater., 2020, 32, (44), 2002435 LINK [Google Scholar]
  63. Bo X., Hocking R. K., Zhou S., Li Y., Chen X., Zhuang J., Du Y., and Zhao C. Energy Environ. Sci., 2020, 13, (11), 4225 LINK [Google Scholar]
  64. Chung D. Y., Lopes P. P., Martins P. F. B. D., He H., Kawaguchi T., Zapol P., You H., Tripkovic D., Strmcnik D., Zhu Y., Seifert S., Lee S., Stamenkovic V. R., and Markovic N. M. Nature Energy, 2020, 5, (3), 222 LINK [Google Scholar]
  65. Liu Y., Liang X., Gu L., Zhang Y., Li G.-D., Zou X., and Chen J.-S. Nature Commun., 2018, 9, 2609 LINK [Google Scholar]
  66. Dinh K. N., Liang Q., Du C.-F., Zhao J., Tok A. I. Y., Mao H., and Yan Q. Nano Today, 2019, 25, 99 LINK [Google Scholar]
  67. Sun Y., Zhang T., Li C., Xu K., and Li Y. J. Mater. Chem. A, 2020, 8, (27), 13415 LINK [Google Scholar]
  68. Owens-Baird B., Xu J., Petrovykh D. Y., Bondarchuk O., Ziouani Y., González-Ballesteros N., Yox P., Sapountzi F. M., Niemantsverdriet H., Kolen’ko Yu. V., and Kovnir K. Chem. Mater., 2019, 31, (9), 3407 LINK [Google Scholar]
  69. Owens-Baird B., Kolen’ko Yu. V., and Kovnir K. Chem. Eur. J., 2018, 24, (29), 7928 LINK [Google Scholar]
  70. Zhu J., Hu L., Zhao P., Lee L. Y. S., and Wong K.-Y. Chem. Rev., 2020, 120, (2), 851 LINK [Google Scholar]
  71. Wang X., Kolen’ko Yu. V., Bao X.-Q., Kovnir K., and Liu L. Angew. Chem. Int. Ed., 2015, 54, (28), 8188 LINK [Google Scholar]
  72. Costa J. D., Lado J. L., Carbó-Argibay E., Paz E., Gallo J., Cerqueira M. F., Rodríguez-Abreu C., Kovnir K., and Kolen’ko Yu. V. J. Phys. Chem. C, 2016, 120, (30), 16537 LINK [Google Scholar]
  73. Owens-Baird B., Sousa J. P. S., Ziouani Y., Petrovykh D. Y., Zarkevich N. A., Johnson D. D., Kolen’ko Yu. V., and Kovnir K. Chem. Sci., 2020, 11, (19), 5007 LINK [Google Scholar]
  74. Sapountzi F. M., Orlova E. D., Sousa J. P. S., Salonen L. M., Lebedev O. I., Zafeiropoulos G., Tsampas M. N., Niemantsverdriet H. J. W., and Kolen’ko Yu. V. Energy Fuels, 2020, 34, (5), 6423 LINK [Google Scholar]
  75. King L. A., Hubert M. A., Capuano C., Manco J., Danilovic N., Valle E., Hellstern T. R., Ayers K., and Jaramillo T. F. Nature Nanotechnol., 2019, 14, (11), 1071 LINK [Google Scholar]
  76. Kim H., Kim J., Kim S.-K., and Ahn S. H. Appl. Catal. B: Environ., 2018, 232, 93 LINK [Google Scholar]
  77. Ng J. W. D., Hellstern T. R., Kibsgaard J., Hinckley A. C., Benck J. D., and Jaramillo T. F. ChemSusChem, 2015, 8, (20), 3512 LINK [Google Scholar]
  78. Xu J., Wei X.-K., Costa J. D., Lado J. L., Owens-Baird B., Gonçalves L. P. L., Fernandes S. P. S., Heggen M., Petrovykh D. Y., Dunin-Borkowski R. E., Kovnir K., and Kolen’ko Yu. V. ACS Catal., 2017, 7, (8), 5450 LINK [Google Scholar]
  79. Xu J., Sousa J. P. S., Mordvinova N. E., Costa J. D., Petrovykh D. Y., Kovnir K., Lebedev O. I., and Kolen’ko Yu. V. ACS Catal., 2018, 8, (3), 2595 LINK [Google Scholar]
  80. Lado J. L., Wang X., Paz E., Carbó-Argibay E., Guldris N., Rodríguez-Abreu C., Liu L., Kovnir K., and Kolen’ko Yu. V. ACS Catal., 2015, 5, (11), 6503 LINK [Google Scholar]
  81. Rosser T. E., Sousa J. P. S., Ziouani Y., Bondarchuk O., Petrovykh D. Y., Wei X.-K., Humphrey J. J. L., Heggen M., Kolen’ko Yu. V., and Wain A. J. Catal. Sci. Technol., 2020, 10, (8), 2398 LINK [Google Scholar]
  82. Akopov G., Yeung M. T., and Kaner R. B. Adv. Mater., 2017, 29, (21), 1604506 LINK [Google Scholar]
  83. Shatruk M. ‘Chemical Aspects of Itinerant Magnetism’, in “Encyclopedia of Inorganic and Bioinorganic Chemistry”, John Wiley & Sons Ltd, Chichester, UK, 2017 LINK [Google Scholar]
  84. Garcés-Pineda F. A., Blasco-Ahicart M., Nieto-Castro D., López N., and Galán-Mascarós J. R. Nature Energy, 2019, 4, (6), 519 LINK [Google Scholar]
  85. Westsson E., Picken S., and Koper G. Front. Chem., 2020, 8, 163 LINK [Google Scholar]
  86. Sun Y., Wang J., Liu Q., Xia M., Tang Y., Gao F., Hou Y., Tse J., and Zhao Y. J. Mater. Chem. A, 2019, 7, (47), 27175 LINK [Google Scholar]
  87. Hülsey M. J., Lim C. W., and Yan N. Chem. Sci., 2020, 11, (6), 1456 LINK [Google Scholar]
  88. Zou X., Wang L., Ai X., Chen H., and Zou X. Chem. Commun., 2020, 56, (20), 3061 LINK [Google Scholar]
  89. Chen Y., Yu G., Chen W., Liu Y., Li G.-D., Zhu P., Tao Q., Li Q., Liu J., Shen X., Li H., Huang X., Wang D., Asefa T., and Zou X. J. Am. Chem. Soc., 2017, 139, (36), 12370 LINK [Google Scholar]
  90. Li H., Wen P., Li Q., Dun C., Xing J., Lu C., Adhikari S., Jiang L., Carroll D. L., and Geyer S. M. Adv. Energy Mater., 2017, 7, (17), 1700513 LINK [Google Scholar]
  91. Jothi P. R., Zhang Y., Yubuta K., Culver D. B., Conley M., and Fokwa B. P. T. ACS Appl. Energy Mater., 2019, 2, (1), 176 LINK [Google Scholar]
  92. Li Q., Zou X., Ai X., Chen H., Sun L., and Zou X. Adv. Energy Mater., 2019, 9, 1803369 LINK [Google Scholar]
  93. Vrubel H., and Hu X. Angew. Chem. Int. Ed., 2012, 51, (51), 12703 LINK [Google Scholar]
  94. Park H., Encinas A., Scheifers J. P., Zhang Y., and Fokwa B. P. T. Angew. Chem. Int. Ed., 2017, 56, (20), 5575 LINK [Google Scholar]
  95. Jiang Y., and Lu Y. Nanoscale, 2020, 12, (17), 9327 LINK [Google Scholar]
  96. Alameda L. T., Holder C. F., Fenton J. L., and Schaak R. E. Chem. Mater., 2017, 29, (21), 8953 LINK [Google Scholar]
  97. Zieschang A.-M., Bocarsly J. D., Schuch J., Reichel C. V., Kaiser B., Jaegermann W., Seshadri R., and Albert B. Inorg. Chem., 2019, 58, (24), 16609 LINK [Google Scholar]
  98. Mann D. K., Xu J., Mordvinova N. E., Yannello V., Ziouani Y., González-Ballesteros N., Sousa J. P. S., Lebedev O. I., Kolen’ko Yu. V., and Shatruk M. Chem. Sci., 2019, 10, (9), 2796 LINK [Google Scholar]
  99. Guo F., Wu Y., Chen H., Liu Y., Yang L., Ai X., and Zou X. Energy Environ. Sci., 2019, 12, (2), 684 LINK [Google Scholar]
  100. Tan X., Chai P., Thompson C. M., and Shatruk M. J. Am. Chem. Soc., 2013, 135, (25), 9553 LINK [Google Scholar]
  101. Ma X., Wen J., Zhang S., Yuan H., Li K., Yan F., Zhang X., and Chen Y. ACS Sustain. Chem. Eng., 2017, 5, (11), 10266 LINK [Google Scholar]
  102. Jiang J., Wang M., Yan W., Liu X., Liu J., Yang J., and Sun L. Nano Energy, 2017, 38, 175 LINK [Google Scholar]
  103. Jiang W.-J., Niu S., Tang T., Zhang Q.-H., Liu X.-Z., Zhang Y., Chen Y.-Y., Li J.-H., Gu L., Wan L.-J., and Hu J.-S. Angew. Chem. Int. Ed., 2017, 56, (23), 6572 LINK [Google Scholar]
  104. Yang Y., Yang Y., Pei Z., Wu K.-H., Tan C., Wang H., Wei L., Mahmood A., Yan C., Dong J., Zhao S., and Chen Y. Matter, 2020, 3, (5), 1442 LINK [Google Scholar]
  105. Wang Y., Su H., He Y., Li L., Zhu S., Shen H., Xie P., Fu X., Zhou G., Feng C., Zhao D., Xiao F., Zhu X., Zeng Y., Shao M., Chen S., Wu G., Zeng J., and Wang C. Chem. Rev., 2020, 120, (21), 12217 LINK [Google Scholar]
  106. Hassan N. U., Mandal M., Huang G., Firouzjaie H. A., Kohl P. A., and Mustain W. E. Adv. Energy Mater., 2020, 10, (40), 2001986 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error