Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135

Abstract

To combat the global problem of carbon dioxide emissions, hydrogen is the desired energy vector for the transition to environmentally benign fuel cell power. Water electrolysis (WE) is the major technology for sustainable hydrogen production. Despite the use of renewable solar and wind power as sources of electricity, one of the main barriers for the widespread implementation of WE is the scarcity and high cost of platinum group metals (pgms) that are used to catalyse the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER). Hence, the critical pgm-based catalysts must be replaced with more sustainable alternatives for WE technologies to become commercially viable. This critical review describes the state-of-the-art pgm-free materials used in the WE application, with a major focus on phosphides and borides. Several emerging classes of HER and OER catalysts are reviewed and detailed structure–property correlations are comprehensively summarised. The influence of the crystallographic and electronic structures, morphology and bulk and surface chemistry of the catalysts on the activity towards OER and HER is discussed.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16067419458185
2021-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Kolenko_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16067419458185&mimeType=html&fmt=ahah

References

  1. Sherif S. A., Barbir F., and Veziroglu T. N. Electr. J., 2005, 18, (6), 62 LINK https://doi.org/10.1016/j.tej.2005.06.003 [Google Scholar]
  2. Saeedmanesh A., Mac Kinnon M. A., and Brouwer J. Curr. Opin. Electrochem., 2018, 12, 166 LINK https://doi.org/10.1016/j.coelec.2018.11.009 [Google Scholar]
  3. Sinigaglia T., Lewiski F., Martins M. E. S., and Siluk J. C. M. Int. J. Hydrogen Energy, 2017, 42, (39), 24597 LINK https://doi.org/10.1016/j.ijhydene.2017.08.063 [Google Scholar]
  4. Buttler A., and Spliethoff H. Renew. Sustain. Energy Rev., 2018, 82, (3), 2440 LINK https://doi.org/10.1016/j.rser.2017.09.003 [Google Scholar]
  5. Pomerantseva E., Resini C., Kovnir K., and Kolen’ko Yu. V. Adv. Phys.: X, 2017, 2, (2), 211 LINK https://doi.org/10.1080/23746149.2016.1273796 [Google Scholar]
  6. Brauns J., and Turek T. Processes, 2020, 8, (2), 248 LINK https://doi.org/10.3390/pr8020248 [Google Scholar]
  7. David M., Ocampo-Martínez C., and Sánchez-Peña R. J. Energy Storage, 2019, 23, 392 LINK https://doi.org/10.1016/j.est.2019.03.001 [Google Scholar]
  8. Hansen J. B. Faraday Discuss., 2015, 182, 9 LINK https://doi.org/10.1039/c5fd90071a [Google Scholar]
  9. Hauch A., Küngas R., Blennow P., Hansen A. B., Hansen J. B., Mathiesen B. V, and Mogensen M. B. Science, 2020, 370, (6513), eaba 6118 LINK https://doi.org/10.1126/science.aba6118 [Google Scholar]
  10. Carmo M., Fritz D. L., Mergel J., and Stolten D. Int. J. Hydrogen Energy, 2013, 38, (12), 4901 LINK https://doi.org/10.1016/j.ijhydene.2013.01.151 [Google Scholar]
  11. Varcoe J. R., Atanassov P., Dekel D. R., Herring A. M., Hickner M. A., Kohl P. A., Kucernak A. R., Mustain W. E., Nijmeijer K., Scott K., Xu T., and Zhuang L. Energy Environ. Sci., 2014, 7, (10), 3135 LINK https://doi.org/10.1039/c4ee01303d [Google Scholar]
  12. Vincent I., Kruger A., and Bessarabov D. Int. J. Hydrogen Energy, 2017, 42, (16), 10752 LINK https://doi.org/10.1016/j.ijhydene.2017.03.069 [Google Scholar]
  13. Ayers K., Danilovic N., Ouimet R., Carmo M., Pivovar B., and Bornstein M. Ann. Rev. Chem. Biomol. Eng., 2019, 10, 219 LINK https://doi.org/10.1146/annurev-chembioeng-060718-030241 [Google Scholar]
  14. Vincent I., and Bessarabov D. Renew. Sustain. Energy Rev., 2018, 81, (2), 1690 LINK https://doi.org/10.1016/j.rser.2017.05.258 [Google Scholar]
  15. Mustain W. E., and Kohl P. A. Nature Energy, 2020, 5, (5), 359 LINK https://doi.org/10.1038/s41560-020-0619-4 [Google Scholar]
  16. Mustain W. E., Chatenet M., Page M., and Kim Y. S. Energy Environ. Sci., 2020, 13, (9), 2805 LINK https://doi.org/10.1039/d0ee01133a [Google Scholar]
  17. Zhegur-Khais A., Kubannek F., Krewer U., and Dekel D. R. J. Membr. Sci., 2020, 612, 118461 LINK https://doi.org/10.1016/j.memsci.2020.118461 [Google Scholar]
  18. Schmidt O., Gambhir A., Staffell I., Hawkes A., Nelson J., and Few S. Int. J. Hydrogen Energy, 2017, 42, (52), 30470 LINK https://doi.org/10.1016/j.ijhydene.2017.10.045 [Google Scholar]
  19. Fan J., Wright A. G., Britton B., Weissbach T., Skalski T. J. G., Ward J., Peckham T. J., and Holdcroft S. ACS Macro Lett., 2017, 6, (10), 1089 LINK https://doi.org/10.1021/acsmacrolett.7b00679 [Google Scholar]
  20. Nguyen T., Abdin Z., Holm T., and Mérida W. Energy Convers. Manag., 2019, 200, 112108 LINK https://doi.org/10.1016/j.enconman.2019.112108 [Google Scholar]
  21. Oener S. Z., Foster M. J., and Boettcher S. W. Science, 2020, 369, (6507), 1099 LINK https://doi.org/10.1126/science.aaz1487 [Google Scholar]
  22. Shinagawa T., Garcia-Esparza A. T., and Takanabe K. Sci. Rep., 2015, 5, 13801 LINK https://doi.org/10.1038/srep13801 [Google Scholar]
  23. Koper M. T. M. J. Electroanal. Chem., 2011, 660, (2), 254 LINK https://doi.org/10.1016/j.jelechem.2010.10.004 [Google Scholar]
  24. Greeley J. Ann. Rev. Chem. Biomol. Eng., 2016, 7, 605 LINK https://doi.org/10.1146/annurev-chembioeng-080615-034413 [Google Scholar]
  25. Masa J., and Schuhmann W. J. Solid State Electrochem., 2020, 24, (9), 2181 LINK https://doi.org/10.1007/s10008-020-04757-1 [Google Scholar]
  26. Kibsgaard J., and Chorkendorff I. Nature Energy, 2019, 4, (6), 430 LINK https://doi.org/10.1038/s41560-019-0407-1 [Google Scholar]
  27. Craig M. J., Coulter G., Dolan E., Soriano-López J., Mates-Torres E., Schmitt W., and García-Melchor M. Nature Commun., 2019, 10, 4993 LINK https://doi.org/10.1038/s41467-019-12994-w [Google Scholar]
  28. McCrory C. C. L., Jung S., Ferrer I. M., Chatman S. M., Peters J. C., and Jaramillo T. F. J. Am. Chem. Soc., 2015, 137, (13), 4347 LINK https://doi.org/10.1021/ja510442p [Google Scholar]
  29. Seitz L. C., Dickens C. F., Nishio K., Hikita Y., Montoya J., Doyle A., Kirk C., Vojvodic A., Hwang H. Y., Norskov J. K., and Jaramillo T. F. Science, 2016, 353, (6303), 1011 LINK https://doi.org/10.1126/science.aaf5050 [Google Scholar]
  30. Wei C., Rao R. R., Peng J., Huang B., Stephens I. E. L., Risch M., Xu Z. J., and Shao-Horn Y. Adv. Mater., 2019, 31, (31), 1806296 LINK https://doi.org/10.1002/adma.201806296 [Google Scholar]
  31. Voiry D., Chhowalla M., Gogotsi Y., Kotov N. A., Li Y., Penner R. M., Schaak R. E., and Weiss P. S. ACS Nano, 2018, 12, (10), 9635 LINK https://doi.org/10.1021/acsnano.8b07700 [Google Scholar]
  32. Anantharaj S., Ede S. R., Karthick K., Sankar S. S., Sangeetha K., Karthik P. E., and Kundu S. Energy Environ. Sci., 2018, 11, (4), 744 LINK https://doi.org/10.1039/c7ee03457a [Google Scholar]
  33. Wei C., Sun S., Mandler D., Wang X., Qiao S. Z., and Xu Z. J. Chem. Soc. Rev., 2019, 48, (9), 2518 LINK https://doi.org/10.1039/c8cs00848e [Google Scholar]
  34. Sun S., Li H., and Xu Z. J. Joule, 2018, 2, (6), 1024 LINK https://doi.org/10.1016/j.joule.2018.05.003 [Google Scholar]
  35. Jin S. ACS Energy Lett., 2017, 2, (8), 1937 LINK https://doi.org/10.1021/acsenergylett.7b00679 [Google Scholar]
  36. Wygant B. R., Kawashima K., and Mullins C. B. ACS Energy Lett., 2018, 3, (12), 2956 LINK https://doi.org/10.1021/acsenergylett.8b01774 [Google Scholar]
  37. Li W., Xiong D., Gao X., and Liu L. Chem. Commun., 2019, 55, (60), 8744 LINK https://doi.org/10.1039/c9cc02845e [Google Scholar]
  38. Allerston L. K., and Rees N. V Curr. Opin. Electrochem., 2018, 10, 31 LINK https://doi.org/10.1016/j.coelec.2018.03.020 [Google Scholar]
  39. Zhu Y., Wang J., Chu H., Chu Y.-C., and Chen H. M. ACS Energy Lett., 2020, 5, (4), 1281 LINK https://doi.org/10.1021/acsenergylett.0c00305 [Google Scholar]
  40. Zhang Y., and Song L. ChemCatChem, 2020, 12, (14), 3621 LINK https://doi.org/10.1002/cctc.202000233 [Google Scholar]
  41. Peng X., Kulkarni D., Huang Y., Omasta T. J., Ng B., Zheng Y., Wang L., LaManna J. M., Hussey D. S., Varcoe J. R., Zenyuk I. V, and Mustain W. E. Nature Commun., 2020, 11, 3561 LINK https://doi.org/10.1038/s41467-020-17370-7 [Google Scholar]
  42. Li J., and Gong J. Energy Environ. Sci., 2020, 13, (11), 3748 LINK https://doi.org/10.1039/d0ee01706j [Google Scholar]
  43. Asset T., Roy A., Sakamoto T., Padilla M., Matanovic I., Artyushkova K., Serov A., Maillard F., Chatenet M., Asazawa K., Tanaka H., and Atanassov P. Electrochim. Acta, 2016, 215, 420 LINK https://doi.org/10.1016/j.electacta.2016.08.106 [Google Scholar]
  44. Campos-Roldán C. A., Calvillo L., Boaro M., de Guadalupe González-Huerta R., Granozzi G., and Alonso-Vante N. ACS Appl. Energy Mater., 2020, 3, (5), 4746 LINK https://doi.org/10.1021/acsaem.0c00375 [Google Scholar]
  45. Kabir S., Lemire K., Artyushkova K., Roy A., Odgaard M., Schlueter D., Oshchepkov A., Bonnefont A., Savinova E., Sabarirajan D. C., Mandal P., Crumlin E. J., Zenyuk I. V., Atanassov P., and Serov A. J. Mater. Chem. A, 2017, 5, (46), 24433 LINK https://doi.org/10.1039/c7ta08718g [Google Scholar]
  46. Kuznetsov A. N., and Serov A. A. Eur. J. Inorg. Chem., 2016, (3), 373 LINK https://doi.org/10.1002/ejic.201501197 [Google Scholar]
  47. Kuznetsov A. N., Stroganova E. A., Serov A. A., Kirdyankin D. I., and Novotortsev V. M. J. Alloys Compd., 2017, 696, 413 LINK https://doi.org/10.1016/j.jallcom.2016.11.292 [Google Scholar]
  48. Li D., Park E. J., Zhu W., Shi Q., Zhou Y., Tian H., Lin Y., Serov A., Zulevi B., Baca E. D., Fujimoto C., Chung H. T., and Kim Y. S. Nature Energy, 2020, 5, (5), 378 LINK https://doi.org/10.1038/s41560-020-0577-x [Google Scholar]
  49. Roy A., Talarposhti M. R., Normile S. J., Zenyuk I. V, De Andrade V., Artyushkova K., Serov A., and Atanassov P. Sustain. Energy Fuels, 2018, 2, (10), 2268 LINK https://doi.org/10.1039/c8se00261d [Google Scholar]
  50. Shang P., Ye Z., Ding Y., Zhu Z., Peng X., Ma G., and Li D. ACS Sustain. Chem. Eng., 2020, 8, (29), 10664 LINK https://doi.org/10.1021/acssuschemeng.0c00783 [Google Scholar]
  51. Zadick A., Dubau L., Artyushkova K., Serov A., Atanassov P., and Chatenet M. Nano Energy, 2017, 37, 248 LINK https://doi.org/10.1016/j.nanoen.2017.05.035 [Google Scholar]
  52. Andersen N. I., Serov A., and Atanassov P. Appl. Catal. B: Environ., 2015, 163, 623 LINK https://doi.org/10.1016/j.apcatb.2014.08.033 [Google Scholar]
  53. Choi W.-S., Jang M. J., Park Y. S., Lee K. H., Lee J. Y., Seo M.-H., and Choi S. M. ACS Appl. Mater. Interfaces, 2018, 10, (45), 38663 LINK https://doi.org/10.1021/acsami.8b12478 [Google Scholar]
  54. Cossar E., Barnett A. O., Seland F., and Baranova E. A. Catalysts, 2019, 9, (10), 814 LINK https://doi.org/10.3390/catal9100814 [Google Scholar]
  55. Koshikawa H., Murase H., Hayashi T., Nakajima K., Mashiko H., Shiraishi S., and Tsuji Y. ACS Catal., 2020, 10, (3), 1886 LINK https://doi.org/10.1021/acscatal.9b04505 [Google Scholar]
  56. López-Fernández E., Gil-Rostra J., Espinós J. P., González-Elipe A. R., Yubero F., and de Lucas-Consuegra A. J. Power Sources, 2019, 415, 136 LINK https://doi.org/10.1016/j.jpowsour.2019.01.056 [Google Scholar]
  57. Pavel C. C., Cecconi F., Emiliani C., Santiccioli S., Scaffidi A., Catanorchi S., and Comotti M. Angew. Chem. Int. Ed., 2013, 53, (5), 1378 LINK https://doi.org/10.1002/anie.201308099 [Google Scholar]
  58. Serov A., Andersen N. I., Roy A. J., Matanovic I., Artyushkova K., and Atanassov P. J. Electrochem. Soc., 2015, 162, (4), F 449 LINK https://doi.org/10.1149/2.0921504jes [Google Scholar]
  59. Firouzjaie H. A., and Mustain W. E. ACS Catal., 2020, 10, (1), 225 LINK https://doi.org/10.1021/acscatal.9b03892 [Google Scholar]
  60. Alia S. M., Reeves K. S., Baxter J. S., and Cullen D. A. J. Electrochem. Soc., 2020, 167, (14), 144512 LINK https://doi.org/10.1149/1945-7111/abc746 [Google Scholar]
  61. Li D., Liu H., and Feng L. Energy Fuels, 2020, 34, (11), 13491 LINK https://doi.org/10.1021/acs.energyfuels.0c03084 [Google Scholar]
  62. Chen H., Liang X., Liu Y., Ai X., Asefa T., and Zou X. Adv. Mater., 2020, 32, (44), 2002435 LINK https://doi.org/10.1002/adma.202002435 [Google Scholar]
  63. Bo X., Hocking R. K., Zhou S., Li Y., Chen X., Zhuang J., Du Y., and Zhao C. Energy Environ. Sci., 2020, 13, (11), 4225 LINK https://doi.org/10.1039/d0ee01609h [Google Scholar]
  64. Chung D. Y., Lopes P. P., Martins P. F. B. D., He H., Kawaguchi T., Zapol P., You H., Tripkovic D., Strmcnik D., Zhu Y., Seifert S., Lee S., Stamenkovic V. R., and Markovic N. M. Nature Energy, 2020, 5, (3), 222 LINK https://doi.org/10.1038/s41560-020-0576-y [Google Scholar]
  65. Liu Y., Liang X., Gu L., Zhang Y., Li G.-D., Zou X., and Chen J.-S. Nature Commun., 2018, 9, 2609 LINK https://doi.org/10.1038/s41467-018-05019-5 [Google Scholar]
  66. Dinh K. N., Liang Q., Du C.-F., Zhao J., Tok A. I. Y., Mao H., and Yan Q. Nano Today, 2019, 25, 99 LINK https://doi.org/10.1016/j.nantod.2019.02.008 [Google Scholar]
  67. Sun Y., Zhang T., Li C., Xu K., and Li Y. J. Mater. Chem. A, 2020, 8, (27), 13415 LINK https://doi.org/10.1039/d0ta05038e [Google Scholar]
  68. Owens-Baird B., Xu J., Petrovykh D. Y., Bondarchuk O., Ziouani Y., González-Ballesteros N., Yox P., Sapountzi F. M., Niemantsverdriet H., Kolen’ko Yu. V., and Kovnir K. Chem. Mater., 2019, 31, (9), 3407 LINK https://doi.org/10.1021/acs.chemmater.9b00565 [Google Scholar]
  69. Owens-Baird B., Kolen’ko Yu. V., and Kovnir K. Chem. Eur. J., 2018, 24, (29), 7928 LINK https://doi.org/10.1002/chem.201882962 [Google Scholar]
  70. Zhu J., Hu L., Zhao P., Lee L. Y. S., and Wong K.-Y. Chem. Rev., 2020, 120, (2), 851 LINK https://doi.org/10.1021/acs.chemrev.9b00248 [Google Scholar]
  71. Wang X., Kolen’ko Yu. V., Bao X.-Q., Kovnir K., and Liu L. Angew. Chem. Int. Ed., 2015, 54, (28), 8188 LINK https://doi.org/10.1002/anie.201502577 [Google Scholar]
  72. Costa J. D., Lado J. L., Carbó-Argibay E., Paz E., Gallo J., Cerqueira M. F., Rodríguez-Abreu C., Kovnir K., and Kolen’ko Yu. V. J. Phys. Chem. C, 2016, 120, (30), 16537 LINK https://doi.org/10.1021/acs.jpcc.6b05783 [Google Scholar]
  73. Owens-Baird B., Sousa J. P. S., Ziouani Y., Petrovykh D. Y., Zarkevich N. A., Johnson D. D., Kolen’ko Yu. V., and Kovnir K. Chem. Sci., 2020, 11, (19), 5007 LINK https://doi.org/10.1039/d0sc00676a [Google Scholar]
  74. Sapountzi F. M., Orlova E. D., Sousa J. P. S., Salonen L. M., Lebedev O. I., Zafeiropoulos G., Tsampas M. N., Niemantsverdriet H. J. W., and Kolen’ko Yu. V. Energy Fuels, 2020, 34, (5), 6423 LINK https://doi.org/10.1021/acs.energyfuels.0c00793 [Google Scholar]
  75. King L. A., Hubert M. A., Capuano C., Manco J., Danilovic N., Valle E., Hellstern T. R., Ayers K., and Jaramillo T. F. Nature Nanotechnol., 2019, 14, (11), 1071 LINK https://doi.org/10.1038/s41565-019-0550-7 [Google Scholar]
  76. Kim H., Kim J., Kim S.-K., and Ahn S. H. Appl. Catal. B: Environ., 2018, 232, 93 LINK https://doi.org/10.1016/j.apcatb.2018.03.023 [Google Scholar]
  77. Ng J. W. D., Hellstern T. R., Kibsgaard J., Hinckley A. C., Benck J. D., and Jaramillo T. F. ChemSusChem, 2015, 8, (20), 3512 LINK https://doi.org/10.1002/cssc.201500334 [Google Scholar]
  78. Xu J., Wei X.-K., Costa J. D., Lado J. L., Owens-Baird B., Gonçalves L. P. L., Fernandes S. P. S., Heggen M., Petrovykh D. Y., Dunin-Borkowski R. E., Kovnir K., and Kolen’ko Yu. V. ACS Catal., 2017, 7, (8), 5450 LINK https://doi.org/10.1021/acscatal.7b01954 [Google Scholar]
  79. Xu J., Sousa J. P. S., Mordvinova N. E., Costa J. D., Petrovykh D. Y., Kovnir K., Lebedev O. I., and Kolen’ko Yu. V. ACS Catal., 2018, 8, (3), 2595 LINK https://doi.org/10.1021/acscatal.7b03817 [Google Scholar]
  80. Lado J. L., Wang X., Paz E., Carbó-Argibay E., Guldris N., Rodríguez-Abreu C., Liu L., Kovnir K., and Kolen’ko Yu. V. ACS Catal., 2015, 5, (11), 6503 LINK https://doi.org/10.1021/acscatal.5b01761 [Google Scholar]
  81. Rosser T. E., Sousa J. P. S., Ziouani Y., Bondarchuk O., Petrovykh D. Y., Wei X.-K., Humphrey J. J. L., Heggen M., Kolen’ko Yu. V., and Wain A. J. Catal. Sci. Technol., 2020, 10, (8), 2398 LINK https://doi.org/10.1039/d0cy00123f [Google Scholar]
  82. Akopov G., Yeung M. T., and Kaner R. B. Adv. Mater., 2017, 29, (21), 1604506 LINK https://doi.org/10.1002/adma.201604506 [Google Scholar]
  83. Shatruk M. ‘Chemical Aspects of Itinerant Magnetism’, in “Encyclopedia of Inorganic and Bioinorganic Chemistry”, John Wiley & Sons Ltd, Chichester, UK, 2017 LINK https://doi.org/10.1002/9781119951438.eibc2494 [Google Scholar]
  84. Garcés-Pineda F. A., Blasco-Ahicart M., Nieto-Castro D., López N., and Galán-Mascarós J. R. Nature Energy, 2019, 4, (6), 519 LINK https://doi.org/10.1038/s41560-019-0404-4 [Google Scholar]
  85. Westsson E., Picken S., and Koper G. Front. Chem., 2020, 8, 163 LINK https://doi.org/10.3389/fchem.2020.00163 [Google Scholar]
  86. Sun Y., Wang J., Liu Q., Xia M., Tang Y., Gao F., Hou Y., Tse J., and Zhao Y. J. Mater. Chem. A, 2019, 7, (47), 27175 LINK https://doi.org/10.1039/c9ta08616a [Google Scholar]
  87. Hülsey M. J., Lim C. W., and Yan N. Chem. Sci., 2020, 11, (6), 1456 LINK https://doi.org/10.1039/c9sc05947d [Google Scholar]
  88. Zou X., Wang L., Ai X., Chen H., and Zou X. Chem. Commun., 2020, 56, (20), 3061 LINK https://doi.org/10.1039/d0cc00070a [Google Scholar]
  89. Chen Y., Yu G., Chen W., Liu Y., Li G.-D., Zhu P., Tao Q., Li Q., Liu J., Shen X., Li H., Huang X., Wang D., Asefa T., and Zou X. J. Am. Chem. Soc., 2017, 139, (36), 12370 LINK https://doi.org/10.1021/jacs.7b06337 [Google Scholar]
  90. Li H., Wen P., Li Q., Dun C., Xing J., Lu C., Adhikari S., Jiang L., Carroll D. L., and Geyer S. M. Adv. Energy Mater., 2017, 7, (17), 1700513 LINK https://doi.org/10.1002/aenm.201700513 [Google Scholar]
  91. Jothi P. R., Zhang Y., Yubuta K., Culver D. B., Conley M., and Fokwa B. P. T. ACS Appl. Energy Mater., 2019, 2, (1), 176 LINK https://doi.org/10.1021/acsaem.8b01615 [Google Scholar]
  92. Li Q., Zou X., Ai X., Chen H., Sun L., and Zou X. Adv. Energy Mater., 2019, 9, 1803369 LINK https://doi.org/10.1002/aenm.201803369 [Google Scholar]
  93. Vrubel H., and Hu X. Angew. Chem. Int. Ed., 2012, 51, (51), 12703 LINK https://doi.org/10.1002/anie.201207111 [Google Scholar]
  94. Park H., Encinas A., Scheifers J. P., Zhang Y., and Fokwa B. P. T. Angew. Chem. Int. Ed., 2017, 56, (20), 5575 LINK https://doi.org/10.1002/anie.201611756 [Google Scholar]
  95. Jiang Y., and Lu Y. Nanoscale, 2020, 12, (17), 9327 LINK https://doi.org/10.1039/d0nr01279c [Google Scholar]
  96. Alameda L. T., Holder C. F., Fenton J. L., and Schaak R. E. Chem. Mater., 2017, 29, (21), 8953 LINK https://doi.org/10.1021/acs.chemmater.7b02511 [Google Scholar]
  97. Zieschang A.-M., Bocarsly J. D., Schuch J., Reichel C. V., Kaiser B., Jaegermann W., Seshadri R., and Albert B. Inorg. Chem., 2019, 58, (24), 16609 LINK https://doi.org/10.1021/acs.inorgchem.9b02617 [Google Scholar]
  98. Mann D. K., Xu J., Mordvinova N. E., Yannello V., Ziouani Y., González-Ballesteros N., Sousa J. P. S., Lebedev O. I., Kolen’ko Yu. V., and Shatruk M. Chem. Sci., 2019, 10, (9), 2796 LINK https://doi.org/10.1039/c8sc04106g [Google Scholar]
  99. Guo F., Wu Y., Chen H., Liu Y., Yang L., Ai X., and Zou X. Energy Environ. Sci., 2019, 12, (2), 684 LINK https://doi.org/10.1039/c8ee03405b [Google Scholar]
  100. Tan X., Chai P., Thompson C. M., and Shatruk M. J. Am. Chem. Soc., 2013, 135, (25), 9553 LINK https://doi.org/10.1021/ja404107p [Google Scholar]
  101. Ma X., Wen J., Zhang S., Yuan H., Li K., Yan F., Zhang X., and Chen Y. ACS Sustain. Chem. Eng., 2017, 5, (11), 10266 LINK https://doi.org/10.1021/acssuschemeng.7b02281 [Google Scholar]
  102. Jiang J., Wang M., Yan W., Liu X., Liu J., Yang J., and Sun L. Nano Energy, 2017, 38, 175 LINK https://doi.org/10.1016/j.nanoen.2017.05.045 [Google Scholar]
  103. Jiang W.-J., Niu S., Tang T., Zhang Q.-H., Liu X.-Z., Zhang Y., Chen Y.-Y., Li J.-H., Gu L., Wan L.-J., and Hu J.-S. Angew. Chem. Int. Ed., 2017, 56, (23), 6572 LINK https://doi.org/10.1002/anie.201703183 [Google Scholar]
  104. Yang Y., Yang Y., Pei Z., Wu K.-H., Tan C., Wang H., Wei L., Mahmood A., Yan C., Dong J., Zhao S., and Chen Y. Matter, 2020, 3, (5), 1442 LINK https://doi.org/10.1016/j.matt.2020.07.032 [Google Scholar]
  105. Wang Y., Su H., He Y., Li L., Zhu S., Shen H., Xie P., Fu X., Zhou G., Feng C., Zhao D., Xiao F., Zhu X., Zeng Y., Shao M., Chen S., Wu G., Zeng J., and Wang C. Chem. Rev., 2020, 120, (21), 12217 LINK https://doi.org/10.1021/acs.chemrev.0c00594 [Google Scholar]
  106. Hassan N. U., Mandal M., Huang G., Firouzjaie H. A., Kohl P. A., and Mustain W. E. Adv. Energy Mater., 2020, 10, (40), 2001986 LINK https://doi.org/10.1002/aenm.202001986 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16067419458185
Loading
/content/journals/10.1595/205651321X16067419458185
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error