Skip to content
Volume 65, Issue 2
  • ISSN: 2056-5135


Microbial lipids hold great promise as biofuel precursors, and research efforts to convert such lipids to renewable diesel fuels have been increasing in recent years. In contrast to the numerous literature reviews on growing, characterising and extracting lipids from oleaginous microbes, and on converting vegetable oils to hydrocarbon fuels, this review aims to provide insight into aspects that are specific to hydroprocessing microbial lipids. While standard hydrotreating catalysts generally perform well with terrestrial oils, differences in lipid speciation and the presence of co-extracted compounds, such as chlorophyll and sterols, introduce additional complexities into the process for microbial lipids. Lipid cleanup steps can be introduced to produce suitable feedstocks for catalytic upgrading.


Article metrics loading...

Loading full text...

Full text loading...



  1. Martínez E. J., Raghavan V., González-Andrés F., and Gómez X. Int. J. Mol. Sci., 2015, 16, (5), 9385 LINK [Google Scholar]
  2. Halim R., Danquah M. K., and Webley P. A. Biotechnol. Adv., 2012, 30, (3), 709 LINK [Google Scholar]
  3. Subramaniam R., Dufreche S., Zappi M., and Bajpai R. J. Ind. Microbiol. Biotechnol., 2010, 37, (12), 1271 LINK [Google Scholar]
  4. Brennan L., and Owende P. Renew. Sustain. Energy Rev., 2010, 14, (2), 557 LINK [Google Scholar]
  5. Tapia V E., Anschau A., Coradini A. L. V., Franco T. T, and Deckmann A. AMB Express, 2012, 2, 64 LINK [Google Scholar]
  6. Thiru M., Sankh S., and Rangaswamy V. Bioresour. Technol., 2011, 102, (22), 10436 LINK [Google Scholar]
  7. Qadeer S., Khalid A., Mahmood S., Anjum M., and Ahmad Z. J. Clean. Prod., 2017, 168, 917 LINK [Google Scholar]
  8. Patel A., Karageorgou D., Rova E., Katapodis P., Rova U., Christakopoulos P., and Matsakas L. Microorganisms, 2020, 8, (3), 434 LINK [Google Scholar]
  9. Sitepu I. R., Garay L. A., Sestric R., Levin D., Block D. E., German J. B., and Boundy-Mills K. L. Biotechnol. Adv., 2014, 32, (7), 1336 LINK [Google Scholar]
  10. Sànchez i Nogué V., Black B. A., Kruger J. S., Singer C. A., Ramirez K. J., Reed M. L., Cleveland N. S., Singer E. R., Yi X., Yeap R. Y., Linger J. G., and Beckham G. T. Green Chem., 2018, 20, (18), 4349 LINK [Google Scholar]
  11. Liang M.-H., and Jiang J.-G. Prog. Lipid Res., 2013, 52, (4), 395 LINK [Google Scholar]
  12. Kumar L. R., Kaur R., Yellapu S. K., Zhang X., Tyagi R. D., ‘Biodiesel Production From Oleaginous Microorganisms With Wastes as Raw Materials’, in “Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels”, 2nd Edn., eds. Pandey A., Larroche C., Dussap C.-G., Gnansounou E., Khanal S. K., and Ricke S. Elsevier Inc, San Diego, USA, 2019, pp. 661–690 LINK [Google Scholar]
  13. Zhao C., Brück T., and Lercher J. A. Green Chem., 2013, 15, (7), 1720 LINK [Google Scholar]
  14. Marker T., Petri J., Kalnes T., McCall M., Mackowiak D., Jerosky B., Reagan B., Nemeth L., Krawczyk M., Czerni S., Elliott D., and Shonnard D. “Opportunities for Biorenewables in Oil Refineries: Final Technical Report”, DOE Award No. DE-FG36-05GO15085, UOP LLC, Des Plaines, USA, 2005, 60 pp LINK [Google Scholar]
  15. Liu Y., Sotelo-Boyás R., Murata K., Minowa T., and Sakanishi K. Energy Fuels, 2011, 25, (10), 4675 LINK [Google Scholar]
  16. Vásquez M. C., Silva E. E., and Castillo E. F. Biomass Bioenergy, 2017, 105, 197 LINK [Google Scholar]
  17. Sotelo-Boyás R., Trejo-Zárraga F., de Jesús Hernández-Loyo F., ‘Hydroconversion of Triglycerides into Green Liquid Fuels’, in “Hydrogenation”, ed. and Karamé I. InTechOpen Ltd, London, UK, 2012, pp 187–216 LINK [Google Scholar]
  18. Šimáček P., Kubička D., Kubičková I., Homola F., Pospíšil M., and Chudoba J. Fuel, 2011, 90, (7), 2473 LINK [Google Scholar]
  19. Kubičková I., Snåre M., Eränen K., Mäki-Arvela P., and Murzin D. Yu. Catal. Today, 2005, 106, (1–4), 197 LINK [Google Scholar]
  20. Kubičková I., and Kubička D. Waste Biomass Valoriz., 2010, 1, (3), 293 LINK [Google Scholar]
  21. Kubička D., and Horáček J. Appl. Catal. A: Gen., 2011, 394, (1–2), 9 LINK [Google Scholar]
  22. Toba M., Abe Y., Kuramochi H., Osako M., Mochizuki T., and Yoshimura Y. Catal. Today, 2011, 164, (1), 533 LINK [Google Scholar]
  23. Wang C., Tian Z., Wang L., Xu R., Liu Q., Qu W., Ma H., and Wang B. ChemSusChem, 2012, 5, (10), 1974 LINK [Google Scholar]
  24. Wang C., Liu Q., Song J., Li W., Li P., Xu R., Ma H., and Tian Z. Catal. Today, 2014, 234, 153 LINK [Google Scholar]
  25. Rabaev M., Landau M. V., Vidruk-Nehemya R., Goldbourt A., and Herskowitz M. J. Catal., 2015, 332, 164 LINK [Google Scholar]
  26. Rabaev M., Landau M. V, Vidruk-Nehemya R., Koukouliev V., Zarchin R., and Herskowitz M. Fuel, 2015, 161, 287 LINK [Google Scholar]
  27. Mohammad M., Hari T. K., Yaakob Z., Sharma Y. C., and Sopian K. Renew. Sustain. Energy Rev., 2013, 22, 121 LINK [Google Scholar]
  28. Yang C., Li R., Cui C., Liu S., Qiu Q., Ding Y., Wu Y., and Zhang B. Green Chem., 2016, 18, (13), 3684 LINK [Google Scholar]
  29. Choo M.-Y., Oi L. E., Show P. L., Chang J.-S., Ling T. C., Ng E.-P., Phang S. M., and Juan J. C. J. Taiwan Inst. Chem. Eng., 2017, 79, 116 LINK [Google Scholar]
  30. Li X., Luo X., Jin Y., Li J., Zhang H., Zhang A., and Xie J. Renew. Sustain. Energy Rev., 2018, 82, (3), 3762 LINK [Google Scholar]
  31. Dong T., Knoshaug E. P., Pienkos P. T., and Laurens L. M. L. Appl. Energy, 2016, 177, 879 LINK [Google Scholar]
  32. Kruger J. S., Cleveland N. S., Yeap R. Y., Dong T., Ramirez K. J., Nagle N. J., Lowell A. C., Beckham G. T., McMillan J. D., and Biddy M. J. ACS Sustain. Chem. Eng., 2018, 6, (3), 2921 LINK [Google Scholar]
  33. Dong T., Van Wychen S., Nagle N., Pienkos P. T., and Laurens L. M. L. Algal Res., 2016, 18, 69 LINK [Google Scholar]
  34. Dong T., Fei Q., Genelot M., Smith H., Laurens L. M. L., Watson M. J., and Pienkos P. T. Energy Convers. Manag., 2017, 140, 62 LINK [Google Scholar]
  35. Ryckebosch E., Muylaert K., and Foubert I. J. Am. Oil Chem. Soc., 2012, 89, (2), 189 LINK [Google Scholar]
  36. Ryckebosch E., Bruneel C., Termote-Verhalle R., Muylaert K., and Foubert I. Algal Res., 2014, 3, 36 LINK [Google Scholar]
  37. Li Y., Naghdi F. G., Garg S., Adarme-Vega T. C., Thurecht K. J., Ghafor W. A., Tannock S., and Schenk P. M. Microb. Cell Fact., 2014, 13, 14 LINK [Google Scholar]
  38. Ren X., Zhao X., Turcotte F., Deschênes J.-S., Tremblay R., and Jolicoeur M. Microb. Cell Fact., 2017, 16, 26 LINK [Google Scholar]
  39. Wendt L. M., Wahlen B. D., Knoshaug E. P., Nagle N. J., Dong T., Spiller R., Panczak B., Van Wychen S., Dempster T. A., Gerken H., and Pienkos P. T. ACS Sustain. Chem. Eng., 2020, 8, (35), 13310 LINK [Google Scholar]
  40. Ryckebosch E., Bermúdez S. P. C., Termote-Verhalle R., Bruneel C., Muylaert K., Parra-Saldivar R., and Foubert I. J. Appl. Phycol., 2013, 26, (3), 1501 LINK [Google Scholar]
  41. Thevenieau F., and Nicaud J.-M. OCL, 2013, 20, (6), D603 LINK [Google Scholar]
  42. Ferreira G. F., Ríos Pinto L. F., Filho R. M., and Fregolente L. V Renew. Sustain. Energy Rev., 2019, 109, 448 LINK [Google Scholar]
  43. Fakhry E. M., and El Maghraby D. M. J. Water Resour. Prot., 2013, 05, (09), 894 LINK [Google Scholar]
  44. Ahmed R. A., He M., Aftab R. A., Zheng S., Nagi M., Bakri R., and Wang C. Sci. Rep., 2017, 7, 8118 LINK [Google Scholar]
  45. Liu X., Sheng J., and Curtiss R. Proc. Natl. Acad. Sci., 2011, 108, (17), 6899 LINK [Google Scholar]
  46. Knoshaug E. P., Van Wychen S., Singh A., and Zhang M. Biofuel Res. J., 2018, 5, (2), 800 LINK [Google Scholar]
  47. Santala S., Efimova E., Kivinen V., Larjo A., Aho T., Karp M., and Santala V. Microb. Cell Fact., 2011, 10, 36 LINK [Google Scholar]
  48. Kalscheuer R., Stöveken T., Malkus U., Reichelt R., Golyshin P. N., Sabirova J. S., Ferrer M., Timmis K. N., and Steinbüchel A. J. Bacteriol., 2007, 189, (3), 918 LINK [Google Scholar]
  49. Voss I., and Steinbüchel A. Appl. Microbiol. Biotechnol., 2001, 55, (5), 547 LINK [Google Scholar]
  50. Arabolaza A., Rodriguez E., Altabe S., Alvarez H., and Gramajo H. Appl. Environ. Microbiol., 2008, 74, (9), 2573 LINK [Google Scholar]
  51. Venkata Subhash G., and Venkata Mohan S. Bioresour. Technol., 2011, 102, (19), 9286 LINK [Google Scholar]
  52. Gema H., Kavadia A., Dimou D., Tsagou V., Komaitis M., and Aggelis G. Appl. Microbiol. Biotechnol., 2002, 58, (3), 303 LINK [Google Scholar]
  53. Ahmed S. U., Singh S. K., Pandey A., Kanjilal S., and Prasad R. B. N. Food Technol. Biotechnol., 2006, 44, (2), 283 LINK [Google Scholar]
  54. Vamvakaki A.-N., Kandarakis I., Kaminarides S., Komaitis M., and Papanikolaou S. Eng. Life Sci., 2010, 10, (4), 348 LINK [Google Scholar]
  55. Hussain J., Ruan Z., Nascimento I. A., Liu Y., and Liao W. Bioresour. Technol., 2014, 169, 768 LINK [Google Scholar]
  56. Carota E., Crognale S., D’Annibale A., and Petruccioli M. Process Saf. Environ. Prot., 2018, 117, 143 LINK [Google Scholar]
  57. Wilson R. F., ‘Seed Composition’, in “Soybeans: Improvement, Production, and Uses”, eds. Boerma H. R., and Specht J. E. 3rd Edn., ch. 13, Vol. 16, American Society of Agronomy, Inc, Crop Science Society of America, Inc, Soil Science Society of America Inc, Madison, USA, 2004, pp. 621–677 LINK [Google Scholar]
  58. Clemente T. E., and Cahoon E. B. Plant Physiol., 2009, 151, (3), 1030 LINK [Google Scholar]
  59. Barrera-Arellano D., Badan-Ribeiro A. P., and Serna-Saldivar S. O. ‘Corn Oil: Composition, Processing, and Utilization’, in “Corn: Chemistry and Technology”, 3rd Edn., ch. 21, Elsevier Inc, Cambridge, USA, 2019, pp. 593–613 LINK [Google Scholar]
  60. Chen L., Liu T., Zhang W., Chen X., and Wang J. Bioresour. Technol., 2012, 111, 208 LINK [Google Scholar]
  61. Yao L., Gerde J. A., and Wang T. J. Am. Oil Chem. Soc., 2012, 89, (12), 2279 LINK [Google Scholar]
  62. Pryde E. H., ‘Composition of Soybean Oil’, in “Handbook of Soy Oil Processing and Utilization”, eds. Erikson D. R., Pryde E. H., Brekke O. L., Mounts T. L., and Falb R. A. American Soybean Assoc, St. Louis, USA and American Oil Chemists Soc, Champaign, USA, 1980, pp. 13-31 [Google Scholar]
  63. Dong T., Gao D., Miao C., Yu X., Degan C., Garcia-Pérez M., Rasco B., Sablani S. S., and Chen S. Energy Convers. Manag., 2015, 105, 1389 LINK [Google Scholar]
  64. de Jesus A., Zmozinski A. V, Barbará J. A., Vale M. G. R., and Silva M. M. Energy Fuels, 2010, 24, (3), 2109 LINK [Google Scholar]
  65. Zschau W. Eur. J. Lipid Sci. Technol., 2001, 103, (8), 505 LINK<505::aid-ejlt505>;2-7 [Google Scholar]
  66. Hussin F., Aroua M. K., and Daud W. M. A. W. Chem. Eng. J., 2011, 170, (1), 90 LINK [Google Scholar]
  67. Aachary A. A., Liang J., Hydamaka A., Eskin N. A. M., and Thiyam-Holländer U. LWT - Food Sci. Technol., 2016, 72, 439 LINK [Google Scholar]
  68. Brooks D. D., Brophy S. A., and Goss G. R. Oil-Dri Corporation of America, ‘Oil Bleaching Method and Composition for Same’, US Patent 1991; 5,004,570 [Google Scholar]
  69. Kuuluvainen V., Mäki-Arvela P., Rautio A.-R., Kordas K., Roine J., Aho A., Toukoniitty B., Österholm H., Toivakka M., and Murzin D. Y. J. Chem. Technol. Biotechnol., 2015, 90, (9), 1579 LINK [Google Scholar]
  70. Diosady L. L. Int. J. Appl. Sci. Eng., 2005, 3, (2), 81 [Google Scholar]
  71. Santillan-Jimenez E., Pace R., Marques S., Morgan T., McKelphin C., Mobley J., and Crocker M. Fuel, 2016, 180, 668 LINK [Google Scholar]
  72. Kruger J. S., Christensen E. D., Dong T., Van Wychen S., Fioroni G. M., Pienkos P. T., and McCormick R. L. Energy Fuels, 2017, 31, (10), 10946 LINK [Google Scholar]
  73. Sathish A., and Sims R. C. Bioresour. Technol., 2012, 118, 643 LINK [Google Scholar]
  74. Li T., Xu J., Wu H., Wang G., Dai S., Fan J., He H., and Xiang W. Marine Drugs, 2016, 14, (9), 162 LINK [Google Scholar]
  75. Paisan S., Chetpattananondh P., and Chongkhong S. J. Environ. Chem. Eng., 2017, 5, (5), 5115 LINK [Google Scholar]
  76. Sharma Y. C., Yadav M., and Upadhyay S. N. Biofuels, Bioprod. Biorefining, 2019, 13, (1), 174 LINK [Google Scholar]
  77. Zufarov O., Schmidt Š., and Sekretár S. Acta Chim. Slovaca, 2008, 1, 321–328 [Google Scholar]
  78. Franklin S., Somanchi A., Espina K., Rudenko G., and Chua P. Solazyme Inc, Renewable Fuels Produced from Oleaginous Microorganisms, US Patent 9,062,294; 2015 [Google Scholar]
  79. Kale A., Zullo L. C., and Shinde S. Heliae Development LLC, Methods of and Systems for Producing Biofuels from Algal Oil,US Patent 8,313,648; 2012
  80. Kale A Extraction of Polar Lipids by a Two Solvent Method, US Patent 8,475,660; 2013 [Google Scholar]
  81. Barnebey H. L., and Brown A. C. J. Am. Oil Chem. Soc., 1948, 25, (3), 95 LINK [Google Scholar]
  82. Coppola E. N., Nana S., and Red C. Applied Research Associates, Inc, ‘Hydrothermal Cleanup Process’, US Patent 10,071,322; 2018 [Google Scholar]
  83. Lawal A., Manganaro J., Goodall B., and Farrauto R. “Pt-Based Bi-Metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil”, US DOE Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC, USA, 2015, 130 pp LINK [Google Scholar]
  84. Hachemi I., Jeništová K., Mäki-Arvela P., Kumar N., Eränen K., Hemming J., and Murzin D. Y. Catal. Sci. Technol., 2016, 6, (5), 1476 LINK [Google Scholar]
  85. Hachemi I., Kumar N., Mäki-Arvela P., Roine J., Peurla M., Hemming J., Salonen J., and Murzin D. Y. J. Catal., 2017, 347, 205 LINK [Google Scholar]
  86. Viêgas C. V., Hachemi I., Freitas S. P., Mäki-Arvela P., Aho A., Hemming J., Smeds A., Heinmaa I., Fontes F. B., da Silva Pereira D. C., Kumar N., Aranda D. A. G., and Murzin D. Y. Fuel, 2015, 155, 144 LINK [Google Scholar]
  87. Zhou L., and Lawal A. Energy Fuels, 2015, 29, (1), 262 LINK [Google Scholar]
  88. Zhou L., and Lawal A. Catal. Sci. Technol., 2016, 6, (5), 1442 LINK [Google Scholar]
  89. Loe R., Santillan-Jimenez E., Morgan T., Sewell L., Ji Y., Jones S., Isaacs M. A., Lee A. F., and Crocker M. Appl. Catal. B: Environ., 2016, 191, 147 LINK [Google Scholar]
  90. Santillan-Jimenez E., Morgan T., Loe R., and Crocker M. Catal. Today, 2015, 258, (2), 284 LINK [Google Scholar]
  91. Wilson M. H., Groppo J., Placido A., Graham S., Morton S. A., Santillan-Jimenez E., Shea A., Crocker M., Crofcheck C., and Andrews R. Appl. Petrochem. Res., 2014, 4, (1), 41 LINK [Google Scholar]
  92. Peng B., Yao Y., Zhao C., and Lercher J. A. Angew. Chem. Int. Ed., 2012, 51, (9), 2072 LINK [Google Scholar]
  93. Peng B., Yuan X., Zhao C., and Lercher J. A. J. Am. Chem. Soc., 2012, 134, (22), 9400 LINK [Google Scholar]
  94. Song W., Zhao C., and Lercher J. A. Chem. Eur. J., 2013, 19, (30), 9833 LINK [Google Scholar]
  95. Nguyen H. S. H., Mäki-Arvela P., Akhmetzyanova U., Tišler Z., Hachemi I., Rudnäs A., Smeds A., Eränen K., Aho A., Kumar N., Hemming J., Peurla M., and Murzin D. Y. J. Chem. Technol. Biotechnol., 2017, 92, (4), 741 LINK [Google Scholar]
  96. Nguyen H. S. H., Hachemi I., Rudnas A., Mäki-Arvela P., Smeds A., Aho A., Hemming J., Peurla M., and Murzin D. Y. Ind. Eng. Chem. Res., 2016, 55, (40), 10626 LINK [Google Scholar]
  97. Knoshaug E. P., Mohagheghi A., Nagle N. J., Stickel J. J., Dong T., Karp E. M., Kruger J. S., Brandner D. G., Manker L. P., Rorrer N. A., Hyman D. A., Christensen E. D., and Pienkos P. T. Green Chem., 2018, 20, (2), 457 LINK [Google Scholar]
  98. Robota H. J., Alger J. C., and Shafer L. Energy Fuels, 2013, 27, (2), 985 LINK [Google Scholar]
  99. Soni V. K., Sharma P. R., Choudhary G., Pandey S., and Sharma R. K. ACS Sustain. Chem. Eng., 2017, 5, (6), 5351 LINK [Google Scholar]
  100. Fu J., Yang C., Wu J., Zhuang J., Hou Z., and Lu X. Fuel, 2015, 139, 678 LINK [Google Scholar]
  101. Kandel K., Anderegg J. W., Nelson N. C., Chaudhary U., and Slowing I. I. J. Catal., 2014, 314, 142 LINK [Google Scholar]
  102. Tang S., Shi Z., Tang X., and Yang X. Green Chem., 2019, 21, (12), 3413 LINK [Google Scholar]
  103. Poddar M. K., Anand M., Farooqui S. A., Martin G. J. O., Maurya M. R., and Sinha A. K. Biomass Bioenergy, 2018, 119, 31 LINK [Google Scholar]
  104. Wang W.-C., Allen E., Campos A. A., Cade R. K., Dean L., Dvora M., Immer J. G., Mixson S., Srirangan S., Sauer M.-L., Schreck S., Sun K., Thapaliya N., Wilson C., Burkholder J., Grunden A. M., Lamb H. H., Sederoff H., Stikeleather L. F., and Roberts W. L. Environ. Prog. Sustain. Energy, 2013, 32, (4), 916 LINK [Google Scholar]
  105. Schulz T. C., Oelschlager M., Thompson S. T., Vermaas W. F. J., Nielsen D. R., and Lamb H. H. Sustain. Energy Fuels, 2018, 2, (4), 882 LINK [Google Scholar]
  106. Czartoski T. J., Perkins R., Villanueva J. L., and Richards G. Kohn & Assoc PLLC, Algae Biomass Fractionation,US Patent Appl. 2010/233,761
  107. Wagner J. L., Ting V. P., and Chuck C. J. Fuel, 2014, 130, 315 LINK [Google Scholar]
  108. Jenkins R. W., Sargeant L. A., Whiffin F. M., Santomauro F., Kaloudis D., Mozzanega P., Bannister C. D., Baena S., and Chuck C. J. ACS Sustain. Chem. Eng., 2015, 3, (7), 1526 LINK [Google Scholar]
  109. Bystrzanowska M., Petkov P., and Tobiszewski M. ACS Sustain. Chem. Eng., 2019, 7, (22), 18434 LINK [Google Scholar]
  110. Marafi M., and Furimsky E. Energy Fuels, 2017, 31, (6), 5711 LINK [Google Scholar]
  111. Zhang B., Wu J., Yang C., Qiu Q., Yan Q., Li R., Wang B., Wu J., and Ding Y. BioEnergy Res., 2018, 11, (3), 689 LINK [Google Scholar]
  112. Donnis B., Egeberg R. G., Blom P., and Knudsen K. G. Top. Catal., 2009, 52, (3), 229 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error