Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135

Abstract

Microbial lipids hold great promise as biofuel precursors, and research efforts to convert such lipids to renewable diesel fuels have been increasing in recent years. In contrast to the numerous literature reviews on growing, characterising and extracting lipids from oleaginous microbes, and on converting vegetable oils to hydrocarbon fuels, this review aims to provide insight into aspects that are specific to hydroprocessing microbial lipids. While standard hydrotreating catalysts generally perform well with terrestrial oils, differences in lipid speciation and the presence of co-extracted compounds, such as chlorophyll and sterols, introduce additional complexities into the process for microbial lipids. Lipid cleanup steps can be introduced to produce suitable feedstocks for catalytic upgrading.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16024905831259
2021-01-01
2024-11-03
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Kruger_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16024905831259&mimeType=html&fmt=ahah

References

  1. E. J. Martínez, V. Raghavan, F. González-Andrés, X. Gómez, Int. J. Mol. Sci., 2015, 16, (5), 9385 LINK https://doi.org/10.3390/ijms16059385 [Google Scholar]
  2. R. Halim, M. K. Danquah, P. A. Webley, Biotechnol. Adv., 2012, 30, (3), 709 LINK https://doi.org/10.1016/j.biotechadv.2012.01.001 [Google Scholar]
  3. R. Subramaniam, S. Dufreche, M. Zappi, R. Bajpai, J. Ind. Microbiol. Biotechnol., 2010, 37, (12), 1271 LINK https://doi.org/10.1007/s10295-010-0884-5 [Google Scholar]
  4. L. Brennan, P. Owende, Renew. Sustain. Energy Rev., 2010, 14, (2), 557 LINK https://doi.org/10.1016/j.rser.2009.10.009 [Google Scholar]
  5. E. Tapia V, A. Anschau, A. L. V. Coradini, T. T Franco, A. Deckmann, AMB Express, 2012, 2, 64 LINK https://doi.org/10.1186/2191-0855-2-64 [Google Scholar]
  6. M. Thiru, S. Sankh, V. Rangaswamy, Bioresour. Technol., 2011, 102, (22), 10436 LINK https://doi.org/10.1016/j.biortech.2011.08.102 [Google Scholar]
  7. S. Qadeer, A. Khalid, S. Mahmood, M. Anjum, Z. Ahmad, J. Clean. Prod., 2017, 168, 917 LINK https://doi.org/10.1016/j.jclepro.2017.09.093 [Google Scholar]
  8. A. Patel, D. Karageorgou, E. Rova, P. Katapodis, U. Rova, P. Christakopoulos, L. Matsakas, Microorganisms, 2020, 8, (3), 434 LINK https://doi.org/10.3390/microorganisms8030434 [Google Scholar]
  9. I. R. Sitepu, L. A. Garay, R. Sestric, D. Levin, D. E. Block, J. B. German, K. L. Boundy-Mills, Biotechnol. Adv., 2014, 32, (7), 1336 LINK https://doi.org/10.1016/j.biotechadv.2014.08.003 [Google Scholar]
  10. V. Sànchez i Nogué, B. A. Black, J. S. Kruger, C. A. Singer, K. J. Ramirez, M. L. Reed, N. S. Cleveland, E. R. Singer, X. Yi, R. Y. Yeap, J. G. Linger, G. T. Beckham, Green Chem., 2018, 20, (18), 4349 LINK https://doi.org/10.1039/c8gc01905c [Google Scholar]
  11. M.-H. Liang, J.-G. Jiang, Prog. Lipid Res., 2013, 52, (4), 395 LINK https://doi.org/10.1016/j.plipres.2013.05.002 [Google Scholar]
  12. L. R. Kumar, R. Kaur, S. K. Yellapu, X. Zhang, R. D. Tyagi, ‘Biodiesel Production From Oleaginous Microorganisms With Wastes as Raw Materials’, in “Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels”, 2nd Edn., eds. A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S. K. Khanal, S. Ricke, Elsevier Inc, San Diego, USA, 2019, pp. 661–690 LINK https://doi.org/10.1016/B978-0-12-816856-1.00027-0 [Google Scholar]
  13. C. Zhao, T. Brück, J. A. Lercher, Green Chem., 2013, 15, (7), 1720 LINK https://doi.org/10.1039/c3gc40558c [Google Scholar]
  14. T. Marker, J. Petri, T. Kalnes, M. McCall, D. Mackowiak, B. Jerosky, B. Reagan, L. Nemeth, M. Krawczyk, S. Czerni, D. Elliott, D. Shonnard, “Opportunities for Biorenewables in Oil Refineries: Final Technical Report”, DOE Award No. DE-FG36-05GO15085, UOP LLC, Des Plaines, USA, 2005, 60 pp LINK https://doi.org/10.2172/861458 [Google Scholar]
  15. Y. Liu, R. Sotelo-Boyás, K. Murata, T. Minowa, K. Sakanishi, Energy Fuels, 2011, 25, (10), 4675 LINK https://doi.org/10.1021/ef200889e [Google Scholar]
  16. M. C. Vásquez, E. E. Silva, E. F. Castillo, Biomass Bioenergy, 2017, 105, 197 LINK https://doi.org/10.1016/j.biombioe.2017.07.008 [Google Scholar]
  17. R. Sotelo-Boyás, F. Trejo-Zárraga, F. de Jesús Hernández-Loyo, ‘Hydroconversion of Triglycerides into Green Liquid Fuels’, in “Hydrogenation”, ed. I. Karamé, InTechOpen Ltd, London, UK, 2012, pp 187–216 LINK https://doi.org/10.5772/48710 [Google Scholar]
  18. P. Šimáček, D. Kubička, I. Kubičková, F. Homola, M. Pospíšil, J. Chudoba, Fuel, 2011, 90, (7), 2473 LINK https://doi.org/10.1016/j.fuel.2011.03.013 [Google Scholar]
  19. I. Kubičková, M. Snåre, K. Eränen, P. Mäki-Arvela, D. Yu. Murzin, Catal. Today, 2005, 106, (1–4), 197 LINK https://doi.org/10.1016/j.cattod.2005.07.188 [Google Scholar]
  20. I. Kubičková, D. Kubička, Waste Biomass Valoriz., 2010, 1, (3), 293 LINK https://doi.org/10.1007/s12649-010-9032-8 [Google Scholar]
  21. D. Kubička, J. Horáček, Appl. Catal. A: Gen., 2011, 394, (1–2), 9 LINK https://doi.org/10.1016/j.apcata.2010.10.034 [Google Scholar]
  22. M. Toba, Y. Abe, H. Kuramochi, M. Osako, T. Mochizuki, Y. Yoshimura, Catal. Today, 2011, 164, (1), 533 LINK https://doi.org/10.1016/j.cattod.2010.11.049 [Google Scholar]
  23. C. Wang, Z. Tian, L. Wang, R. Xu, Q. Liu, W. Qu, H. Ma, B. Wang, ChemSusChem, 2012, 5, (10), 1974 LINK https://doi.org/10.1002/cssc.201200219 [Google Scholar]
  24. C. Wang, Q. Liu, J. Song, W. Li, P. Li, R. Xu, H. Ma, Z. Tian, Catal. Today, 2014, 234, 153 LINK https://doi.org/10.1016/j.cattod.2014.02.011 [Google Scholar]
  25. M. Rabaev, M. V. Landau, R. Vidruk-Nehemya, A. Goldbourt, M. Herskowitz, J. Catal., 2015, 332, 164 LINK https://doi.org/10.1016/j.jcat.2015.10.005 [Google Scholar]
  26. M. Rabaev, M. V Landau, R. Vidruk-Nehemya, V. Koukouliev, R. Zarchin, M. Herskowitz, Fuel, 2015, 161, 287 LINK https://doi.org/10.1016/j.fuel.2015.08.063 [Google Scholar]
  27. M. Mohammad, T. K. Hari, Z. Yaakob, Y. C. Sharma, K. Sopian, Renew. Sustain. Energy Rev., 2013, 22, 121 LINK https://doi.org/10.1016/j.rser.2013.01.026 [Google Scholar]
  28. C. Yang, R. Li, C. Cui, S. Liu, Q. Qiu, Y. Ding, Y. Wu, B. Zhang, Green Chem., 2016, 18, (13), 3684 LINK https://doi.org/10.1039/c6gc01239f [Google Scholar]
  29. M.-Y. Choo, L. E. Oi, P. L. Show, J.-S. Chang, T. C. Ling, E.-P. Ng, S. M. Phang, J. C. Juan, J. Taiwan Inst. Chem. Eng., 2017, 79, 116 LINK https://doi.org/10.1016/j.jtice.2017.06.028 [Google Scholar]
  30. X. Li, X. Luo, Y. Jin, J. Li, H. Zhang, A. Zhang, J. Xie, Renew. Sustain. Energy Rev., 2018, 82, (3), 3762 LINK https://doi.org/10.1016/j.rser.2017.10.091 [Google Scholar]
  31. T. Dong, E. P. Knoshaug, P. T. Pienkos, L. M. L. Laurens, Appl. Energy, 2016, 177, 879 LINK https://doi.org/10.1016/j.apenergy.2016.06.002 [Google Scholar]
  32. J. S. Kruger, N. S. Cleveland, R. Y. Yeap, T. Dong, K. J. Ramirez, N. J. Nagle, A. C. Lowell, G. T. Beckham, J. D. McMillan, M. J. Biddy, ACS Sustain. Chem. Eng., 2018, 6, (3), 2921 LINK https://doi.org/10.1021/acssuschemeng.7b01874 [Google Scholar]
  33. T. Dong, S. Van Wychen, N. Nagle, P. T. Pienkos, L. M. L. Laurens, Algal Res., 2016, 18, 69 LINK https://doi.org/10.1016/j.algal.2016.06.004 [Google Scholar]
  34. T. Dong, Q. Fei, M. Genelot, H. Smith, L. M. L. Laurens, M. J. Watson, P. T. Pienkos, Energy Convers. Manag., 2017, 140, 62 LINK https://doi.org/10.1016/j.enconman.2017.02.075 [Google Scholar]
  35. E. Ryckebosch, K. Muylaert, I. Foubert, J. Am. Oil Chem. Soc., 2012, 89, (2), 189 LINK https://doi.org/10.1007/s11746-011-1903-z [Google Scholar]
  36. E. Ryckebosch, C. Bruneel, R. Termote-Verhalle, K. Muylaert, I. Foubert, Algal Res., 2014, 3, 36 LINK https://doi.org/10.1016/j.algal.2013.11.001 [Google Scholar]
  37. Y. Li, F. G. Naghdi, S. Garg, T. C. Adarme-Vega, K. J. Thurecht, W. A. Ghafor, S. Tannock, P. M. Schenk, Microb. Cell Fact., 2014, 13, 14 LINK https://doi.org/10.1186/1475-2859-13-14 [Google Scholar]
  38. X. Ren, X. Zhao, F. Turcotte, J.-S. Deschênes, R. Tremblay, M. Jolicoeur, Microb. Cell Fact., 2017, 16, 26 LINK https://doi.org/10.1186/s12934-017-0633-9 [Google Scholar]
  39. L. M. Wendt, B. D. Wahlen, E. P. Knoshaug, N. J. Nagle, T. Dong, R. Spiller, B. Panczak, S. Van Wychen, T. A. Dempster, H. Gerken, P. T. Pienkos, ACS Sustain. Chem. Eng., 2020, 8, (35), 13310 LINK https://doi.org/10.1021/acssuschemeng.0c03790 [Google Scholar]
  40. E. Ryckebosch, S. P. C. Bermúdez, R. Termote-Verhalle, C. Bruneel, K. Muylaert, R. Parra-Saldivar, I. Foubert, J. Appl. Phycol., 2013, 26, (3), 1501 LINK https://doi.org/10.1007/s10811-013-0189-y [Google Scholar]
  41. F. Thevenieau, J.-M. Nicaud, OCL, 2013, 20, (6), D603 LINK https://doi.org/10.1051/ocl/2013034 [Google Scholar]
  42. G. F. Ferreira, L. F. Ríos Pinto, R. M. Filho, L. V Fregolente, Renew. Sustain. Energy Rev., 2019, 109, 448 LINK https://doi.org/10.1016/j.rser.2019.04.052 [Google Scholar]
  43. E. M. Fakhry, D. M. El Maghraby, J. Water Resour. Prot., 2013, 05, (09), 894 LINK https://doi.org/10.4236/jwarp.2013.59091 [Google Scholar]
  44. R. A. Ahmed, M. He, R. A. Aftab, S. Zheng, M. Nagi, R. Bakri, C. Wang, Sci. Rep., 2017, 7, 8118 LINK https://doi.org/10.1038/s41598-017-07540-x [Google Scholar]
  45. X. Liu, J. Sheng, R. Curtiss, Proc. Natl. Acad. Sci., 2011, 108, (17), 6899 LINK https://doi.org/10.1073/pnas.1103014108 [Google Scholar]
  46. E. P. Knoshaug, S. Van Wychen, A. Singh, M. Zhang, Biofuel Res. J., 2018, 5, (2), 800 LINK https://doi.org/10.18331/brj2018.5.2.3 [Google Scholar]
  47. S. Santala, E. Efimova, V. Kivinen, A. Larjo, T. Aho, M. Karp, V. Santala, Microb. Cell Fact., 2011, 10, 36 LINK https://doi.org/10.1186/1475-2859-10-36 [Google Scholar]
  48. R. Kalscheuer, T. Stöveken, U. Malkus, R. Reichelt, P. N. Golyshin, J. S. Sabirova, M. Ferrer, K. N. Timmis, A. Steinbüchel, J. Bacteriol., 2007, 189, (3), 918 LINK https://doi.org/10.1128/jb.01292-06 [Google Scholar]
  49. I. Voss, A. Steinbüchel, Appl. Microbiol. Biotechnol., 2001, 55, (5), 547 LINK https://doi.org/10.1007/s002530000576 [Google Scholar]
  50. A. Arabolaza, E. Rodriguez, S. Altabe, H. Alvarez, H. Gramajo, Appl. Environ. Microbiol., 2008, 74, (9), 2573 LINK https://doi.org/10.1128/aem.02638-07 [Google Scholar]
  51. G. Venkata Subhash, S. Venkata Mohan, Bioresour. Technol., 2011, 102, (19), 9286 LINK https://doi.org/10.1016/j.biortech.2011.06.084 [Google Scholar]
  52. H. Gema, A. Kavadia, D. Dimou, V. Tsagou, M. Komaitis, G. Aggelis, Appl. Microbiol. Biotechnol., 2002, 58, (3), 303 LINK https://doi.org/10.1007/s00253-001-0910-7 [Google Scholar]
  53. S. U. Ahmed, S. K. Singh, A. Pandey, S. Kanjilal, R. B. N. Prasad, Food Technol. Biotechnol., 2006, 44, (2), 283 LINK https://hrcak.srce.hr/109905 [Google Scholar]
  54. A.-N. Vamvakaki, I. Kandarakis, S. Kaminarides, M. Komaitis, S. Papanikolaou, Eng. Life Sci., 2010, 10, (4), 348 LINK https://doi.org/10.1002/elsc.201000063 [Google Scholar]
  55. J. Hussain, Z. Ruan, I. A. Nascimento, Y. Liu, W. Liao, Bioresour. Technol., 2014, 169, 768 LINK https://doi.org/10.1016/j.biortech.2014.06.074 [Google Scholar]
  56. E. Carota, S. Crognale, A. D’Annibale, M. Petruccioli, Process Saf. Environ. Prot., 2018, 117, 143 LINK https://doi.org/10.1016/j.psep.2018.04.022 [Google Scholar]
  57. R. F. Wilson, ‘Seed Composition’, in “Soybeans: Improvement, Production, and Uses”, eds. H. R. Boerma, J. E. Specht, 3rd Edn., ch. 13, Vol. 16, American Society of Agronomy, Inc, Crop Science Society of America, Inc, Soil Science Society of America Inc, Madison, USA, 2004, pp. 621–677 LINK https://doi.org/10.2134/agronmonogr16.3ed.c13 [Google Scholar]
  58. T. E. Clemente, E. B. Cahoon, Plant Physiol., 2009, 151, (3), 1030 LINK https://doi.org/10.1104/pp.109.146282 [Google Scholar]
  59. D. Barrera-Arellano, A. P. Badan-Ribeiro, S. O. Serna-Saldivar, ‘Corn Oil: Composition, Processing, and Utilization’, in “Corn: Chemistry and Technology”, 3rd Edn., ch. 21, Elsevier Inc, Cambridge, USA, 2019, pp. 593–613 LINK https://doi.org/10.1016/B978-0-12-811971-6.00021-8 [Google Scholar]
  60. L. Chen, T. Liu, W. Zhang, X. Chen, J. Wang, Bioresour. Technol., 2012, 111, 208 LINK https://doi.org/10.1016/j.biortech.2012.02.033 [Google Scholar]
  61. L. Yao, J. A. Gerde, T. Wang, J. Am. Oil Chem. Soc., 2012, 89, (12), 2279 LINK https://doi.org/10.1007/s11746-012-2124-9 [Google Scholar]
  62. E. H. Pryde, ‘Composition of Soybean Oil’, in “Handbook of Soy Oil Processing and Utilization”, eds. D. R. Erikson, E. H. Pryde, O. L. Brekke, T. L. Mounts, R. A. Falb, American Soybean Assoc, St. Louis, USA and American Oil Chemists Soc, Champaign, USA, 1980, pp. 13-31 [Google Scholar]
  63. T. Dong, D. Gao, C. Miao, X. Yu, C. Degan, M. Garcia-Pérez, B. Rasco, S. S. Sablani, S. Chen, Energy Convers. Manag., 2015, 105, 1389 LINK https://doi.org/10.1016/j.enconman.2015.06.072 [Google Scholar]
  64. A. de Jesus, A. V Zmozinski, J. A. Barbará, M. G. R. Vale, M. M. Silva, Energy Fuels, 2010, 24, (3), 2109 LINK https://doi.org/10.1021/ef9014235 [Google Scholar]
  65. W. Zschau, Eur. J. Lipid Sci. Technol., 2001, 103, (8), 505 LINK https://doi.org/10.1002/1438-9312(200108)103:8<505::aid-ejlt505>3.0.co;2-7 [Google Scholar]
  66. F. Hussin, M. K. Aroua, W. M. A. W. Daud, Chem. Eng. J., 2011, 170, (1), 90 LINK https://doi.org/10.1016/j.cej.2011.03.065 [Google Scholar]
  67. A. A. Aachary, J. Liang, A. Hydamaka, N. A. M. Eskin, U. Thiyam-Holländer, LWT - Food Sci. Technol., 2016, 72, 439 LINK https://doi.org/10.1016/j.lwt.2016.05.011 [Google Scholar]
  68. D. D. Brooks, S. A. Brophy, G. R. Goss, Oil-Dri Corporation of America,, ‘Oil Bleaching Method and Composition for Same’, US Patent 1991; 5,004,570 [Google Scholar]
  69. V. Kuuluvainen, P. Mäki-Arvela, A.-R. Rautio, K. Kordas, J. Roine, A. Aho, B. Toukoniitty, H. Österholm, M. Toivakka, D. Y. Murzin, J. Chem. Technol. Biotechnol., 2015, 90, (9), 1579 LINK https://doi.org/10.1002/jctb.4621 [Google Scholar]
  70. L. L. Diosady, Int. J. Appl. Sci. Eng., 2005, 3, (2), 81 [Google Scholar]
  71. E. Santillan-Jimenez, R. Pace, S. Marques, T. Morgan, C. McKelphin, J. Mobley, M. Crocker, Fuel, 2016, 180, 668 LINK https://doi.org/10.1016/j.fuel.2016.04.079 [Google Scholar]
  72. J. S. Kruger, E. D. Christensen, T. Dong, S. Van Wychen, G. M. Fioroni, P. T. Pienkos, R. L. McCormick, Energy Fuels, 2017, 31, (10), 10946 LINK https://doi.org/10.1021/acs.energyfuels.7b01867 [Google Scholar]
  73. A. Sathish, R. C. Sims, Bioresour. Technol., 2012, 118, 643 LINK https://doi.org/10.1016/j.biortech.2012.05.118 [Google Scholar]
  74. T. Li, J. Xu, H. Wu, G. Wang, S. Dai, J. Fan, H. He, W. Xiang, Marine Drugs, 2016, 14, (9), 162 LINK https://doi.org/10.3390/md14090162 [Google Scholar]
  75. S. Paisan, P. Chetpattananondh, S. Chongkhong, J. Environ. Chem. Eng., 2017, 5, (5), 5115 LINK https://doi.org/10.1016/j.jece.2017.09.045 [Google Scholar]
  76. Y. C. Sharma, M. Yadav, S. N. Upadhyay, Biofuels, Bioprod. Biorefining, 2019, 13, (1), 174 LINK https://doi.org/10.1002/bbb.1937 [Google Scholar]
  77. O. Zufarov, Š. Schmidt, S. Sekretár, Acta Chim. Slovaca, 2008, 1, 321–328 [Google Scholar]
  78. S. Franklin, A. Somanchi, K. Espina, G. Rudenko, P. Chua, Solazyme Inc,, Renewable Fuels Produced from Oleaginous Microorganisms, US Patent 9,062,294; 2015 [Google Scholar]
  79. A. Kale, L. C. Zullo, S. Shinde, Heliae Development LLC, Methods of and Systems for Producing Biofuels from Algal Oil,,US Patent 8,313,648; 2012
  80. A Kale, Extraction of Polar Lipids by a Two Solvent Method, US Patent 8,475,660; 2013 [Google Scholar]
  81. H. L. Barnebey, A. C. Brown, J. Am. Oil Chem. Soc., 1948, 25, (3), 95 LINK https://doi.org/10.1007/bf02579733 [Google Scholar]
  82. E. N. Coppola, S. Nana, C. Red, Applied Research Associates, Inc,, ‘Hydrothermal Cleanup Process’, US Patent 10,071,322; 2018 [Google Scholar]
  83. A. Lawal, J. Manganaro, B. Goodall, R. Farrauto, “Pt-Based Bi-Metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil”, US DOE Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC, USA, 2015, 130 pp LINK https://doi.org/10.2172/1344891 [Google Scholar]
  84. I. Hachemi, K. Jeništová, P. Mäki-Arvela, N. Kumar, K. Eränen, J. Hemming, D. Y. Murzin, Catal. Sci. Technol., 2016, 6, (5), 1476 LINK https://doi.org/10.1039/c5cy01294e [Google Scholar]
  85. I. Hachemi, N. Kumar, P. Mäki-Arvela, J. Roine, M. Peurla, J. Hemming, J. Salonen, D. Y. Murzin, J. Catal., 2017, 347, 205 LINK https://doi.org/10.1016/j.jcat.2016.12.009 [Google Scholar]
  86. C. V. Viêgas, I. Hachemi, S. P. Freitas, P. Mäki-Arvela, A. Aho, J. Hemming, A. Smeds, I. Heinmaa, F. B. Fontes, D. C. da Silva Pereira, N. Kumar, D. A. G. Aranda, D. Y. Murzin, Fuel, 2015, 155, 144 LINK https://doi.org/10.1016/j.fuel.2015.03.064 [Google Scholar]
  87. L. Zhou, A. Lawal, Energy Fuels, 2015, 29, (1), 262 LINK https://doi.org/10.1021/ef502258q [Google Scholar]
  88. L. Zhou, A. Lawal, Catal. Sci. Technol., 2016, 6, (5), 1442 LINK https://doi.org/10.1039/c5cy01307k [Google Scholar]
  89. R. Loe, E. Santillan-Jimenez, T. Morgan, L. Sewell, Y. Ji, S. Jones, M. A. Isaacs, A. F. Lee, M. Crocker, Appl. Catal. B: Environ., 2016, 191, 147 LINK https://doi.org/10.1016/j.apcatb.2016.03.025 [Google Scholar]
  90. E. Santillan-Jimenez, T. Morgan, R. Loe, M. Crocker, Catal. Today, 2015, 258, (2), 284 LINK https://doi.org/10.1016/j.cattod.2014.12.004 [Google Scholar]
  91. M. H. Wilson, J. Groppo, A. Placido, S. Graham, S. A. Morton, E. Santillan-Jimenez, A. Shea, M. Crocker, C. Crofcheck, R. Andrews, Appl. Petrochem. Res., 2014, 4, (1), 41 LINK https://doi.org/10.1007/s13203-014-0052-3 [Google Scholar]
  92. B. Peng, Y. Yao, C. Zhao, J. A. Lercher, Angew. Chem. Int. Ed., 2012, 51, (9), 2072 LINK https://doi.org/10.1002/anie.201106243 [Google Scholar]
  93. B. Peng, X. Yuan, C. Zhao, J. A. Lercher, J. Am. Chem. Soc., 2012, 134, (22), 9400 LINK https://doi.org/10.1021/ja302436q [Google Scholar]
  94. W. Song, C. Zhao, J. A. Lercher, Chem. Eur. J., 2013, 19, (30), 9833 LINK https://doi.org/10.1002/chem.201301005 [Google Scholar]
  95. H. S. H. Nguyen, P. Mäki-Arvela, U. Akhmetzyanova, Z. Tišler, I. Hachemi, A. Rudnäs, A. Smeds, K. Eränen, A. Aho, N. Kumar, J. Hemming, M. Peurla, D. Y. Murzin, J. Chem. Technol. Biotechnol., 2017, 92, (4), 741 LINK https://doi.org/10.1002/jctb.5158 [Google Scholar]
  96. H. S. H. Nguyen, I. Hachemi, A. Rudnas, P. Mäki-Arvela, A. Smeds, A. Aho, J. Hemming, M. Peurla, D. Y. Murzin, Ind. Eng. Chem. Res., 2016, 55, (40), 10626 LINK https://doi.org/10.1021/acs.iecr.6b03041 [Google Scholar]
  97. E. P. Knoshaug, A. Mohagheghi, N. J. Nagle, J. J. Stickel, T. Dong, E. M. Karp, J. S. Kruger, D. G. Brandner, L. P. Manker, N. A. Rorrer, D. A. Hyman, E. D. Christensen, P. T. Pienkos, Green Chem., 2018, 20, (2), 457 LINK https://doi.org/10.1039/c7gc02295f [Google Scholar]
  98. H. J. Robota, J. C. Alger, L. Shafer, Energy Fuels, 2013, 27, (2), 985 LINK https://doi.org/10.1021/ef301977b [Google Scholar]
  99. V. K. Soni, P. R. Sharma, G. Choudhary, S. Pandey, R. K. Sharma, ACS Sustain. Chem. Eng., 2017, 5, (6), 5351 LINK https://doi.org/10.1021/acssuschemeng.7b00659 [Google Scholar]
  100. J. Fu, C. Yang, J. Wu, J. Zhuang, Z. Hou, X. Lu, Fuel, 2015, 139, 678 LINK https://doi.org/10.1016/j.fuel.2014.09.025 [Google Scholar]
  101. K. Kandel, J. W. Anderegg, N. C. Nelson, U. Chaudhary, I. I. Slowing, J. Catal., 2014, 314, 142 LINK https://doi.org/10.1016/j.jcat.2014.04.009 [Google Scholar]
  102. S. Tang, Z. Shi, X. Tang, X. Yang, Green Chem., 2019, 21, (12), 3413 LINK https://doi.org/10.1039/c9gc00673g [Google Scholar]
  103. M. K. Poddar, M. Anand, S. A. Farooqui, G. J. O. Martin, M. R. Maurya, A. K. Sinha, Biomass Bioenergy, 2018, 119, 31 LINK https://doi.org/10.1016/j.biombioe.2018.08.011 [Google Scholar]
  104. W.-C. Wang, E. Allen, A. A. Campos, R. K. Cade, L. Dean, M. Dvora, J. G. Immer, S. Mixson, S. Srirangan, M.-L. Sauer, S. Schreck, K. Sun, N. Thapaliya, C. Wilson, J. Burkholder, A. M. Grunden, H. H. Lamb, H. Sederoff, L. F. Stikeleather, W. L. Roberts, Environ. Prog. Sustain. Energy, 2013, 32, (4), 916 LINK https://doi.org/10.1002/ep.11855 [Google Scholar]
  105. T. C. Schulz, M. Oelschlager, S. T. Thompson, W. F. J. Vermaas, D. R. Nielsen, H. H. Lamb, Sustain. Energy Fuels, 2018, 2, (4), 882 LINK https://doi.org/10.1039/c7se00558j [Google Scholar]
  106. T. J. Czartoski, R. Perkins, J. L. Villanueva, G. Richards, Kohn & Assoc PLLC, Algae Biomass Fractionation,,US Patent Appl. 2010/233,761
  107. J. L. Wagner, V. P. Ting, C. J. Chuck, Fuel, 2014, 130, 315 LINK https://doi.org/10.1016/j.fuel.2014.04.048 [Google Scholar]
  108. R. W. Jenkins, L. A. Sargeant, F. M. Whiffin, F. Santomauro, D. Kaloudis, P. Mozzanega, C. D. Bannister, S. Baena, C. J. Chuck, ACS Sustain. Chem. Eng., 2015, 3, (7), 1526 LINK https://doi.org/10.1021/acssuschemeng.5b00228 [Google Scholar]
  109. M. Bystrzanowska, P. Petkov, M. Tobiszewski, ACS Sustain. Chem. Eng., 2019, 7, (22), 18434 LINK https://doi.org/10.1021/acssuschemeng.9b04230 [Google Scholar]
  110. M. Marafi, E. Furimsky, Energy Fuels, 2017, 31, (6), 5711 LINK https://doi.org/10.1021/acs.energyfuels.7b00471 [Google Scholar]
  111. B. Zhang, J. Wu, C. Yang, Q. Qiu, Q. Yan, R. Li, B. Wang, J. Wu, Y. Ding, BioEnergy Res., 2018, 11, (3), 689 LINK https://doi.org/10.1007/s12155-018-9927-y [Google Scholar]
  112. B. Donnis, R. G. Egeberg, P. Blom, K. G. Knudsen, Top. Catal., 2009, 52, (3), 229 LINK https://doi.org/10.1007/s11244-008-9159-z [Google Scholar]
/content/journals/10.1595/205651321X16024905831259
Loading
/content/journals/10.1595/205651321X16024905831259
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test