Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135

Abstract

With the increasing demand for clean hydrogen production, both as a fuel and an indispensable reagent for chemical industries, acidic water electrolysis has attracted considerable attention in academic and industrial research. Iridium is a well-accepted active and corrosion-resistant component of catalysts for oxygen evolution reaction (OER). However, its scarcity demands breakthroughs in catalyst preparation technologies to ensure its most efficient utilisation. This minireview focusses on the wet-chemistry synthetic methods of the most active and (potentially) durable iridium catalysts for acidic OER, selected from the recent publications in the open literature. The catalysts are classified by their synthesis methods, with authors’ opinion on their practicality. The review may also guide the selection of the state-of-the-art iridium catalysts for benchmarking purposes.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16013966874707
2021-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Semagina_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16013966874707&mimeType=html&fmt=ahah

References

  1. Vogt C., Monai M., Kramer G. J., and Weckhuysen B. M. Nat. Catal., 2019, 2, (3), 188 LINK https://doi.org/10.1038/s41929-019-0244-4 [Google Scholar]
  2. Grigoriev S. A., Fateev V. N., Bessarabov D. G., and Millet P. Int. J. Hydrogen Energy, 2020, 45, (49), 26036 LINK https://doi.org/10.1016/j.ijhydene.2020.03.109 [Google Scholar]
  3. Lewinski K. A., van der Vliet D., and Luopa S. M. ECS Trans., 2015, 69, (17), 893 LINK https://doi.org/10.1149/06917.0893ecst [Google Scholar]
  4. Kibsgaard J., and Chorkendorff I. Nat. Energy, 2019, 4, (6), 430 LINK https://doi.org/10.1038/s41560-019-0407-1 [Google Scholar]
  5. “The Future of Hydrogen”, International Energy Agency, Paris, France, June, 2019 LINK https://www.iea.org/reports/the-future-of-hydrogen [Google Scholar]
  6. Wang C., Lan F., He Z., Xie X., Zhao Y., Hou H., Guo L., Murugadoss V., Liu H., Shao Q., Gao Q., Ding T., Wei R., and Guo Z. ChemSusChem, 2019, 12, (8), 1576 LINK https://doi.org/10.1002/cssc.201802873 [Google Scholar]
  7. Jang H., and Lee J. J. Energy Chem., 2020, 46, 152 LINK https://doi.org/10.1016/j.jechem.2019.10.026 [Google Scholar]
  8. Lettenmeier P., Majchel J., Wang L., Saveleva V. A., Zafeiratos S., Savinova E. R., Gallet J.-J., Bournel F., Gago A. S., and Friedrich K. A. Chem. Sci., 2018, 9, (14), 3570 LINK https://doi.org/10.1039/c8sc00555a [Google Scholar]
  9. Bizzotto F., Quinson J., Zana A., Kirkensgaard J. J. K., Dworzak A., Oezaslan M., and Arenz M. Catal. Sci. Technol., 2019, 9, (22), 6345 LINK https://doi.org/10.1039/c9cy01728c [Google Scholar]
  10. Chen J., Cui P., Zhao G., Rui K., Lao M., Chen Y., Zheng X., Jiang Y., Pan H., Dou S. X., and Sun W. Angew. Chem. Int. Ed., 2019, 58, (36), 12540 LINK https://doi.org/10.1002/anie.201907017 [Google Scholar]
  11. Abbou S., Chattot R., Martin V., Claudel F., Solà-Hernandez L., Beauger C., Dubau L., and Maillard F. ACS Catal., 2020, 10, (13), 7283 LINK https://doi.org/10.1021/acscatal.0c01084 [Google Scholar]
  12. Alia S. M., Shulda S., Ngo C., Pylypenko S., and Pivovar B. S. ACS Catal., 2018, 8, (3), 2111 LINK https://doi.org/10.1021/acscatal.7b03787 [Google Scholar]
  13. Yu H., Danilovic N., Wang Y., Willis W., Poozhikunnath A., Bonville L., Capuano C., Ayers K., and Maric R. Appl. Catal. B Environ., 2018, 239, 133 LINK https://doi.org/10.1016/j.apcatb.2018.07.064 [Google Scholar]
  14. Roller J. M., Arellano-Jiménez M. J., Jain R., Yu H., Carter C. B., and Maric R. J. Electrochem. Soc., 2013, 160, (6), F716 LINK https://doi.org/10.1149/2.121306jes [Google Scholar]
  15. Bernt M., Siebel A., and Gasteiger H. A. J. Electrochem. Soc., 2018, 165, (5), F305 LINK https://doi.org/10.1149/2.0641805jes [Google Scholar]
  16. Bernt M., Hartig-Weiß A., Tovini M. F., El-Sayed H. A., Schramm C., Schröter J., Gebauer C., and Gasteiger H. A. Chem. Ing. Tech., 2020, 92, (1–2), 31 LINK https://doi.org/10.1002/cite.201900101 [Google Scholar]
  17. Tahir M., Pan L., Idrees F., Zhang X., Wang L., Zou J.-J., and Wang Z. L. Nano Energy, 2017, 37, 136 LINK https://doi.org/10.1016/j.nanoen.2017.05.022 [Google Scholar]
  18. Reier T., Nong H. N., Teschner D., Schlögl R., and Strasser P. Adv. Energy Mater., 2017, 7, (1), 1601275 LINK https://doi.org/10.1002/aenm.201601275 [Google Scholar]
  19. Schuler T., Kimura T., Schmidt T. J., and Büchi F. N. Energy Environ. Sci., 2020, 13, (7), 2153 LINK https://doi.org/10.1039/d0ee00673d [Google Scholar]
  20. Kasian O., Grote J.-P., Geiger S., Cherevko S., and Mayrhofer K. J. J. Angew. Chem. Int. Ed., 2018, 57, (9), 2488 LINK https://doi.org/10.1002/anie.201709652 [Google Scholar]
  21. Saveleva V. A., Wang L., Teschner D., Jones T., Gago A. S., Friedrich K. A., Zafeiratos S., Schlögl R., and Savinova E. R. J. Phys. Chem. Lett., 2018, 9, (11), 3154 LINK https://doi.org/10.1021/acs.jpclett.8b00810 [Google Scholar]
  22. Geiger S., Kasian O., Ledendecker M., Pizzutilo E., Mingers A. M., Tian Fu W., Diaz-Morales O., Li Z., Oellers T., Fruchter L., Ludwig A., Mayrhofer K. J. J., Koper M. T. M., and Cherevko S. Nat. Catal., 2018, 1, (7), 508 LINK https://doi.org/10.1038/s41929-018-0085-6 [Google Scholar]
  23. Grimaud A., Demortière A., Saubanère M., Dachraoui W., Duchamp M., Doublet M.-L., and Tarascon J.-M. Nat. Energy, 2017, 2, (1), 16189 LINK https://doi.org/10.1038/nenergy.2016.189 [Google Scholar]
  24. Pfeifer V., Jones T. E., Velasco Vélez J. J., Massué C., Greiner M. T., Arrigo R., Teschner D., Girgsdies F., Scherzer M., Allan J., Hashagen M., Weinberg G., Piccinin S., Hävecker M., Knop-Gericke A., and Schlögl R. Phys. Chem. Chem. Phys., 2016, 18, (4), 2292 LINK https://doi.org/10.1039/c5cp06997a [Google Scholar]
  25. Kasian O., Geiger S., Li T., Grote J.-P., Schweinar K., Zhang S., Scheu C., Raabe D., Cherevko S., Gault B., and Mayrhofer K. J. J. Energy Environ. Sci., 2019, 12, (12), 3548 LINK https://doi.org/10.1039/c9ee01872g [Google Scholar]
  26. Tan X., Shen J., Semagina N., and Secanell M. J. Catal., 2019, 371, 57 LINK https://doi.org/10.1016/j.jcat.2019.01.018 [Google Scholar]
  27. Li T., Kasian O., Cherevko S., Zhang S., Geiger S., Scheu C., Felfer P., Raabe D., Gault B., and Mayrhofer K. J. J. Nat. Catal., 2018, 1, (4), 300 LINK https://doi.org/10.1038/s41929-018-0043-3 [Google Scholar]
  28. Geiger S., Kasian O., Shrestha B. R., Mingers A. M., Mayrhofer K. J. J., and Cherevko S. J. Electrochem. Soc., 2016, 163, (11), F3132 LINK https://doi.org/10.1149/2.0181611jes [Google Scholar]
  29. Oh H.-S., Nong H. N., Reier T., Gliech M., and Strasser P. Chem. Sci., 2015, 6, (6), 3321 LINK https://doi.org/10.1039/c5sc00518c [Google Scholar]
  30. Kip B. J., Van Grondelle J., Martens J. H. A., and Prins R. Appl. Catal., 1986, 26, 353 LINK https://doi.org/10.1016/S0166-9834(00)82564-6 [Google Scholar]
  31. Povia M., Abbott D. F., Herranz J., Heinritz A., Lebedev D., Kim B.-J., Fabbri E., Patru A., Kohlbrecher J., Schäublin R., Nachtegaal M., Copéret C., and Schmidt T. J. Energy Environ. Sci., 2019, 12, (10), 3038 LINK https://doi.org/10.1039/c9ee01018a [Google Scholar]
  32. Özer E., Spöri C., Reier T., and Strasser P. ChemCatChem, 2017, 9, (4), 597 LINK https://doi.org/10.1002/cctc.201600423 [Google Scholar]
  33. Cherevko S., Geiger S., Kasian O., Mingers A., and Mayrhofer K. J. J. J. Electroanal. Chem., 2016, 774, 102 LINK https://doi.org/10.1016/j.jelechem.2016.05.015 [Google Scholar]
  34. Reier T., Oezaslan M., and Strasser P. ACS Catal., 2012, 2, (8), 1765 LINK https://doi.org/10.1021/cs3003098 [Google Scholar]
  35. Nikiforov A. V., Prag C. B., Polonský J., Petrushina I. M., Christensen E., and Bjerrum N. J. ECS Trans., 2012, 41, (42), 115 LINK https://doi.org/10.1149/1.4718004 [Google Scholar]
  36. Bernt M., and Gasteiger H. A. J. Electrochem. Soc., 2016, 163, (11), F3179 LINK https://doi.org/10.1149/2.0231611jes [Google Scholar]
  37. Mandal M., Moore M., and Secanell M. ECS Trans., 2019, 92, (8), 757 LINK https://doi.org/10.1149/09208.0757ecst [Google Scholar]
  38. Schuler T., Ciccone J. M., Krentscher B., Marone F., Peter C., Schmidt T. J., and Büchi F. N. Adv. Energy Mater., 2020, 10, (2), 1903216 LINK https://doi.org/10.1002/aenm.201903216 [Google Scholar]
  39. Kim Y.-T., Lopes P. P., Park S.-A., Lee A.-Y., Lim J., Lee H., Back S., Jung Y., Danilovic N., Stamenkovic V., Erlebacher J., Snyder J., and Markovic N. M. Nat. Commun., 2017, 8, 1449 LINK https://doi.org/10.1038/s41467-017-01734-7 [Google Scholar]
  40. Feng Q., Yuan X.-Z., Liu G., Wei B., Zhang Z., Li H., and Wang H. J. Power Sources, 2017, 366, 33 LINK https://doi.org/10.1016/j.jpowsour.2017.09.006 [Google Scholar]
  41. Babic U., Tarik M., Schmidt T. J., and Gubler L. J. Power Sources, 2020, 451, 227778 LINK https://doi.org/10.1016/j.jpowsour.2020.227778 [Google Scholar]
  42. Yu H., Bonville L., Jankovic J., and Maric R. Appl. Catal. B: Environ., 2020, 260, 118194 LINK https://doi.org/10.1016/j.apcatb.2019.118194 [Google Scholar]
  43. Martens S., Asen L., Ercolano G., Dionigi F., Zalitis C., Hawkins A., Martinez Bonastre A., Seidl L., Knoll A. C., Sharman J., Strasser P., Jones D., and Schneider O. J. Power Sources, 2018, 392, 274 LINK https://doi.org/10.1016/j.jpowsour.2018.04.084 [Google Scholar]
  44. Geiger S., Kasian O., Mingers A. M., Nicley S. S., Haenen K., Mayrhofer K. J. J., and Cherevko S. ChemSusChem, 2017, 10, (21), 4140 LINK https://doi.org/10.1002/cssc.201701523 [Google Scholar]
  45. Sapountzi F. M., Divane S. C., Papaioannou E. I., Souentie S., and Vayenas C. G. J. Electroanal. Chem., 2011, 662, (1), 116 LINK https://doi.org/10.1016/j.jelechem.2011.04.005 [Google Scholar]
  46. Babic U., Suermann M., Büchi F. N., Gubler L., and Schmidt T. J. J. Electrochem. Soc., 2017, 164, (4), F387 LINK https://doi.org/10.1149/2.1441704jes [Google Scholar]
  47. McCrory C. C. L., Jung S., Peters J. C., and Jaramillo T. F. J. Am. Chem. Soc., 2013, 135, (45), 16977 LINK https://doi.org/10.1021/ja407115p [Google Scholar]
  48. Spanos I., Auer A. A., Neugebauer S., Deng X., Tüysüz H., and Schlögl R. ACS Catal., 2017, 7, (6), 3768 LINK https://doi.org/10.1021/acscatal.7b00632 [Google Scholar]
  49. Spöri C., Kwan J. T. H., Bonakdarpour A., Wilkinson D. P., and Strasser P. Angew. Chem. Int. Ed., 2017, 56, (22), 5994 LINK https://doi.org/10.1002/anie.201608601 [Google Scholar]
  50. L. B. H.,Platinum Metals Rev., 1962, 6, (4), 150 LINK https://www.technology.matthey.com/article/6/4/150-152/ [Google Scholar]
  51. Adams R., and Shriner R. L. J. Am. Chem. Soc., 1923, 45, (9), 2171 LINK https://doi.org/10.1021/ja01662a022 [Google Scholar]
  52. Rasten E., Hagen G., and Tunold R. Electrochim. Acta, 2003, 48, (25–26), 3945 LINK https://doi.org/10.1016/j.electacta.2003.04.001 [Google Scholar]
  53. Abbott D. F., Lebedev D., Waltar K., Povia M., Nachtegaal M., Fabbri E., Copéret C., and Schmidt T. J. Chem. Mater., 2016, 28, (18), 6591 LINK https://doi.org/10.1021/acs.chemmater.6b02625 [Google Scholar]
  54. Lim J., Park D., Jeon S. S., Roh C.-W., Choi J., Yoon D., Park M., Jung H., and Lee H. Adv. Funct. Mater., 2018, 28, (4), 1704796 LINK https://doi.org/10.1002/adfm.201704796 [Google Scholar]
  55. Semagina N., and Kiwi-Minsker L. Catal. Rev.: Sci. Eng., 51, (2), 2009 LINK https://doi.org/10.1080/01614940802480379 [Google Scholar]
  56. Witte P. T., Berben P. H., Boland S., Boymans E. H., Vogt D., Geus J. W., and Donkervoort J. G. Top. Catal., 2012, 55, 505 LINK https://doi.org/10.1007/s11244-012-9818-y [Google Scholar]
  57. Quinson J., Neumann S., Wannmacher T., Kacenauskaite L., Inaba M., Bucher J., Bizzotto F., Simonsen S. B., Theil Kuhn L., Bujak D., Zana A., Arenz M., and Kunz S. Angew. Chem. Int. Ed., 2018, 57, (38), 12338 LINK https://doi.org/10.1002/anie.201807450 [Google Scholar]
  58. Karimi F., and Peppley B. A. Electrochim. Acta, 2017, 246, 654 LINK https://doi.org/10.1016/j.electacta.2017.06.048 [Google Scholar]
  59. Geiger S., Kasian O., Mingers A. M., Mayrhofer K. J. J., and Cherevko S. Sci. Rep., 2017, 7, 4595 LINK https://doi.org/10.1038/s41598-017-04079-9 [Google Scholar]
  60. da Silva G. C., Venturini S. I., Zhang S., Löffler M., Scheu C., Mayrhofer K. J. J., Ticianelli E. A., and Cherevko S. ChemElectroChem, 2020, 7, (10), 2330 LINK https://doi.org/10.1002/celc.202000391 [Google Scholar]
  61. Oh H.-S., Nong H. N., Reier T., Bergmann A., Gliech M., Ferreira de Araújo J., Willinger E., Schlögl R., Teschner D., and Strasser P. J. Am. Chem. Soc., 2016, 138, (38), 12552 LINK https://doi.org/10.1021/jacs.6b07199 [Google Scholar]
  62. Oh H.-S., Nong H. N., and Strasser P. Adv. Funct. Mater., 2015, 25, (7), 1074 LINK https://doi.org/10.1002/adfm.201401919 [Google Scholar]
  63. Massué C., Pfeifer V., Huang X., Noack J., Tarasov A., Cap S., and Schlögl R. ChemSusChem, 2017, 10, (9), 1943 LINK https://doi.org/10.1002/cssc.201601817 [Google Scholar]
  64. Lebedev D., and Copéret C. ACS Appl. Energy Mater., 2019, 2, (1), 196 LINK https://doi.org/10.1021/acsaem.8b01724 [Google Scholar]
  65. Lebedev D., Ezhov R. E., Heras-Domingo J., Comas-Vives A., Kaeffer N., Willinger M., Solans-Monfort X., Huang X., Pushkar Y., and Copéret C. ACS Cent. Sci., 2020, 6, (7), 1189 LINK https://doi.org/10.1021/acscentsci.0c00604 [Google Scholar]
  66. Ledendecker M., Geiger S., Hengge K., Lim J., Cherevko S., Mingers A. M., Göhl D., Fortunato G. V., Jalalpoor D., Schüth F., Scheu C., and Mayrhofer K. J. J. Nano Res., 2019, 12, (9), 2275 LINK https://doi.org/10.1007/s12274-019-2383-y [Google Scholar]
  67. Shi S., Weber A. Z., and Kusoglu A. Electrochim. Acta, 2016, 220, 517 LINK https://doi.org/10.1016/j.electacta.2016.10.096 [Google Scholar]
  68. Kinumoto T., Inaba M., Nakayama Y., Ogata K., Umebayashi R., Tasaka A., Iriyama Y., Abe T., and Ogumi Z. J. Power Sources, 2006, 158, (2), 1222 LINK https://doi.org/10.1016/j.jpowsour.2005.10.043 [Google Scholar]
  69. Spöri C., Briois P., Nong H. N., Reier T., Billard A., Kühl S., Teschner D., and Strasser P. ACS Catal., 2019, 9, (8), 6653 LINK https://doi.org/10.1021/acscatal.9b00648 [Google Scholar]
  70. Nong H. N., Reier T., Oh H.-S., Gliech M., Paciok P., Vu T. H. T., Teschner D., Heggen M., Petkov V., Schlögl R., Jones T., and Strasser P. Nat. Catal., 2018, 1, (11), 841 LINK https://doi.org/10.1038/s41929-018-0153-y [Google Scholar]
  71. Kasian O., Geiger S., Schalenbach M., Mingers A. M., Savan A., Ludwig A., Cherevko S., and Mayrhofer K. J. J. Electrocatalysis, 2018, 9, (2), 139 LINK https://doi.org/10.1007/s12678-017-0394-6 [Google Scholar]
  72. Seitz L. C., Dickens C. F., Nishio K., Hikita Y., Montoya J., Doyle A., Kirk C., Vojvodic A., Hwang H. Y., Norskov J. K., and Jaramillo T. F. Science, 2016, 353, (6303), 1011 LINK https://doi.org/10.1126/science.aaf5050 [Google Scholar]
  73. Jensen A. W., Sievers G. W., Jensen K. D., Quinson J., Arminio-Ravelo J. A., Brüser V., Arenz M., and Escudero-Escribano M. J. Mater. Chem. A, 2020, 8, (3), 1066 LINK https://doi.org/10.1039/c9ta12796h [Google Scholar]
  74. Strickler A. L., Flores R. A., King L. A., Nørskov J. K., Bajdich M., and Jaramillo T. F. ACS Appl. Mater. Interfaces, 2019, 11, (37), 34059 LINK https://doi.org/10.1021/acsami.9b13697 [Google Scholar]
  75. Kasian O., Geiger S., Stock P., Polymeros G., Breitbach B., Savan A., Ludwig A., Cherevko S., and Mayrhofer K. J. J. J. Electrochem. Soc., 2016, 163, (11), F3099 LINK https://doi.org/10.1149/2.0131611jes [Google Scholar]
  76. Toshima N. Pure Appl. Chem., 2000, 72, (1–2), 317 LINK https://doi.org/10.1351/pac200072010317 [Google Scholar]
  77. Wang C., Sui Y., Xiao G., Yang X., Wei Y., Zou G., and Zou B. J. Mater. Chem. A, 2015, 3, (39), 19669 LINK https://doi.org/10.1039/c5ta05384f [Google Scholar]
  78. Coq B., and Figueras F. J. Mol. Catal. A: Chem., 2001, 173, (1–2), 117 LINK https://doi.org/10.1016/S1381-1169(01)00148-0 [Google Scholar]
  79. Ziaei-Azad H., and Semagina N. ChemCatChem, 2014, 6, (3), 885 LINK https://doi.org/10.1002/cctc.201300844 [Google Scholar]
  80. Tao F., Grass M. E., Zhang Y., Butcher D. R., Renzas J. R., Liu Z., Chung J. Y., Mun B. S., Salmeron M., and Somorjai G. A. Science, 2008, 322, (5903), 932 LINK https://doi.org/10.1126/science.1164170 [Google Scholar]
  81. Liu X., Wang A., Li L., Zhang T., Mou C.-Y., and Lee J.-F. J. Catal., 2011, 278, (2), 288 LINK https://doi.org/10.1016/j.jcat.2010.12.016 [Google Scholar]
  82. Mayrhofer K. J. J., Juhart V., Hartl K., Hanzlik M., and Arenz M. Angew. Chem. Int. Ed., 2009, 48, (19), 3529 LINK https://doi.org/10.1002/anie.200806209 [Google Scholar]
  83. Felix C., Maiyalagan T., Pasupathi S., Bladergroen B., and Linkov V. Int. J. Electrochem. Sci., 2012, 7, (12), 12064 LINK http://www.electrochemsci.org/papers/vol7/71212064.pdf [Google Scholar]
  84. Ruban A. V., Skriver H. L., and Nørskov J. K. Phys. Rev. B, 1999, 59, (24), 15990 LINK https://doi.org/10.1103/PhysRevB.59.15990 [Google Scholar]
  85. Danilovic N., Subbaraman R., Chang K. C., Chang S. H., Kang Y., Snyder J., Paulikas A. P., Strmcnik D., Kim Y. T., Myers D., Stamenkovic V. R., and Markovic N. M. Angew. Chem. Int. Ed., 2014, 53, (51), 14016 LINK https://doi.org/10.1002/anie.201406455 [Google Scholar]
  86. Feng J., Lv F., Zhang W., Li P., Wang K., Yang C., Wang B., Yang Y., Zhou J., Lin F., Wang G.-C., and Guo S. Adv. Mater., 2017, 29, (47), 1703798 LINK https://doi.org/10.1002/adma.201703798 [Google Scholar]
  87. Park J., Sa Y. J., Baik H., Kwon T., Joo S. H., and Lee K. ACS Nano, 2017, 11, (6), 5500 LINK https://doi.org/10.1021/acsnano.7b00233 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16013966874707
Loading
/content/journals/10.1595/205651321X16013966874707
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error