Skip to content
1887
Volume 65, Issue 3
  • ISSN: 2056-5135

Abstract

The recent increase in the number of policies to protect the environment has led to a rise in the worldwide demand for activated carbon, which is the most extensively utilised adsorbent in numerous industries and has a high probability to be used in the energy and agriculture sectors as electrodes in supercapacitors and for fertiliser production. This paper is about the production of activated biochar from oak woodchips char generated by an updraft fixed bed gasifier reactor. Following this, using steam as activating agent and thermal energy from produced synthesis gas (syngas), the resulting highly microporous carbonaceous biomaterial was subjected to physical activation at 750ºC. The properties of activated biochar include adsorption or desorption of nitrogen to identify the physical adsorption and surface area measurement, thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The biochar surface area, generated as a result of the gasification process, showed substantial improvement after steam activation. Also, significant discrepancies were obtained from the surface volume and areas of biochar byproducts from the gasifier and activated biochar obtained by steam activation after the gasification treatment (total pore volume 0.022 cm3 g−1 and 0.231 cm3 g−1, Brunauer–Emmett–Teller (BET) surface area 21.35 m2 g−1 and 458.28 m2 g−1, respectively). The two samples also yielded noteworthy differences in performance. As a consequence, it may be concluded that the kinetics of steam gasification is quicker and more efficient for the conversion of biochar to activated carbon. The pore sizes of the carbon produced by steam activation were distributed over a wide spectrum of values, and both micro- and mesoporous structures were developed.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15899664199207
2021-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/3/Dogru2_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15899664199207&mimeType=html&fmt=ahah

References

  1. Yen T. F. “Environmental Chemistry: Chemical Principles for Environmental Processes”,Prentice Hall Inc, Hoboken, USA, 1999 576 pp [Google Scholar]
  2. Chick H. J. Hyg. (Lond.)., 1908, 8, (1), 92 LINK https://doi.org/10.1017/s0022172400006987 [Google Scholar]
  3. “Primer for Municipal Wastewater Treatment Systems”, Document No. EPA 832-R-04-001, Environmental Protection Agency, Washington, DC, USA, September, 2004, 30 pp LINK https://www3.epa.gov/npdes/pubs/primer.pdf [Google Scholar]
  4. ‘The Paris Agreement’,United Nations, New York, USA, 2015, 27 pp LINK https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement [Google Scholar]
  5. Dogru M., and Erdem A. Energy Fuels, 2019, 33, (1), 340 LINK https://doi.org/10.1021/acs.energyfuels.8b03460 [Google Scholar]
  6. Bridgwater A. V. Fuel, 1995, 74, (5), 631 LINK https://doi.org/10.1016/0016-2361(95)00001-l [Google Scholar]
  7. Bridgwater A. V. Chem. Eng. J., 2003, 91, (2–3), 87 LINK https://doi.org/10.1016/s1385-8947(02)00142-0 [Google Scholar]
  8. Dogru M. Int. J. Green Energy, 2013, 10, (4), 348 LINK https://doi.org/10.1080/15435075.2012.655351 [Google Scholar]
  9. Reichenbach de Sousa L. C. ‘Gasification of Wood, Urban Wastewood (Altholz) and other Wastes in a Fluidised Bed Reactor’, PhD Thesis, No. 14207, Swiss Federal Institute of Technology Zürich, Switzerland, 2001 LINK https://doi.org/10.3929/ethz-a-004236889 [Google Scholar]
  10. Dogru M., Howarth C. R., Akay G., Keskinler B., and Malik A. A. Energy, 2002, 27, (5), 415 LINK https://doi.org/10.1016/s0360-5442(01)00094-9 [Google Scholar]
  11. Dogru M., and Akay G. ‘Gasification’,World Patent Appl. 2005/047435
  12. Dogru M. ‘Fixed-Bed Gasification of Biomass’, PhD Thesis, University of Newcastle upon Tyne, UK, 2000, 342 pp [Google Scholar]
  13. Meyer S., Glaser B., and Quicker P. Environ. Sci. Technol., 2011, 45, (22), 9473 LINK https://doi.org/10.1021/es201792c [Google Scholar]
  14. Sohi S. P. Science, 2012, 338, (6110), 1034 LINK https://doi.org/10.1126/science.1225987 [Google Scholar]
  15. Ahmad M., Rajapaksha A. U., Lim J. E., Zhang M., Bolan N., Mohan D., Vithanage M., Lee S. S., and Ok Y. S. Chemosphere, 2014, 99, 19 LINK https://doi.org/10.1016/j.chemosphere.2013.10.071 [Google Scholar]
  16. Tan X., Liu Y., Zeng G., Wang X., Hu X., Gu Y., and Yang Z. Chemosphere, 2015, 125, 70 LINK https://doi.org/10.1016/j.chemosphere.2014.12.058 [Google Scholar]
  17. Rajapaksha A. U., Chen S. S., Tsang D. C. W., Zhang M., Vithanage M., Mandal S., Gao B., Bolan N. S., and Ok Y. S. Chemosphere, 2016, 148, 276 LINK https://doi.org/10.1016/j.chemosphere.2016.01.043 [Google Scholar]
  18. Liu W.-J., Jiang H., and Yu H.-Q. Chem. Rev., 2015, 115, (22), 12251 LINK https://doi.org/10.1021/acs.chemrev.5b00195 [Google Scholar]
  19. Zhang X., Zhang S., Yang H., Feng Y., Chen Y., Wang X., and Chen H. Chem. Eng. J., 2014, 257, 20 LINK https://doi.org/10.1016/j.cej.2014.07.024 [Google Scholar]
  20. Cagnon B., Py X., Guillot A., and Stoeckli F. Microporous Mesoporous Mater., 2003, 57, (3), 273 LINK https://doi.org/10.1016/s1387-1811(02)00597-8 [Google Scholar]
  21. Lima I. M., Boateng A. A., and Klasson K. T. J. Chem. Technol. Biotechnol., 2010, 85, (11), 1515 LINK https://doi.org/10.1002/jctb.2461 [Google Scholar]
  22. Shim T., Yoo J., Ryu C., Park Y.-K., and Jung J. Bioresour. Technol., 2015, 197, 85 LINK https://doi.org/10.1016/j.biortech.2015.08.055 [Google Scholar]
  23. Rajapaksha A. U., Vithanage M., Ahmad M., Seo D.-C., Cho J.-S., Lee S.-E., Lee S. S., and Ok Y. S. J. Hazard. Mater., 2015, 290, 43 LINK https://doi.org/10.1016/j.jhazmat.2015.02.046 [Google Scholar]
  24. Zhang Y.-J., Xing Z.-J., Duan Z.-K., Li M., and Wang Y. Appl. Surf. Sci., 2014, 315, 279 LINK https://doi.org/10.1016/j.apsusc.2014.07.126 [Google Scholar]
  25. Alvarez J., Lopez G., Amutio M., Bilbao J., and Olazar M. Ind. Eng. Chem. Res., 2015, 54, (29), 7241 LINK https://doi.org/10.1021/acs.iecr.5b01589 [Google Scholar]
  26. Miguel G. S., Fowler G. D., and Sollars C. J. Carbon, 2003, 41, (5), 1009 LINK https://doi.org/10.1016/s0008-6223(02)00449-9 [Google Scholar]
  27. Pallarés J., González-Cencerrado A., and Arauzo I. Biomass Bioenergy, 2018, 115, 64 LINK https://doi.org/10.1016/j.biombioe.2018.04.015 [Google Scholar]
  28. Bouchelta C., Medjram M. S., Bertrand O., and Bellat J.-P. J. Anal. Appl. Pyrolysis, 2008, 82, (1), 70 LINK https://doi.org/10.1016/j.jaap.2007.12.009 [Google Scholar]
  29. Şentorun-Shalaby Ç., Uçak-Astarlıoğlu M. G., Artok L., and Sarıcı Ç. Microporous Mesoporous Mater., 2006, 88, (1–3), 126 LINK https://doi.org/10.1016/j.micromeso.2005.09.003 [Google Scholar]
  30. Kołtowski M., Hilber I., Bucheli T. D., and Oleszczuk P. Sci. Total Environ., 2016, 566–567, 1023 LINK https://doi.org/10.1016/j.scitotenv.2016.05.114 [Google Scholar]
  31. Ahmed M. B., Zhou J. L., Ngo H. H., Guo W., and Chen M. Bioresour. Technol., 2016, 214, 836 LINK https://doi.org/10.1016/j.biortech.2016.05.057 [Google Scholar]
  32. Román S., González J. F., González-García C. M., and Zamora F. Fuel Process. Technol., 2008, 89, (8), 715 LINK https://doi.org/10.1016/j.fuproc.2007.12.015 [Google Scholar]
  33. Rodríguez-Reinoso F., Molina-Sabio M., and González M. T. Carbon, 1995, 33, (1), 15 LINK https://doi.org/10.1016/0008-6223(94)00100-e [Google Scholar]
  34. Bagheri N., and Abedi J. Chem. Eng. Res. Des., 2009, 87, (8), 1059 LINK https://doi.org/10.1016/j.cherd.2009.02.001 [Google Scholar]
  35. Rajapaksha A. U., Vithanage M., Ahmad M., Seo D.-C., Cho J.-S., Lee S.-E., Lee S. S., and Ok Y. S. J. Hazard. Mater., 2015, 290, 43 LINK https://doi.org/10.1016/j.jhazmat.2015.02.046 [Google Scholar]
  36. Yorgun S., Vural N., and Demiral H. Microporous Mesoporous Mater., 2009, 122, (1–3), 189 LINK https://doi.org/10.1016/j.micromeso.2009.02.032 [Google Scholar]
  37. Demiral H., and Uzun I. Surf. Interface Anal., 2010, 42, (6–7), 1338 LINK https://doi.org/10.1002/sia.3276 [Google Scholar]
  38. Yang H., Yan R., Chen H., Lee D. H., and Zheng C. Fuel, 2007, 86, (12–13), 1781 LINK https://doi.org/10.1016/j.fuel.2006.12.013 [Google Scholar]
  39. Tanuma S., and Palnichenko A. J. Mater. Res., 1995, 10, (5), 1120 LINK https://doi.org/10.1557/jmr.1995.1120 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15899664199207
Loading
/content/journals/10.1595/205651320X15899664199207
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error