Skip to content
Volume 65, Issue 3
  • ISSN: 2056-5135


Primary iron metallurgy is characterised by significant direct carbon dioxide emissions, due to the carbothermic reduction of the iron ore. This paper deals with the electrification of primary iron production by developing a new and innovative process for the carbon-free production of metallic iron from bauxite residue which is a byproduct of the alumina industry. It is based on the electroreduction of iron oxides from bauxite residue suspensions in concentrated sodium hydroxide solutions, at low temperature and normal pressure. The iron oxide source used in the present study is bauxite residue provided by MYTILINEOS SA, Metallurgy Business Unit-Aluminium of Greece. The research study is a preliminary screening of bauxite residue as a potential raw material for iron production by performing experiments in a small-scale electrolysis cell. The first results presented here show that iron can be produced by the reduction of iron oxides in bauxite residue with high Faradaic efficiency (>70%). Although significant optimisation is needed, the novel process shows great promise.


Article metrics loading...

Loading full text...

Full text loading...



  1. Allanore A., Feng J., Lavelaine H., and Ogle K. J. Electrochem. Soc., 2010, 157, (3), E24 LINK [Google Scholar]
  2. Allanore A., Lavelaine H., Valentin G., Birat J. P., and Lapicque F. J. Electrochem. Soc., 2008, 155, (9), E125 LINK [Google Scholar]
  3. Feynerol V., Lavelaine H., Marlier P., Pons M.-N., and Lapicque F. J. Appl. Electrochem., 2017, 47, (12), 1339 LINK [Google Scholar]
  4. Yuan B., and Haarberg G.-M. Rev. Met. Paris, 2009, 106, (10), 455 LINK [Google Scholar]
  5. ‘Development of new methodologieS for InDustrial CO2-freE steel pRoduction by electroWINning (SIDERWIN)’, Horizon 2020 Project No. 768788, Tecnalia, Bilao, Spain: (Accessed on 22nd April 2021) [Google Scholar]
  6. Balomenos E., Davris P., Pontikes Y., and Panias D. J. Sustain. Metall., 2016, 2, (3), 551 LINK [Google Scholar]
  7. Evans K. J. Sustain. Metall., 2016, 2, (4), 316 LINK [Google Scholar]
  8. Balomenos E. “EU MSCA-ETN REDMUD: Could “Red Mud” be the Answer to Some of Europe’s Critical-Metal Supply Concerns?”, Policy Brief, Hyper-Network for electroMobility (NeMo), European Commission, Brussels, Belgium, April 2018, 9 pp LINK [Google Scholar]
  9. Borra C. R., Blanpain B., Pontikes Y., Binnemans K., and Van Gerven T. J. Sustain. Metall., 2016, 2, (4), 365 LINK [Google Scholar]
  10. Panov A., Klimentenok G., Podgorodetskiy G., Gorbunov V., ‘Alumina and Bauxite: Red Mud Bauxite Residue: Directions for Large Scale Utilization of Bauxite Residue’, in “Light Metals 2012”, Ed. and Suarez C. E. TMS 2012 Annual Meeting & Exhibition, Orlando, USA, 11th–15th March, 2012, John Wiley & Sons Inc, Hoboken, USA, 2012, pp. 93–98 LINK [Google Scholar]
  11. Xenidis A., Zografidis C., Kotsis I., and Boufounos D. ‘Red Mud: Reductive Smelting of Greek Bauxite Residues for Iron Production’, in “Light Metals 2011”, TMS 2011 Annual Meeting & Exhibition, San Diego, USA, 27th February–3rd March, 2011, John Wiley & Sons Inc, Hoboken, USA, 2011, pp. 113–117 LINK [Google Scholar]
  12. Mishra S., Bagchi M., Galgali R. K., and Misra V. N. ‘Mud to Metal – Romelt is the Answer’, in “Smelting Reduction for Iron Making”, eds. Jouhari A. K., Allied Publishers PVT Ltd, Mumbai, India, 2002, pp. 167–170 [Google Scholar]
  13. Balomenos E., Gianopoulou I., Panias D., and Paspaliaris I. Travaux, 2011, 36, (40), 255 [Google Scholar]
  14. Grzymek J., Derdacka-Grzjimek A., Konik Z., and Grzymek W. ‘Methods for Obtaining Iron, Alumina, Titania and Binders from Metallurgical Slags and from ‘Red Mud’ Remaining in the Bayer Method’, Light Metals, 1982, pp. 143–155 [Google Scholar]
  15. Guccione E. Eng. Min. J., 1971, 172, (9), 136 [Google Scholar]
  16. Logomerac V. G. Trav. Com. Int. Etude Bauxites, Alumine Alum., 1979, 15, 279 [Google Scholar]
  17. Balomenos E., Giannopoulou I., Gerogiorgis D., Panias D., and Paspaliaris I. Waste Biomass Valor., 2014, 5, (3), 333 LINK [Google Scholar]
  18. Borra C. R., Blanpain B., Pontikes Y., Binnemans K., and Van Gerven T. J. Sustain. Metall., 2016, 2, (1), 28 LINK [Google Scholar]
  19. Raspopov N. A., Korneev V. P., Averin V. V., Lainer Y. A., Zinoveev D. V., and Dyubanov V. G. Russ. Metall., 2013, (1), 33 LINK [Google Scholar]
  20. Alkan G., Yagmurlu B., Cakmakoglu S., Hertel T., Kaya Ş., Gronen L., Stopic S., and Friedrich B. Sci. Rep., 2018, 8, 5676 LINK [Google Scholar]
  21. Udy M. J. Strategic Udy Metallurg. & Chem., ‘Process for the Separation and Recovery of Fe, Ti and Al Values from Ores and Waste Materials Containing Same’, US Patent Appl. 1958/2,830,892 [Google Scholar]
  22. Vind J., Malfliet A., Blanpain B., Tsakiridis P., Tkaczyk A., Vassiliadou V., and Panias D. Minerals, 2018, 8, (2), 77 LINK [Google Scholar]
  23. Sant B. R., and Prasad T. P. Talanta, 1968, 15, (12), 1483 LINK [Google Scholar]
  24. “Bauxite Residue Management: Best Practice”, European Aluminium, Brussels, Belgium, July, 2015, 31 pp LINK [Google Scholar]
  25. Cardenia C., Balomenos E., and Panias D. J. Sustain. Metall., 2019, 5, (1), 9 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error