Skip to content
1887
Volume 65, Issue 3
  • ISSN: 2056-5135
  • oa Electrolytic Iron Production from Alkaline Bauxite Residue Slurries at Low Temperatures

    Carbon-free electrochemical process for the production of metallic iron

  • Authors: Sevasti Koutsoupa1, Stavroula Koutalidi1, Evangelos Bourbos1, Efthymios Balomenos1,2 and Dimitrios Panias1
  • Affiliations: 1 Laboratory of Metallurgy, National Technical University of Athens, School of Mining and Metallurgical Engineering15780 ZografouGreece 2 MYTILINEOS SA, Metallurgy Business Unit-Aluminium of Greece8 Artemidos Street, Maroussi, AtticaGreece
  • Source: Johnson Matthey Technology Review, Volume 65, Issue 3, Jul 2021, p. 366 - 374
  • DOI: https://doi.org/10.1595/205651320X15918757312944
    • Published online: 01 Jan 2021

Abstract

Primary iron metallurgy is characterised by significant direct carbon dioxide emissions, due to the carbothermic reduction of the iron ore. This paper deals with the electrification of primary iron production by developing a new and innovative process for the carbon-free production of metallic iron from bauxite residue which is a byproduct of the alumina industry. It is based on the electroreduction of iron oxides from bauxite residue suspensions in concentrated sodium hydroxide solutions, at low temperature and normal pressure. The iron oxide source used in the present study is bauxite residue provided by MYTILINEOS SA, Metallurgy Business Unit-Aluminium of Greece. The research study is a preliminary screening of bauxite residue as a potential raw material for iron production by performing experiments in a small-scale electrolysis cell. The first results presented here show that iron can be produced by the reduction of iron oxides in bauxite residue with high Faradaic efficiency (>70%). Although significant optimisation is needed, the novel process shows great promise.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15918757312944
2021-01-01
2025-01-03
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/3/Koutsoupa_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15918757312944&mimeType=html&fmt=ahah

References

  1. A. Allanore, J. Feng, H. Lavelaine, K. Ogle, J. Electrochem. Soc., 2010, 157, (3), E24 LINK https://doi.org/10.1149/1.3273198 [Google Scholar]
  2. A. Allanore, H. Lavelaine, G. Valentin, J. P. Birat, F. Lapicque, J. Electrochem. Soc., 2008, 155, (9), E125 LINK https://doi.org/10.1149/1.2952547 [Google Scholar]
  3. V. Feynerol, H. Lavelaine, P. Marlier, M.-N. Pons, F. Lapicque, J. Appl. Electrochem., 2017, 47, (12), 1339 LINK https://doi.org/10.1007/s10800-017-1127-5 [Google Scholar]
  4. B. Yuan, G.-M. Haarberg, Rev. Met. Paris, 2009, 106, (10), 455 LINK https://doi.org/10.1051/metal/2009078 [Google Scholar]
  5. ‘Development of new methodologieS for InDustrial CO2-freE steel pRoduction by electroWINning (SIDERWIN)’, Horizon 2020 Project No. 768788, Tecnalia, Bilao, Spain: https://www.siderwin-spire.eu/ (Accessed on 22nd April 2021) [Google Scholar]
  6. E. Balomenos, P. Davris, Y. Pontikes, D. Panias, J. Sustain. Metall., 2016, 2, (3), 551 LINK https://doi.org/10.1007/s40831-016-0110-4 [Google Scholar]
  7. K. Evans, J. Sustain. Metall., 2016, 2, (4), 316 LINK https://doi.org/10.1007/s40831-016-0060-x [Google Scholar]
  8. E. Balomenos, “EU MSCA-ETN REDMUD: Could “Red Mud” be the Answer to Some of Europe’s Critical-Metal Supply Concerns?”, Policy Brief, Hyper-Network for electroMobility (NeMo), European Commission, Brussels, Belgium, April 2018, 9 pp LINK http://kuleuven.sim2.be/wp-content/uploads/2018/04/REDMUD-Brief-6.5.pdf [Google Scholar]
  9. C. R. Borra, B. Blanpain, Y. Pontikes, K. Binnemans, T. Van Gerven, J. Sustain. Metall., 2016, 2, (4), 365 LINK https://doi.org/10.1007/s40831-016-0068-2 [Google Scholar]
  10. A. Panov, G. Klimentenok, G. Podgorodetskiy, V. Gorbunov, ‘Alumina and Bauxite: Red Mud Bauxite Residue: Directions for Large Scale Utilization of Bauxite Residue’, in “Light Metals 2012”, Ed. C. E. Suarez, TMS 2012 Annual Meeting & Exhibition, Orlando, USA, 11th–15th March, 2012, John Wiley & Sons Inc, Hoboken, USA, 2012, pp. 93–98 LINK https://doi.org/10.1002/9781118359259.ch17 [Google Scholar]
  11. A. Xenidis, C. Zografidis, I. Kotsis, D. Boufounos, ‘Red Mud: Reductive Smelting of Greek Bauxite Residues for Iron Production’, in “Light Metals 2011”, TMS 2011 Annual Meeting & Exhibition, San Diego, USA, 27th February–3rd March, 2011, John Wiley & Sons Inc, Hoboken, USA, 2011, pp. 113–117 LINK https://doi.org/10.1002/9781118061992.ch20 [Google Scholar]
  12. S. Mishra, M. Bagchi, R. K. Galgali, V. N. Misra, ‘Mud to Metal – Romelt is the Answer’, in “Smelting Reduction for Iron Making”, eds. A. K. Jouhari, Allied Publishers PVT Ltd, Mumbai, India, 2002, pp. 167–170 [Google Scholar]
  13. E. Balomenos, I. Gianopoulou, D. Panias, I. Paspaliaris, Travaux, 2011, 36, (40), 255 [Google Scholar]
  14. J. Grzymek, A. Derdacka-Grzjimek, Z. Konik, W. Grzymek, ‘Methods for Obtaining Iron, Alumina, Titania and Binders from Metallurgical Slags and from ‘Red Mud’ Remaining in the Bayer Method’, Light Metals, 1982, pp. 143–155 [Google Scholar]
  15. E. Guccione, Eng. Min. J., 1971, 172, (9), 136 [Google Scholar]
  16. V. G. Logomerac, Trav. Com. Int. Etude Bauxites, Alumine Alum., 1979, 15, 279 [Google Scholar]
  17. E. Balomenos, I. Giannopoulou, D. Gerogiorgis, D. Panias, I. Paspaliaris, Waste Biomass Valor., 2014, 5, (3), 333 LINK https://doi.org/10.1007/s12649-013-9280-5 [Google Scholar]
  18. C. R. Borra, B. Blanpain, Y. Pontikes, K. Binnemans, T. Van Gerven, J. Sustain. Metall., 2016, 2, (1), 28 LINK https://doi.org/10.1007/s40831-015-0026-4 [Google Scholar]
  19. N. A. Raspopov, V. P. Korneev, V. V. Averin, Y. A. Lainer, D. V. Zinoveev, V. G. Dyubanov, Russ. Metall., 2013, (1), 33 LINK https://doi.org/10.1134/s0036029513010114 [Google Scholar]
  20. G. Alkan, B. Yagmurlu, S. Cakmakoglu, T. Hertel, Ş. Kaya, L. Gronen, S. Stopic, B. Friedrich, Sci. Rep., 2018, 8, 5676 LINK https://doi.org/10.1038/s41598-018-24077-9 [Google Scholar]
  21. M. J. Udy, Strategic Udy Metallurg. & Chem.,, ‘Process for the Separation and Recovery of Fe, Ti and Al Values from Ores and Waste Materials Containing Same’, US Patent Appl. 1958/2,830,892 [Google Scholar]
  22. J. Vind, A. Malfliet, B. Blanpain, P. Tsakiridis, A. Tkaczyk, V. Vassiliadou, D. Panias, Minerals, 2018, 8, (2), 77 LINK https://doi.org/10.3390/min8020077 [Google Scholar]
  23. B. R. Sant, T. P. Prasad, Talanta, 1968, 15, (12), 1483 LINK https://doi.org/10.1016/0039-9140(68)80211-5 [Google Scholar]
  24. “Bauxite Residue Management: Best Practice”, European Aluminium, Brussels, Belgium, July, 2015, 31 pp LINK https://www.european-aluminium.eu/media/1340/201507_bauxite-residue-management-best-practice.pdf [Google Scholar]
  25. C. Cardenia, E. Balomenos, D. Panias, J. Sustain. Metall., 2019, 5, (1), 9 LINK https://doi.org/10.1007/s40831-018-0181-5 [Google Scholar]
/content/journals/10.1595/205651320X15918757312944
Loading
/content/journals/10.1595/205651320X15918757312944
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test