- Home
- A-Z Publications
- Johnson Matthey Technology Review
- Previous Issues
- Volume 65, Issue 3, 2021
Johnson Matthey Technology Review - Volume 65, Issue 3, 2021
Volume 65, Issue 3, 2021
-
-
Process Intensification: Activated Carbon Production from Biochar Produced by Gasification
Authors: Ahmet Erdem and Murat DogruThe recent increase in the number of policies to protect the environment has led to a rise in the worldwide demand for activated carbon, which is the most extensively utilised adsorbent in numerous industries and has a high probability to be used in the energy and agriculture sectors as electrodes in supercapacitors and for fertiliser production. This paper is about the production of activated biochar from oak woodchips char generated by an updraft fixed bed gasifier reactor. Following this, using steam as activating agent and thermal energy from produced synthesis gas (syngas), the resulting highly microporous carbonaceous biomaterial was subjected to physical activation at 750ºC. The properties of activated biochar include adsorption or desorption of nitrogen to identify the physical adsorption and surface area measurement, thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The biochar surface area, generated as a result of the gasification process, showed substantial improvement after steam activation. Also, significant discrepancies were obtained from the surface volume and areas of biochar byproducts from the gasifier and activated biochar obtained by steam activation after the gasification treatment (total pore volume 0.022 cm3 g−1 and 0.231 cm3 g−1, Brunauer–Emmett–Teller (BET) surface area 21.35 m2 g−1 and 458.28 m2 g−1, respectively). The two samples also yielded noteworthy differences in performance. As a consequence, it may be concluded that the kinetics of steam gasification is quicker and more efficient for the conversion of biochar to activated carbon. The pore sizes of the carbon produced by steam activation were distributed over a wide spectrum of values, and both micro- and mesoporous structures were developed.
-
-
-
Electrolytic Iron Production from Alkaline Bauxite Residue Slurries at Low Temperatures
Primary iron metallurgy is characterised by significant direct carbon dioxide emissions, due to the carbothermic reduction of the iron ore. This paper deals with the electrification of primary iron production by developing a new and innovative process for the carbon-free production of metallic iron from bauxite residue which is a byproduct of the alumina industry. It is based on the electroreduction of iron oxides from bauxite residue suspensions in concentrated sodium hydroxide solutions, at low temperature and normal pressure. The iron oxide source used in the present study is bauxite residue provided by MYTILINEOS SA, Metallurgy Business Unit-Aluminium of Greece. The research study is a preliminary screening of bauxite residue as a potential raw material for iron production by performing experiments in a small-scale electrolysis cell. The first results presented here show that iron can be produced by the reduction of iron oxides in bauxite residue with high Faradaic efficiency (>70%). Although significant optimisation is needed, the novel process shows great promise.
-
-
-
Reconciling the Sustainable Manufacturing of Commodity Chemicals with Feasible Technoeconomic Outcomes
The manufacturing industry must diverge from a ‘take, make and waste’ linear production paradigm towards more circular economies. Truly sustainable, circular economies are intrinsically tied to renewable resource flows, where vast quantities need to be available at a central point of consumption. Abundant, renewable carbon feedstocks are often structurally complex and recalcitrant, requiring costly pretreatment to harness their potential fully. As such, the heat integration of supercritical water gasification (SCWG) and aerobic gas fermentation unlocks the promise of renewable feedstocks such as lignin. This study models the technoeconomics and life cycle assessment (LCA) for the sustainable production of the commodity chemicals, isopropanol and acetone, from gasified Kraft black liquor. The investment case is underpinned by rigorous process modelling informed by published continuous gas fermentation experimental data. Time series analyses support the price forecasts for the solvent products. Furthermore, a Monte Carlo simulation frames an uncertain boundary for the technoeconomic model. The technoeconomic assessment (TEA) demonstrates that production of commodity chemicals priced at ~US$1000 per tonne is within reach of aerobic gas fermentation. In addition, owing to the sequestration of biogenic carbon into the solvent products, negative greenhouse gas (GHG) emissions are achieved within a cradle-to-gate LCA framework. As such, the heat integrated aerobic gas fermentation platform has promise as a best-in-class technology for the production of a broad spectrum of renewable commodity chemicals.
-
-
-
Innovation in Fischer-Tropsch: A Sustainable Approach to Fuels Production
Authors: Richard Pearson, Andrew Coe and James PatersonA sustained global effort is required over the next few decades to reduce greenhouse gas emissions, in order to address global warming as society seeks to deliver the Paris Agreement temperature goals. The increasing availability of renewable electricity will reduce our reliance on fossil fuels. However, some applications, such as long-haul aviation, are particularly challenging to decarbonise. The conversion of waste, biomass or existing CO2 emissions into sustainable fuels via Fischer-Tropsch (FT) synthesis offers one solution to this problem. This paper describes some of the challenges associated with this route to these alternative fuels and how Johnson Matthey and bp have solved them.
-
-
-
On-Road Emission Characteristics of Volatile Organic Compounds from Light-Duty Diesel Trucks Meeting Different Emission Standards
Authors: Menglei Wang, Rencheng Zhu, Ruiqin Zhang, Shunyi Li and Xiaofeng BaoOn-road tailpipe volatile organic compounds (VOCs) were sampled from light-duty diesel trucks (LDDTs) compliant with Euro III to V, and a total of 102 VOC species were quantified. The composition characteristics and carbon number distributions were investigated, and the contribution of individual VOC to ozone formation potentials (OFPs) was weighted. Results showed that alkanes were the major VOC species, accounting for approximately 65.5%. VOC emissions decreased significantly as the standards became stricter, especially for alkanes and aromatics; and the VOC emissions on highway were much lower than those on urban roads. Carbon number distribution of VOCs was mainly concentrated in C3–C4 and C10–C12. Aromatics were the major contributors to ozone formation, taking up 49.3–57.6% of the total OFPs, and naphthalene, 1-butene, dodecane, 1,2,3-trimethylbenzene and 2-propenal were the top five species. The information provided insight into the tailpipe VOC emission characteristics and may help decision makers drafting related emission policies.
-
-
-
Ultrasonic and Thermophysical Studies of Ethylene Glycol Nanofluids Containing Titania Nanoparticles and Their Heat Transfer Enhancements
In the present investigation, TiO2 nanostructures were synthesised via a simple sol-gel technique and characterised with X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX), high-resolution transmission electron microscopy (HR-TEM) and ultraviolet-visible (UV-vis) spectroscopy. The temperature and concentration dependence of thermal conductivity enhancement (TCE) and ultrasonic velocity have been explored in ethylene glycol-based TiO2 nanofluids. The obtained results showed 24% enhancement in thermal conductivity at higher temperature (80°C) of the base fluid ethylene glycol by adding 1.0 wt% of TiO2 nanoparticles. The behaviour of TCE and ultrasonic velocity with temperature in prepared nanofluids has been explained with the help of existing phenomena. The increase in ultrasonic velocity in ethylene glycol with TiO2 nanoparticles shows that a strong cohesive interaction force arises among the nanoparticles and base fluid. These results divulge that TiO2 nanoparticles can be considered for applications in next-generation heat transfer in nanofluids.
-
-
-
Recycling and Direct-Regeneration of Cathode Materials from Spent Ternary Lithium-Ion Batteries by Hydrometallurgy: Status Quo and Recent Developments
Authors: Lizhen Duan, Yaru Cui, Qian Li, Juan Wang, Chonghao Man and Xinyao WangThe cathodes of spent ternary lithium-ion batteries (LIBs) are rich in nonferrous metals, such as lithium, nickel, cobalt and manganese, which are important strategic raw materials and also potential sources of environmental pollution. Finding ways to extract these valuable metals cleanly and efficiently from spent cathodes is of great significance for sustainable development of the LIBs industry. In the light of low energy consumption, ‘green’ processing and high recovery efficiency, this paper provides an overview of different recovery technologies to recycle valuable metals from cathode materials of spent ternary LIBs. Development trends and application prospects for different recovery strategies for cathode materials from spent ternary LIBs are also predicted. We conclude that a highly economic recovery system: alkaline solution dissolution/calcination pretreatment → H2SO4 leaching → H2O2 reduction → coprecipitation regeneration of nickel cobalt manganese (NCM) will become the dominant stream for recycling retired NCM batteries. Furthermore, emerging advanced technologies, such as deep eutectic solvents (DESs) extraction and one–step direct regeneration/recovery of NCM cathode materials are preferred methods to substitute conventional regeneration systems in the future.
-
-
-
Enrichment of Integrated Steel Plant Process Gases with Implementation of Renewable Energy
The steel industry is one of the most important industry sectors, but also one of the largest greenhouse gas emitters. The process gases produced in an integrated steel plant, blast furnace gas (BFG), basic oxygen furnace gas (BOFG) and coke oven gas (COG), are due to high shares of inert gas (nitrogen) in large part energy poor but also providing a potential carbon source (carbon monoxide and carbon dioxide) for the catalytic hydrogenation to methane by integration of a power-to-gas (P2G) plant. Furthermore, by interconnecting a biomass gasification, an additional biogenic hydrogen source is provided. Three possible implementation scenarios for a P2G and a biomass gasification plant, including mass and energy balances were analysed. The scenarios stipulate a direct conversion of BFG and BOFG resulting in high shares of nitrogen in the feed gas of the methanation. Laboratory experimental tests have shown that the methanation of BFG and BOFG is technically possible without prior separation of CO2. The methane-rich product gas can be utilised in the steel plant and substitutes for natural gas (NG). The implementation of these renewable energy sources results in a significant reduction of CO2 emissions between 0.81 million tonnes CO2eq and 4.6 million tonnes CO2eq per year. However, the scenarios are significantly limited in terms of available electrolysis plant size, renewable electricity and biomass.
-
-
-
Comparative Life Cycle Assessment of Lithium-Ion Capacitors Production from Primary Ore and Recycled Minerals
The life cycle assessment (LCA) methodology which allows quantification of environmental performance of products and processes based on complete product life cycle was utilised to evaluate the environmental burdens associated with manufacturing a 48 V lithium-ion capacitor (LIC) module. The prospective LCA compared the environmental impact of manufacturing a LIC module using primary ore materials and recycled materials from end-of-life LICs. For both the primary ore and recycled materials processes, the anode preparation stage was associated with the majority of the climate change and terrestrial acidification burdens. LIC module production utilising recovered materials from end-of-life LICs reduced the environmental impact compared to utilisation of primary ore resources. Application of the LCA methodology in early phase research and development (R&D) activities was demonstrated with a case study on reagent choice decision-making process that accounted for environmental impact, technical performance and costs in alignment with the sustainability triple bottom line concept.
-
-
-
Wear Resistance of Platinum and Gold Alloys: A Comparative Study
Authors: Ulrich E. Klotz, Tiziana Heiss and Teresa FryéA series of iterative wear and corrosion tests were conducted on two 950 platinum alloys, two 585 white gold alloys and two 750 white gold alloys. Testing followed standardised industrial procedures in order to provide comparable and reproducible conditions. Wear testing comprised a sequence including abrasion testing, corrosion testing and polish testing. Mass loss was recorded after each test cycle. Five complete test cycles were followed by two long-term polish tests. The total testing time was ca. 250 h. A pronounced difference in the mass and volume loss between the platinum and the gold alloys was observed. The absolute volume loss per surface area of the platinum alloys was a factor of two to three times lower than that of the gold alloys. The highest volume loss was observed for 750AuPd, followed by 585AuPd, 585AuNi and 750AuNi with the latter three showing similar wear behaviours. The mass loss increased linearly with testing time. No measurable mass loss was observed by corrosion testing in our limited duration test cycle and the only alloy exhibiting significant corrosion was 585AuNi. Hardness of the alloys was determined by Vickers microhardness testing at a 100 g load. Notably, higher hardness levels were not found to be an indicator for low mass or volume loss.
-