Skip to content
1887
Volume 66, Issue 4
  • ISSN: 2056-5135

Abstract

Bismuth vanadate (BiVO) is proven to be a promising photocatalyst for water splitting. However, the effect of materials syntheses, electrode preparation and size of photoelectrode on the photocurrent output of BiVO photoanodes needs further investigations. In this study, three different BiVO nanoparticle synthesis were employed, namely hydrothermal (HT), HT in the presence of ethylene glycol (EG) and HT with the addition of hydrazine hydrate (HH). In addition, two molecular inks (Triton-X and ethyl‐methyl‐imidazole, EMI), were compared for the preparation of BiVO photoanodes using a simple doctor-blade technique followed by calcination at 450°C. The photoanodes (9 cm2 active surface) were then compared for their photocurrent density at AM1.5G illumination and 1.2 V (. standard hydrogen electrode (SHE)) bias in a specifically designed, three-dimensional (3D)-printed electrochemical cell. The highest photocurrent 0.13 ± 0.1 mA cm–2 was obtained with the EMI ink, whereas tenfold lower photocurrent was obtained with Triton-X due to the higher charge transfer resistance, measured by electric impedance spectroscopy (EIS). The photoresponse was reproducible and relatively stable, with only 8% decrease in five consecutive illumination periods of 1 min.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16457018428071
2022-02-24
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/4/Farras_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16457018428071&mimeType=html&fmt=ahah

References

  1. Zhang X., Ai Z., Jia F., Zhang L., Fan X., and Zou Z. Mater. Chem. Phys., 2007, 103, (1), 77 LINK https://doi.org/10.1016/j.matchemphys.2007.02.008 [Google Scholar]
  2. Saison T., Chemin N., Chanéac C., Durupthy O., Mariey L., Maugé F., Brezová V., and Jolivet J.-P. J. Phys. Chem. C, 2015, 119, (23), 12967 LINK https://doi.org/10.1021/acs.jpcc.5b01468 [Google Scholar]
  3. Cheng C., Fang Q., Fernandez-Alberti S., and Long R. J. Phys. Chem. Lett., 2021, 12, (14), 3514 LINK https://doi.org/10.1021/acs.jpclett.1c00713 [Google Scholar]
  4. He H., Berglund S. P., Rettie A. J. E., Chemelewski W. D., Xiao P., Zhang Y., and Mullins C. B. J. Mater. Chem. A, 2014, 2, (24), 9371 LINK https://doi.org/10.1039/C4TA00895B [Google Scholar]
  5. Xiao B.-C., Lin L.-Y., Hong J.-Y., Lin H.-S., and Song Y.-T. RSC Adv., 2017, 7, (13), 7547 LINK https://doi.org/10.1039/C6RA28262H [Google Scholar]
  6. Zhou F. Q., Fan J. C., Xu Q. J., and Min Y. L. Appl. Catal. B: Environ., 2017, 201, 77 LINK https://doi.org/10.1016/j.apcatb.2016.08.027 [Google Scholar]
  7. Rather R. A., Mehta A., Lu Y., Valant M., Fang M., and Liu W. Int. J. Hydrogen Energy, 2021, 46, (42), 21866 LINK https://doi.org/10.1016/j.ijhydene.2021.04.060 [Google Scholar]
  8. Mousavi-Kamazani M. J. Mater. Sci.: Mater. Electron., 2019, 30, (19), 17735 LINK https://doi.org/10.1007/s10854-019-02123-0 [Google Scholar]
  9. Nikam S., and Joshi S. RSC Adv., 2016, 6, (109), 107463 LINK https://doi.org/10.1039/C6RA14700C [Google Scholar]
  10. Mohamed E. A., Zahran Z. N., and Naruta Y. J. Mater. Chem. A, 2017, 5, (15), 6825 LINK https://doi.org/10.1039/C7TA00156H [Google Scholar]
  11. Lei B.-X., Zeng L.-L., Zhang P., Sun Z.-F., Sun W., and Zhang X.-X. Adv. Powder Technol., 2014, 25, (3), 946 LINK https://doi.org/10.1016/j.apt.2014.01.014 [Google Scholar]
  12. Chen Z., Dinh H. N., and Miller E. “Photoelectrochemical Water Splitting: Standards, Experimental Methods and Protocol”, SpringerBriefs in Energy Series, Vol. 344, Springer Science and Business Media, New York, USA, 2013, 126 pp [Google Scholar]
  13. Samsudin M. F. R., Sufian S., Bashiri R., Mohamed N. M., and Ramli R. M. J. Taiwan Inst. Chem. Eng., 2017, 81, 305 LINK https://doi.org/10.1016/j.jtice.2017.09.045 [Google Scholar]
  14. Tolod K. R., Hernández S., Castellino M., Deorsola F. A., Davarpanah E., and Russo N. Int. J. Hydrogen Energy., 2020, 45, (1), 605 LINK https://doi.org/10.1016/j.ijhydene.2019.10.236 [Google Scholar]
  15. Gao R.-T., and Wang L. Angew. Chem. Int. Ed., 2020, 59, (51), 23094 LINK https://doi.org/10.1002/anie.202010908 [Google Scholar]
  16. Gao R.-T., He D., Wu L., Hu K., Liu X., Su Y., and Wang L. Angew. Chem. Int. Ed., 2020, 59, (15), 6213 LINK https://doi.org/10.1002/anie.201915671 [Google Scholar]
  17. Khan I., Ali S., Mansha M., and Qurashi A. Ultrason. Sonochem., 2017, 36, 386 LINK https://doi.org/10.1016/j.ultsonch.2016.12.014 [Google Scholar]
  18. Kiama N., and Ponchio C. Surf. Coat. Technol., 2020, 383, 125257 LINK https://doi.org/10.1016/j.surfcoat.2019.125257 [Google Scholar]
  19. Syairah A., Khanmirzaei M. H., Saidi N. M., Ferhana N. K., Ramesh S., Ramesh K., and Ramesh S. Ionics, 2019, 25, (5), 2427 LINK https://doi.org/10.1007/s11581-018-2603-6 [Google Scholar]
  20. Ângelo J., Magalhães P., Andrade L., and Mendes A. Appl. Surf. Sci., 2016, 387, 183 LINK https://doi.org/10.1016/j.apsusc.2016.06.101 [Google Scholar]
  21. Lee D. K., and Choi K.-S. Nat. Energy, 2017, 3, (1), 53 LINK https://doi.org/10.1038/s41560-017-0057-0 [Google Scholar]
  22. Zhang S., Ahmet I., Kim S.-H., Kasian O., Mingers A. M., Schnell P., Kölbach M., Lim J., Fischer A., Mayrhofer K. J. J., Cherevko S., Gault B., van de Krol R., and Scheu C. ACS Appl. Energy Mater., 2020, 3, 10, 9523 LINK https://doi.org/10.1021/acsaem.0c01904 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16457018428071
Loading
/content/journals/10.1595/205651322X16457018428071
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error