Skip to content
1887
Volume 66, Issue 4
  • ISSN: 2056-5135

Abstract

Traditional microbial synthesis of chemicals and fuels often rely on energy-rich feedstocks such as glucose, raising ethical concerns as they are directly competing with the food supply. Therefore, it is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or , by harnessing the metabolic processes of bacteria to valorise a range of waste products, including greenhouse gases (GHGs). However, the strict growth and nutrient requirements of industrially relevant bacteria, combined with low efficiencies of native extracellular electron transfer (EET) mechanisms, reduce the potential for industrial scalability. In this two-part work, we review the most significant advancements in techniques aimed at improving and modulating the efficiency of microbial EET, giving an objective and balanced view of current controversies surrounding the physiology of microbial electron transfer, alongside the methods used to wire microbial redox centres with the electrodes of bioelectrochemical systems conductive nanomaterials.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16548607638938
2022-06-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/4/Kovacs_16a_Imp_pt1.html?itemId=/content/journals/10.1595/205651322X16548607638938&mimeType=html&fmt=ahah

References

  1. Schröder U. J. Solid State Electrochem., 2011, 15, (7–8), 1481 LINK https://doi.org/10.1007/s10008-011-1395-7 [Google Scholar]
  2. Potter M. C. Proc. R. Soc. B: Biol. Sci, 1911, 84, (571), 260 LINK https://doi.org/10.1098/rspb.1911.0073 [Google Scholar]
  3. Su L., and Ajo-Franklin C. M. Curr. Opin. Biotechnol., 2019, 57, 66 LINK https://doi.org/10.1016/j.copbio.2019.01.018 [Google Scholar]
  4. Krieg T., Sydow A., Faust S., Huth I., and Holtmann D. Angew. Chem. Int. Ed., 2018, 57, (7), 1879 LINK https://doi.org/10.1002/anie.201711302 [Google Scholar]
  5. Clark M. M., Paxhia M. D., Young J. M., Manzella M. P., and Reguera G. Appl. Environ. Microbiol., 2021, 87, (20), e00964-21 LINK https://doi.org/10.1128/AEM.00964-21 [Google Scholar]
  6. Mutuma B. K., Sylla N. F., Bubu A., Ndiaye N. M., Santoro C., Brilloni A., Poli F., Manyala N., and Soavi F. Electrochim. Acta, 2021, 391, 138960 LINK https://doi.org/10.1016/j.electacta.2021.138960 [Google Scholar]
  7. Tsekouras G. J., Deligianni P. M., Kanellos F. D., Kontargyri V. T., Kontaxis P. A., Manousakis N. M., and Elias C. N. Front. Energy Res., 2022, 10, 843768 LINK https://doi.org/10.3389/fenrg.2022.843768 [Google Scholar]
  8. Lovley D. R., and Yao J. Trends Biotechnol., 2021, 39, (9), 940 LINK https://doi.org/10.1016/j.tibtech.2020.12.005 [Google Scholar]
  9. Lovley D. R. MBio, 2017, 8, (3), e00695-17 LINK https://doi.org/10.1128/mBio.00695-17 [Google Scholar]
  10. Liu X., Jing X., Ye Y., Zhan J., Ye J., and Zhou S. Environ. Sci. Technol. Lett., 2020, 7, (1), 27 LINK https://doi.org/10.1021/acs.estlett.9b00707 [Google Scholar]
  11. Lovley D. R., and Holmes D. E. Nat. Rev. Microbiol., 2022, 20, (1), 5 LINK https://doi.org/10.1038/s41579-021-00597-6 [Google Scholar]
  12. Yamasaki R., Maeda T., and Wood T. K. Biotechnol. Biofuels, 2018, 11, 211 LINK https://doi.org/10.1186/s13068-018-1208-7 [Google Scholar]
  13. Gurumurthy D. M., Bharagava R. N., Kumar A., Singh B., Ashfaq M., Saratale G. D., and Mulla S. I. Microbiol. Res., 2019, 229, 126324 LINK https://doi.org/10.1016/j.micres.2019.126324 [Google Scholar]
  14. Filman D. J., Marino S. F., Ward J. E., Yang L., Mester Z., Bullitt E., Lovley D. R., and Strauss M. Commun. Biol., 2019, 2, 219 LINK https://doi.org/10.1038/s42003-019-0448-9 [Google Scholar]
  15. Jiang Y., Shi M., and Shi L. Sci. China Life Sci., 2019, 62, (10), 1275 LINK https://doi.org/10.1007/s11427-018-9464-3 [Google Scholar]
  16. Wang F., Gu Y., O’Brien J. P., Yi S. M., Yalcin S. E., Srikanth V., Shen C., Vu D., Ing N. L., Hochbaum A. I., Egelman E. H., and Malvankar N. S. Cell, 2019, 177, (2), 361 LINK https://doi.org/10.1016/j.cell.2019.03.029 [Google Scholar]
  17. Su L., Fukushima T., Prior A., Baruch M., Zajdel T. J., and Ajo-Franklin C. M. ACS Synth. Biol., 2020, 9, (1), 115 LINK https://doi.org/10.1021/acssynbio.9b00379 [Google Scholar]
  18. Feng J., Jiang M., Li K., Lu Q., Xu S., Wang X., Chen K., and Ouyang P. Bioelectrochemistry, 2020, 134, 107498 LINK https://doi.org/10.1016/j.bioelechem.2020.107498 [Google Scholar]
  19. Reardon P. N., and Mueller K. T. J. Biol. Chem., 2013, 288, (41), 29260 LINK https://doi.org/10.1074/jbc.M113.498527 [Google Scholar]
  20. Cosert K. M., Castro-Forero A., Steidl R. J., Worden R. M., and Reguera G. MBio, 2019, 10, (6), e02721-19 LINK https://doi.org/10.1128/mBio.02721-19 [Google Scholar]
  21. Lovley D. R., and Walker D. J. F. Front. Microbiol., 2019, 10, 2078 LINK https://doi.org/10.3389/fmicb.2019.02078 [Google Scholar]
  22. Rawson F. J., Gross A. J., Garrett D. J., Downard A. J., and Baronian K. H. R. Electrochem. Commun., 2012, 15, (1), 85 LINK https://doi.org/10.1016/j.elecom.2011.11.030 [Google Scholar]
  23. Jeuken L. J. C., Hards K., and Nakatani Y. J. Bacteriol., 2020, 202, (7), e00029-20 LINK https://doi.org/10.1128/JB.00029-20 [Google Scholar]
  24. Shen W., Zhao X., Wang X., Yang S., Jia X., Yu X., Yang J., Yang Q., and Zhao H. Environ. Res., 2020, 185, 109463 LINK https://doi.org/10.1016/j.envres.2020.109463 [Google Scholar]
  25. Schievano A., Sciarria T. P., Vanbroekhoven K., De Wever H., Puig S., Andersen S. J., Rabaey K., and Pant D. Trends Biotechnol., 2016, 34, (11), 866 LINK https://doi.org/10.1016/j.tibtech.2016.04.007 [Google Scholar]
  26. Yee M. O., Deutzmann J., Spormann A., and Rotaru A.-E. Nanotechnology, 2020, 31, (17), 174003 LINK https://doi.org/10.1088/1361-6528/ab6ab5 [Google Scholar]
  27. Sánchez C., Dessì P., Duffy M., and Lens P. N. L. Biosens. Bioelectron., 2020, 150, 111884 LINK https://doi.org/10.1016/j.bios.2019.111884 [Google Scholar]
  28. Logan B. E., and Rabaey K. Science, 2012, 337, (6095), 686 LINK https://doi.org/10.1126/science.1217412 [Google Scholar]
  29. Chen S., Patil S. A., Brown R. K., and Schröder U. Appl. Energy, 2019, 233234, 15 LINK https://doi.org/10.1016/j.apenergy.2018.10.015 [Google Scholar]
  30. Kalathil S., Katuri K. P., Alazmi A. S., Pedireddy S., Kornienko N., Costa P. M. F. J., and Saikaly P. E. Chem. Mater., 2019, 31, (10), 3686 LINK https://doi.org/10.1021/acs.chemmater.9b00394 [Google Scholar]
  31. Bajracharya S., Sharma M., Mohanakrishna G., Benneton X. D., Strik D. P. B. T. B., Sarma P. M., and Pant D. Renew. Energy, 2016, 98, 153 LINK https://doi.org/10.1016/j.renene.2016.03.002 [Google Scholar]
  32. Li M., Zhou M., Tian X., Tan C., McDaniel C. T., Hassett D. J., and Gu T. Biotechnol. Adv., 2018, 36, (4), 1316 LINK https://doi.org/10.1016/j.biotechadv.2018.04.010 [Google Scholar]
  33. Walter X. A., Merino-Jiménez I., Greenman J., and Ieropoulos I. J. Power Sources, 2018, 392, 150 LINK https://doi.org/10.1016/j.jpowsour.2018.02.047 [Google Scholar]
  34. Radeef A. Y., and Ismail Z. Z. Bioelectrochemistry, 2021, 142, 107925 LINK https://doi.org/10.1016/j.bioelechem.2021.107925 [Google Scholar]
  35. Yu H., Li K., Cao Y., Zhu Y., Liu X., and Sun J. Energy Rep., 2022, 8, (6), 388 LINK https://doi.org/10.1016/j.egyr.2022.03.109 [Google Scholar]
  36. Huang T., Song D., Liu L., and Zhang S. Sep. Purif. Technol., 2019, 215, 51 LINK https://doi.org/10.1016/j.seppur.2019.01.002 [Google Scholar]
  37. Olias L. G., and Di Lorenzo M. RSC Adv., 2021, 11, (27), 16307 LINK https://doi.org/10.1039/d1ra01138c [Google Scholar]
  38. Zhai J., and Dong S. Curr. Opin. Electrochem., 2022, 34, 100975 LINK https://doi.org/10.1016/j.coelec.2022.100975 [Google Scholar]
  39. Pasternak G., Greenman J., and Ieropoulos I. Sens. Actuators. B.: Chem., 2017, 244, 815 LINK https://doi.org/10.1016/j.snb.2017.01.019 [Google Scholar]
  40. Cohen B. J. Bacteriol., 1931, 21, (1), 18 [Google Scholar]
  41. Panich J., Fong B., and Singer S. W. Trends Biotechnol., 2021, 39, (4), 412 LINK https://doi.org/10.1016/j.tibtech.2021.01.001 [Google Scholar]
  42. Bai W., Ranaivoarisoa T. O., Singh R., Rengasamy K., and Bose A. Commun. Biol., 2021, 4, 1257 LINK https://doi.org/10.1038/s42003-021-02781-z [Google Scholar]
  43. Rabaey K., and Rozendal R. A. Nat. Rev. Microbiol., 2010, 8, (10), 706 LINK https://doi.org/10.1038/nrmicro2422 [Google Scholar]
  44. Prévoteau A., Carvajal-Arroyo J. M., Ganigué R., and Rabaey K. Curr. Opin. Biotechnol., 2020, 62, 48 LINK https://doi.org/10.1016/j.copbio.2019.08.014 [Google Scholar]
  45. Zou L., Huang Y., Long Z., and Qiao Y. World J. Microbiol. Biotechnol., 2019, 35, (1), 9 LINK https://doi.org/10.1007/s11274-018-2576-7 [Google Scholar]
  46. Zou L., Qiao Y., and Li C. M. Electrochem. Energy Rev., 2018, 1, (4), 567 LINK https://doi.org/10.1007/s41918-018-0020-1 [Google Scholar]
  47. Zheng T., Li J., Ji Y., Zhang W., Fang Y., Xin F., Dong W., Wei P., Ma J., and Jiang M. Front. Bioeng. Biotechnol., 2020, 8, 10 LINK https://doi.org/10.3389/fbioe.2020.00010 [Google Scholar]
  48. Ren H., Tian H., Gardner C. L., Ren T.-L., and Chae J. Nanoscale, 2016, 8, (6), 3539 LINK https://doi.org/10.1039/c5nr07267k [Google Scholar]
  49. Geppert F., Liu D., Weidner E., and ter Heijne A. Int. J. Hydrogen Energy, 2019, 44, (39), 21464 LINK https://doi.org/10.1016/j.ijhydene.2019.06.189 [Google Scholar]
  50. Bonanni P. S., Bradley D. F., Schrott G. D., and Busalmen J. P. ChemSusChem, 2013, 6, (4), 711 LINK https://doi.org/10.1002/cssc.201200671 [Google Scholar]
  51. Malvankar N. S., and Lovley D. R. Curr. Opin. Biotechnol., 2014, 27, 88 LINK https://doi.org/10.1016/j.copbio.2013.12.003 [Google Scholar]
  52. Zhang P., Liu J., Qu Y., Zhang J., Zhong Y., and Feng Y. J. Power Sources, 2017, 361, 318 LINK https://doi.org/10.1016/j.jpowsour.2017.06.069 [Google Scholar]
  53. Logan B. E., Rossi R., Ragab A., and Saikaly P. E. Nat. Rev. Microbiol., 2019, 17, (5), 307 LINK https://doi.org/10.1038/s41579-019-0173-x [Google Scholar]
  54. Pareek A., Sravan J. S., and Mohan S. V. Mater. Sci. Energy Technol., 2019, 2, (3), 600 LINK https://doi.org/10.1016/j.mset.2019.06.006 [Google Scholar]
  55. TerAvest M. A., and Ajo-Franklin C. M. Biotechnol. Bioeng., 2016, 113, (4), 687 LINK https://doi.org/10.1002/bit.25723 [Google Scholar]
  56. Hsu H.-L. H., Zhang Y., Deng P., Dai X., and Jiang X. Nano Lett., 2019, 19, (12), 8787 LINK https://doi.org/10.1021/acs.nanolett.9b03573 [Google Scholar]
  57. Das S., Diels L., Pant D., Patil S. A., and Ghangrekar M. M. J. Electrochem. Soc., 2020, 167, (15), 155510 LINK https://doi.org/10.1149/1945-7111/abb836 [Google Scholar]
  58. Myers B., Hill P., Rawson F., and Kovács K. Johnson Matthey Technol. Rev., 2022, 66, (4), 455 LINK https://technology.matthey.com/article/66/4/455-465/ [Google Scholar]
  59. Logan B. E. Nat. Rev. Microbiol., 2009, 7, (5), 375 LINK https://doi.org/10.1038/nrmicro2113 [Google Scholar]
  60. Hirose A., Kasai T., Aoki M., Umemura T., Watanabe K., and Kouzuma A. Nat. Commun., 2018, 9, 1083 LINK https://doi.org/10.1038/s41467-018-03416-4 [Google Scholar]
  61. Jensen H. M., TerAvest M. A., Kokish M. G., and Ajo-Franklin C. M. ACS Synth. Biol., 2016, 5, (7), 679 LINK https://doi.org/10.1021/acssynbio.5b00279 [Google Scholar]
  62. Smith A. F., Liu X., Woodard T. L., Fu T., Emrick T., Jiménez J. M., Lovley D. R., and Yao J. Nano Res., 2020, 13, (5), 1479 LINK https://doi.org/10.1007/s12274-020-2825-6 [Google Scholar]
  63. Malvankar N. S., and Lovley D. R. ChemSusChem, 2012, 5, (6), 1039 LINK https://doi.org/10.1002/cssc.201100733 [Google Scholar]
  64. Tan Y., Adhikari R. Y., Malvankar N. S., Ward J. E., Woodard T. L., Nevin K. P., and Lovley D. R. MBio, 2017, 8, (1), e02203-16 LINK https://doi.org/10.1128/mBio.02203-16 [Google Scholar]
  65. Ing N. L., El-Naggar M. Y., and Hochbaum A. I. J. Phys. Chem. B, 2018, 122, (46), 10403 LINK https://doi.org/10.1021/acs.jpcb.8b07431 [Google Scholar]
  66. Martins M. V. A., Pereira A. R., Luz R. A. S., Iost R. M., and Crespilho F. N. Phys. Chem. Chem. Phys., 2014, 16, (33), 17426 LINK https://doi.org/10.1039/c4cp00452c [Google Scholar]
  67. Yang Y., Wang Z., Gan C., Klausen L. H., Bonné R., Kong G., Luo D., Meert M., Zhu C., Sun G., Guo J., Ma Y., Bjerg J. T., Manca J., Xu M., Nielsen L. P., and Dong M. Nat. Commun., 2021, 12, 1709 LINK https://doi.org/10.1038/s41467-021-21709-z [Google Scholar]
  68. Doyle L. E., and Marsili E. Bioresour. Technol., 2018, 258, 354 LINK https://doi.org/10.1016/j.biortech.2018.02.073 [Google Scholar]
  69. Gorby Y. A., Yanina S., McLean J. S., and Fredrickson J. K. Proc. Natl. Acad. Sci., 2006, 103, (30), 11358 LINK https://doi.org/10.1073/pnas.0604517103 [Google Scholar]
  70. Rabaey K., Boon N., Siciliano S. D., Verhaege M., and Verstraete W. Appl. Environ. Microbiol., 2004, 70, (9), 5373 LINK https://doi.org/10.1128/AEM.70.9.5373-5382.2004 [Google Scholar]
  71. Heydorn R. L., Engel C., Krull R., and Dohnt K. ChemBioEng Rev., 2020, 7, (1), 4 LINK https://doi.org/10.1002/cben.201900023 [Google Scholar]
  72. Xiao Y., Zhang E., Zhang J., Dai Y., Yang Z., Christensen H. E. M., Ulstrup J., and Zhao F. Sci. Adv., 2017, 3, (7), e 1700623 LINK https://doi.org/10.1126/sciadv.1700623 [Google Scholar]
  73. Glasser N. R., Saunders S. H., and Newman D. K. Annu. Rev. Microbiol., 2017, 71, 731 LINK https://doi.org/10.1146/annurev-micro-090816-093913 [Google Scholar]
  74. Patil S. A., Hägerhäll C., and Gorton L. Bioanal. Rev., 2012, 4, (2–4), 159 LINK https://doi.org/10.1007/s12566-012-0033-x [Google Scholar]
  75. Shen H.-B., Yong X.-Y., Chen Y.-L., Liao Z.-H., Si R.-W., Zhou J., Wang S.-Y., Yong Y.-C., OuYang P.-K., and Zheng T. Bioresour. Technol., 2014, 167, 490 LINK https://doi.org/10.1016/j.biortech.2014.05.093 [Google Scholar]
  76. Bennetto H. P., Delaney G. M., Mason J. R., Roller S. D., Stirling J. L., and Thurston C. F. Biotechnol. Lett., 1985, 7, (10), 699 LINK https://doi.org/10.1007/bf01032279 [Google Scholar]
  77. Schröder U. Phys. Chem. Chem. Phys., 2007, 9, (21), 2619 LINK https://doi.org/10.1039/b703627m [Google Scholar]
  78. Pankratova G., Hederstedt L., and Gorton L. Anal. Chim. Acta, 2019, 1076, 32 LINK https://doi.org/10.1016/j.aca.2019.05.007 [Google Scholar]
  79. Subramanian P., Pirbadian S., El-Naggar M. Y., and Jensen G. J. Proc. Natl. Acad. Sci., 2018, 115, (14), E 3246 LINK https://doi.org/10.1073/pnas.1718810115 [Google Scholar]
  80. Pirbadian S., Barchinger S. E., Leung K. M., Byun H. S., Jangir Y., Bouhenni R. A., Reed S. B., Romine M. F., Saffarini D. A., Shi L., Gorby Y. A., Golbeck J. H., and El-Naggar M. Y. Proc. Natl. Acad. Sci., 2014, 111, (35), 12883 LINK https://doi.org/10.1073/pnas.1410551111 [Google Scholar]
  81. Jeuken L. J. C. Environ. Microbiol., 2022, 24, (4), 1835 LINK https://doi.org/10.1111/1462-2920.15942 [Google Scholar]
  82. Ross D. E., Flynn J. M., Baron D. B., Gralnick J. A., and Bond D. R. PLoS One, 2011, 6, (2), e 16649 LINK https://doi.org/10.1371/journal.pone.0016649 [Google Scholar]
  83. Cheng Z.-H., Xiong J.-R., Min D., Cheng L., Liu D.-F., Li W.-W., Jin F., Yang M., and Yu H.-Q. Biotechnol. Bioeng., 2020, 117, (5), 1294 LINK https://doi.org/10.1002/bit.27305 [Google Scholar]
  84. Rehnlund D., Lim G., Philipp L.-A., and Gescher J. iScience, 2022, 25, (2), 103853 LINK https://doi.org/10.1016/j.isci.2022.103853 [Google Scholar]
  85. Wang Y., Lv M., Meng Q., Ding C., Jiang L., and Liu H. ACS Nano, 2016, 10, (6), 6331 LINK https://doi.org/10.1021/acsnano.6b02629 [Google Scholar]
  86. Chiranjeevi P., and Patil S. A. Biotechnol. Adv., 2020, 39, 107468 LINK https://doi.org/10.1016/j.biotechadv.2019.107468 [Google Scholar]
  87. Sun W., Lin Z., Yu Q., Cheng S., and Gao H. Front. Microbiol., 2021, 12, 727709 LINK https://doi.org/10.3389/fmicb.2021.727709 [Google Scholar]
  88. La Cava E., Guionet A., Saito J., and Okamoto A. Electroanalysis, 2020, 32, (8), 1659 LINK https://doi.org/10.1002/elan.201900686 [Google Scholar]
  89. Wu Z., Wang J., Liu J., Wang Y., Bi C., and Zhang X. Microb. Cell Fact., 2019, 18, 15 LINK https://doi.org/10.1186/s12934-019-1067-3 [Google Scholar]
  90. Li Z., Chang W., Cui T., Xu D., Zhang D., Lou Y., Qian H., Song H., Mol A., Cao F., Gu T., and Li X. Commun. Mater., 2021, 2, 67 LINK https://doi.org/10.1038/s43246-021-00173-8 [Google Scholar]
  91. Cao Y., Li X., Li F., and Song H. ACS Synth. Biol., 2017, 6, (9), 1679 LINK https://doi.org/10.1021/acssynbio.6b00374 [Google Scholar]
  92. West E. A., Jain A., and Gralnick J. A. ACS Synth. Biol., 2017, 6, (9), 1627 LINK https://doi.org/10.1021/acssynbio.6b00349 [Google Scholar]
  93. Yi Y.-C., and Ng I.-S. J. Taiwan Inst. Chem. Eng., 2020, 109, 8 LINK https://doi.org/10.1016/j.jtice.2020.02.003 [Google Scholar]
  94. Corts A. D., Thomason L. C., Gill R. T., and Gralnick J. A. Sci. Rep., 2019, 9, 39 LINK https://doi.org/10.1038/s41598-018-37025-4 [Google Scholar]
  95. Gescher J. S., Cordova C. D., and Spormann A. M. Mol. Microbiol., 2008, 68, (3), 706 LINK https://doi.org/10.1111/j.1365-2958.2008.06183.x [Google Scholar]
  96. Schuetz B., Schicklberger M., Kuermann J., Spormann A. M., and Gescher J. Appl. Environ. Microbiol., 2009, 75, (24), 7789 LINK https://doi.org/10.1128/AEM.01834-09 [Google Scholar]
  97. Sturm-Richter K., Golitsch F., Sturm G., Kipf E., Dittrich A., Beblawy S., Kerzenmacher S., and Gescher J. Bioresour. Technol., 2015, 186, 89 LINK https://doi.org/10.1016/j.biortech.2015.02.116 [Google Scholar]
  98. Mayr J. C., Grosch J.-H., Hartmann L., Rosa L. F. M., Spiess A. C., and Harnisch F. ChemSusChem, 2019, 12, (8), 1631 LINK https://doi.org/10.1002/cssc.201900413 [Google Scholar]
  99. Ringeisen B. R., Henderson E., Wu P. K., Pietron J., Ray R., Little B., Biffinger J. C., and Jones-Meehan J. M. Environ. Technol., 2006, 40, (8), 2629 LINK https://doi.org/10.1021/es052254w [Google Scholar]
  100. Caccavo F., Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., and McInerney M. J. Appl. Environ. Microbiol., 1994, 60, (10), 3752 LINK https://doi.org/10.1128/aem.60.10.3752-3759.1994 [Google Scholar]
  101. Soussan L., Riess J., Erable B., Delia M.-L., and Bergel A. Electrochem. Commun., 2013, 28, 27 LINK https://doi.org/10.1016/j.elecom.2012.11.033 [Google Scholar]
  102. Pous N., Carmona-Martínez A. A., Vilajeliu-Pons A., Fiset E., Bañeras L., Trably E., Balaguer M. D., Colprim J., Bernet N., and Puig S. Biosens. Bioelectron., 2016, 75, 352 LINK https://doi.org/10.1016/j.bios.2015.08.035 [Google Scholar]
  103. Ueki T., Nevin K. P., Woodard T. L., Aklujkar M. A., Holmes D. E., and Lovley D. R. Front. Microbiol., 2018, 9, 1512 LINK https://doi.org/10.3389/fmicb.2018.01512 [Google Scholar]
  104. Reguera G., McCarthy K. D., Mehta T., Nicoll J. S., Tuominen M. T., and Lovley D. R. Nature, 2005, 435, (7045), 1098 LINK https://doi.org/10.1038/nature03661 [Google Scholar]
  105. Richter L. V., Sandler S. J., and Weis R. M. J. Bacteriol., 2012, 194, (10), 2551 LINK https://doi.org/10.1128/JB.06366-11 [Google Scholar]
  106. Giltner C. L., Nguyen Y., and Burrows L. L. Microbiol. Mol. Biol. Rev., 2012, 76, (4), 740 LINK https://doi.org/10.1128/MMBR.00035-12 [Google Scholar]
  107. Weaver S. J., Ortega D. R., Sazinsky M. H., Dalia T. N., Dalia A. B., and Jensen G. J. Nat. Commun., 2020, 11, (1), 5080 LINK https://doi.org/10.1038/s41467-020-18866-y [Google Scholar]
  108. Kilmury S. L. N., and Burrows L. L. Proc. Natl. Acad., 2016, 113, (21), 6017 LINK https://doi.org/10.1073/pnas.1512947113 [Google Scholar]
  109. Bardiaux B., de Amorim G. C., Luna Rico A., Zheng W., Guilvout I., Jollivet C., Nilges M., Egelman E. H., Izadi-Pruneyre N., and Francetic O. Structure, 2019, 27, (7), P 1082 LINK https://doi.org/10.1016/j.str.2019.03.021 [Google Scholar]
  110. Malvankar N. S., Vargas M., Nevin K. P., Franks A. E., Leang C., Kim B.-C., Inoue K., Mester T., Covalla S. F., Johnson J. P., Rotello V. M., Tuominen M. T., and Lovley D. R. Nat. Nanotechnol., 2011, 6, (9), 573 LINK https://doi.org/10.1038/nnano.2011.119 [Google Scholar]
  111. Walker D. J. F., Adhikari R. Y., Holmes D. E., Ward J. E., Woodard T. L., Nevin K. P., and Lovley D. R. ISME J., 2018, 12, (1), 48 LINK https://doi.org/10.1038/ismej.2017.141 [Google Scholar]
  112. Walker D. J. F., Martz E., Holmes D. E., Zhou Z., Nonnenmann S. S., and Lovley D. R. MBio, 2019, 10, (2), e00579-19 LINK https://doi.org/10.1128/mBio.00579-19 [Google Scholar]
  113. Vargas M., Malvankar N. S., Tremblay P.-L., Leang C., Smith J. A., Patel P., Snoeyenbos-West O., Nevin K. P., and Lovley D. R. MBio, 2013, 4, (2), e00105-13 LINK https://doi.org/10.1128/mBio.00105-13 [Google Scholar]
  114. Tan Y., Adhikari R. Y., Malvankar N. S., Pi S., Ward J. E., Woodard T. L., Nevin K. P., Xia Q., Tuominen M. T., and Lovley D. R. Small, 2016, 12, (33), 4481 LINK https://doi.org/10.1002/smll.201601112 [Google Scholar]
  115. Liu X., Tremblay P.-L., Malvankar N. S., Nevin K. P., Lovley D. R., and Vargas M. Appl. Environ. Microbiol., 2014, 80, (3), 1219 LINK https://doi.org/10.1128/AEM.02938-13 [Google Scholar]
  116. Malvankar N. S., Tuominen M. T., and Lovley D. R. Energy Environ. Sci., 2012, 5, (9), 8651 LINK https://doi.org/10.1039/c2ee22330a [Google Scholar]
  117. Adhikari R. Y., Malvankar N. S., Tuominen M. T., and Lovley D. R. RSC Adv., 2016, 6, (10), 8354 LINK https://doi.org/10.1039/c5ra28092c [Google Scholar]
  118. Ing N. L., Nusca T. D., and Hochbaum A. I. Phys. Chem. Chem. Phys., 2017, 19, (32), 21791 LINK https://doi.org/10.1039/c7cp03651e [Google Scholar]
  119. Lampa-Pastirk S., Veazey J. P., Walsh K. A., Feliciano G. T., Steidl R. J., Tessmer S. H., and Reguera G. Sci. Rep., 2016, 6, 23517 LINK https://doi.org/10.1038/srep23517 [Google Scholar]
  120. Liu X., Wang S., Xu A., Zhang L., Liu H., and Ma L. Z. Appl. Microbiol. Biotechnol., 2019, 103, (3), 1535 LINK https://doi.org/10.1007/s00253-018-9484-5 [Google Scholar]
  121. Yalcin S. E., O’Brien J. P., Gu Y., Reiss K., Yi S. M., Jain R., Srikanth V., Dahl P. J., Huynh W., Vu D., Acharya A., Chaudhuri S., Varga T., Batista V. S., and Malvankar N. S. Nat. Chem. Biol., 2020, 16, (10), 1136 LINK https://doi.org/10.1038/s41589-020-0623-9 [Google Scholar]
  122. Liu X., Walker D. J. F., Nonnenmann S. S., Sun D., and Lovley D. R. Mbio, 2021, 12, (4), e02209-21 LINK https://doi.org/10.1128/mBio.02209-21 [Google Scholar]
  123. Yalcin S. E., and Malvankar N. S. Curr. Opin. Chem. Biol., 2020, 59, 193 LINK https://doi.org/10.1016/j.cbpa.2020.08.004 [Google Scholar]
  124. Ye Y., Liu X., Nealson K. H., Rensing C., Qin S., and Zhou S. MBio, 2022, 13, (1), e0382221-21 LINK https://doi.org/10.1128/mbio.03822-21 [Google Scholar]
  125. Shapiro D. M., Mandava G., Yalcin S. E., Arranz-Gibert P., Dahl P. J., Shipps C., Gu Y., Srikanth V., Salazar-Morales A. I., O’Brien J. P., Vanderschuren K., Vu D., Batista V. S., Malvankar N. S., and Isaacs F. J. Nat. Commun., 2022, 13, 829 LINK https://doi.org/10.1038/s41467-022-28206-x [Google Scholar]
  126. Malvankar N. S., Yalcin S. E., Tuominen M. T., and Lovley D. R. Nat. Nanotechnol., 2014, 9, (12), 1012 LINK https://doi.org/10.1038/nnano.2014.236 [Google Scholar]
  127. Cao D. X., Yan H., Brus V. V., Wong M. S., Bazan G. C., and Nguyen T.-Q. ACS Appl. Mater. Interfaces, 2020, 12, (36), 40778 LINK https://doi.org/10.1021/acsami.0c10795 [Google Scholar]
  128. Krige A., Sjöblom M., Ramser K., Christakopoulos P., and Rova U. Molecules, 2019, 24, (3), 646 LINK https://doi.org/10.3390/molecules24030646 [Google Scholar]
  129. Clarke T. A. Curr. Opin. Microbiol., 2022, 66, 56 LINK https://doi.org/10.1016/j.mib.2021.12.003 [Google Scholar]
  130. Tan Y., Adhikari R. Y., Malvankar N. S., Ward J. E., Nevin K. P., Woodard T. L., Smith J. A., Snoeyenbos-West O. L., Franks A. E., Tuominen M. T., and Lovley D. R. Front. Microbiol., 2016, 7, 980 LINK https://doi.org/10.3389/fmicb.2016.00980 [Google Scholar]
  131. Zhao C., Wu J., Ding Y., Wang V. B., Zhang Y., Kjelleberg S., Loo C. J. S., Cao B., and Zhang Q. ChemElectroChem, 2015, 2, (5), 654 LINK https://doi.org/10.1002/celc.201402458 [Google Scholar]
  132. Lovley D. R. Curr. Opin. Electrochem., 2017, 4, (1), 190 LINK https://doi.org/10.1016/j.coelec.2017.08.015 [Google Scholar]
  133. Sure S., Ackland M. L., Torriero A. A. J., Adholeya A., and Kochar M. Microbiology, 2016, 162, (12), 2017 LINK https://doi.org/10.1099/mic.0.000382 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16548607638938
Loading
/content/journals/10.1595/205651322X16548607638938
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error