Skip to content
1887
Volume 66, Issue 4
  • ISSN: 2056-5135

Abstract

It is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or by harnessing the metabolic processes of bacteria to valorise a range of waste products including greenhouse gases (GHGs). Part I (1) introduced the EET pathways, their limitations and applications. Here in Part II, we outline the strategies researchers have used to modulate microbial electron transfer, through synthetic biology and biohybrid approaches and present the conclusions and future directions.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16621070592195
2022-06-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/4/Kovacs_16a_Imp_pt2.html?itemId=/content/journals/10.1595/205651322X16621070592195&mimeType=html&fmt=ahah

References

  1. Myers B., Hill P., Rawson F., and Kovács K. Johnson Matthey Technol. Rev., 2022, 66, (4), 443 LINK https://technology.matthey.com/article/66/4/443-454/ [Google Scholar]
  2. Das S., Diels L., Pant D., Patil S. A., and Ghangrekar M. M. J. Electrochem. Soc., 2020, 167, (15), 155510 LINK https://doi.org/10.1149/1945-7111/abb836 [Google Scholar]
  3. Malvankar N. S., and Lovley D. R. ChemSusChem, 2012, 5, (6), 1039 LINK https://doi.org/10.1002/cssc.201100733 [Google Scholar]
  4. Liu X., Wang S., Xu A., Zhang L., Liu H., and Ma L. Z. Appl. Microbiol. Biotechnol., 2019, 103, (3), 1535 LINK https://doi.org/10.1007/s00253-018-9484-5 [Google Scholar]
  5. Rabaey K., Boon N., Siciliano S. D., Verhaege M., and Verstraete W. Appl. Environ. Microbiol., 2004, 70, (9), 5373 LINK https://doi.org/10.1128/AEM.70.9.5373-5382.2004 [Google Scholar]
  6. Ueki T., Walker D. J. F., Woodard T. L., Nevin K. P., Nonnenmann S. S., and Lovley D. R. ACS Synth. Biol., 2020, 9, (3), 647 LINK https://doi.org/10.1021/acssynbio.9b00506 [Google Scholar]
  7. Bardiaux B., de Amorim G. C., Luna Rico A., Zheng W., Guilvout I., Jollivet C., Nilges M., Egelman E. H., Izadi-Pruneyre N., and Francetic O. Structure, 2019, 27, (7), P 1082 LINK https://doi.org/10.1016/j.str.2019.03.021 [Google Scholar]
  8. Shapiro D. M., Mandava G., Yalcin S. E., Arranz-Gibert P., Dahl P. J., Shipps C., Gu Y., Srikanth V., Salazar-Morales A. I., O’Brien J. P., Vanderschuren K., Vu D., Batista V. S., Malvankar N. S., and Isaacs F. J. Nat. Commun., 2022, 13, 829 LINK https://doi.org/10.1038/s41467-022-28206-x [Google Scholar]
  9. Ueki T., Walker D. J. F., Tremblay P.-L., Nevin K. P., Ward J. E., Woodard T. L., Nonnenmann S. S., and Lovley D. R. ACS Synth. Biol., 2019, 8, (8), 1809 LINK https://doi.org/10.1021/acssynbio.9b00131 [Google Scholar]
  10. Gescher J. S., Cordova C. D., and Spormann A. M. Mol. Microbiol., 2008, 68, (3), 706 LINK https://doi.org/10.1111/j.1365-2958.2008.06183.x [Google Scholar]
  11. Schuetz B., Schicklberger M., Kuermann J., Spormann A. M., and Gescher J. Appl. Environ. Microbiol., 2009, 75, (24), 7789 LINK https://doi.org/10.1128/AEM.01834-09 [Google Scholar]
  12. Sturm-Richter K., Golitsch F., Sturm G., Kipf E., Dittrich A., Beblawy S., Kerzenmacher S., and Gescher J. Bioresour. Technol., 2015, 186, 89 LINK https://doi.org/10.1016/j.biortech.2015.02.116 [Google Scholar]
  13. Jensen H. M., Albers A. E., Malley K. R., Londer Y. Y., Cohen B. E., Helms B. A., Weigele P., Groves J. T., and Ajo-Franklin C. M. Proc. Natl. Acad. Sci., 2010, 107, (45), 19213 LINK https://doi.org/10.1073/pnas.1009645107 [Google Scholar]
  14. Wu Z., Wang J., Liu J., Wang Y., Bi C., and Zhang X. Microb. Cell Fact., 2019, 18, 15 LINK https://doi.org/10.1186/s12934-019-1067-3 [Google Scholar]
  15. Su L., Fukushima T., Prior A., Baruch M., Zajdel T. J., and Ajo-Franklin C. M. ACS Synth. Biol., 2020, 9, (1), 115 LINK https://doi.org/10.1021/acssynbio.9b00379 [Google Scholar]
  16. Baruch M., Tejedor-Sanz S., Su L., and Ajo-Franklin C. M. PLoS One, 2021, 16, (11), e0258380 LINK https://doi.org/10.1371/journal.pone.0258380 [Google Scholar]
  17. Bird L. J., Kundu B. B., Tschirhart T., Corts A. D., Su L., Gralnick J. A., Ajo-Franklin C. M., and Glaven S. M. ACS Synth. Biol., 2021, 10, (11), 2808 LINK https://doi.org/10.1021/acssynbio.1c00335 [Google Scholar]
  18. Tschirhart T., Kim E., McKay R., Ueda H., Wu H.-C., Pottash A. E., Zargar A., Negrete A., Shiloach J., Payne G. F., and Bentley W. E. Nat. Commun., 2017, 8, 14030 LINK https://doi.org/10.1038/ncomms14030 [Google Scholar]
  19. Terrell J. L., Tschirhart T., Jahnke J. P., Stephens K., Liu Y., Dong H., Hurley M. M., Pozo M., McKay R., Tsao C. Y., Wu H.-C., Vora G., Payne G. F., Stratis-Cullum D. N., and Bentley W. E. Nat. Nanotechnol., 2021, 16, (6), 688 LINK https://doi.org/10.1038/s41565-021-00878-4 [Google Scholar]
  20. Bhokisham N., VanArsdale E., Stephens K. T., Hauk P., Payne G. F., and Bentley W. E. Nat. Commun., 2020, 11, 2427 LINK https://doi.org/10.1038/s41467-020-16249-x [Google Scholar]
  21. Yim S. S., McBee R. M., Song A. M., Huang Y., Sheth R. U., and Wang H. H. Nat. Chem. Biol., 2021, 17, (3), 246 LINK https://doi.org/10.1038/s41589-020-00711-4 [Google Scholar]
  22. Zheng T., Zhang M., Wu L., Guo S., Liu X., Zhao J., Xue W., Li J., Liu C., Li X., Jiang Q., Bao J., Zeng J., Yu T., and Xia C. Nat. Catal., 2022, 5, (5), 388 LINK https://doi.org/10.1038/s41929-022-00775-6 [Google Scholar]
  23. Ajo-Franklin C. M., and Noy A. Adv. Mater., 2015, 27, (38), 5797 LINK https://doi.org/10.1002/adma.201500344 [Google Scholar]
  24. Kalathil S., and Pant D. RSC Adv., 2016, 6, (36), 30582 LINK https://doi.org/10.1039/c6ra04734c [Google Scholar]
  25. Bollella P., Fusco G., Tortolini C., Sanzò G., Favero G., Gorton L., and Antiochia R. Biosens. Bioelectron., 2017, 89, (1), 152 LINK https://doi.org/10.1016/j.bios.2016.03.068 [Google Scholar]
  26. Nguyen P. Q., Courchesne N.-M. D., Duraj-Thatte A., Praveschotinunt P., and Joshi N. S. Adv. Mater., 2018, 30, (19), 1870134 LINK https://doi.org/10.1002/adma.201870134 [Google Scholar]
  27. Yoon J., Shin M., Lim J., Kim D. Y., Lee T., and Choi J. Biotechnol. J., 2020, 15, (6), 1900347 LINK https://doi.org/10.1002/biot.201900347 [Google Scholar]
  28. Wang R., Li H., Sun J., Zhang L., Jiao J., Wang Q., and Liu S. Adv. Mater., 2021, 33, (6), 2004051 LINK https://doi.org/10.1002/adma.202004051 [Google Scholar]
  29. Hsu L. (H.-H.), Deng P., Zhang Y., Nguyen H. N., and Jiang X. J. Mater. Chem. B, 2018, 6, (44), 7144 LINK https://doi.org/10.1039/c8tb01598h [Google Scholar]
  30. Zhang P., Liu J., Qu Y., Li D., He W., and Feng Y. Bioelectrochemistry, 2018, 123, 190 LINK https://doi.org/10.1016/j.bioelechem.2018.05.005 [Google Scholar]
  31. Peng Z Z., Liu J., Qu Y., Li D., He W., and Feng Y. Bioelectrochemistry, 2018, 123, 190 LINK https://doi.org/10.1016/j.bioelechem.2018.05.005 [Google Scholar]
  32. Cai T., Meng L., Chen G., Xi Y., Jiang N., Song J., Zheng S., Liu Y., Zhen G., and Huang M. Chemosphere, 2020, 248, 125985 LINK https://doi.org/10.1016/j.chemosphere.2020.125985 [Google Scholar]
  33. Zhang P., Liu J., Qu Y., Zhang J., Zhong Y., and Feng Y. J. Power Sources, 2017, 361, 318 LINK https://doi.org/10.1016/j.jpowsour.2017.06.069 [Google Scholar]
  34. Cheng Q., and Call D. F. Environ. Sci.: Process. Impacts., 2016, 18, (8), 968 LINK https://doi.org/10.1039/C6EM00219F [Google Scholar]
  35. Rawson F. J., Yeung C. L., Jackson S. K., and Mendes P. M. Nano Lett., 2012, 13, (1), 1 LINK https://doi.org/10.1021/nl203780d [Google Scholar]
  36. Rawson F. J., Hicks J., Dodd N., Abate W., Garrett D. J., Yip N., Fejer G., Downard A. J., Baronian K. H. R., Jackson S. K., and Mendes P. M. ACS Appl. Mater. Interfaces, 2015, 7, (42), 23527 LINK https://doi.org/10.1021/acsami.5b06493 [Google Scholar]
  37. Rawson F. J., Cole M. T., Hicks J. M., Aylott J. W., Milne W. I., Collins C. M., Jackson S. K., Silman N. J., and Mendes P. M. Sci. Rep., 2016, 6, (1), 37672 LINK https://doi.org/10.1038/srep37672 [Google Scholar]
  38. Hicks J. M., Halkerston R., Silman N., Jackson S. K., Aylott J. W., and Rawson F. J. Biosens. Bioelectron., 2019, 141, 111430 LINK https://doi.org/10.1016/j.bios.2019.111430 [Google Scholar]
  39. Silhavy T. J., Kahne D., and Walker S. Cold Spring Harb. Perspect. Biol., 2010, 2, (5), a 000414 LINK https://doi.org/10.1101/cshperspect.a000414 [Google Scholar]
  40. Tunuguntla R. H., Bangar M. A., Kim K., Stroeve P., Grigoropoulos C., Ajo-Franklin C. M., and Noy A. Adv. Mater., 2015, 27, (5), 831 LINK https://doi.org/10.1002/adma.201403988 [Google Scholar]
  41. Sanborn J. R., Chen X., Yao Y.-C., Hammons J. A., Tunuguntla R. H., Zhang Y., Newcomb C. C., Soltis J. A., De Yoreo J. J., Van Buuren A., Parikh A. N., and Noy A. Adv. Mater., 2018, 30, (51), 1803355 LINK https://doi.org/10.1002/adma.201803355 [Google Scholar]
  42. Tunuguntla R. H., Allen F. I., Kim K., Belliveau A., and Noy A. Nat. Nanotechnol., 2016, 11, (7), 639 LINK https://doi.org/10.1038/nnano.2016.43 [Google Scholar]
  43. Ho N. T., Siggel M., Camacho K. V., Bhaskara R. M., Hicks J. M., Yao Y.-C., Zhang Y., Köfinger J., Hummer G., and Noy A. Proc. Natl. Acad. Sci., 2021, 118, (19), e2016974118 LINK https://doi.org/10.1073/pnas.2016974118 [Google Scholar]
  44. Tunuguntla R. H., Escalada A., Frolov V. A., and Noy A. Nat. Protoc., 2016, 11, (10), 2029 LINK https://doi.org/10.1038/nprot.2016.119 [Google Scholar]
  45. Teixeira-Santos R., Gomes M., Gomes L. C., and Mergulhão F. J. iScience, 2021, 24, (1), 102001 LINK https://doi.org/10.1016/j.isci.2020.102001 [Google Scholar]
  46. Azizi-Lalabadi M., Hashemi H., Feng J., and Jafari S. M. Adv. Colloid Interface Sci., 2020, 284, 102250 LINK https://doi.org/10.1016/j.cis.2020.102250 [Google Scholar]
  47. Schröder U. J. Solid State Electrochem., 2011, 15, (7–8), 1481 LINK https://doi.org/10.1007/s10008-011-1395-7 [Google Scholar]
  48. Chiranjeevi P., and Patil S. A. Biotechnol. Adv., 2020, 39, 107468 LINK https://doi.org/10.1016/j.biotechadv.2019.107468 [Google Scholar]
  49. Reguera G., Nevin K. P., Nicoll J. S., Covalla S. F., Woodard T. L., and Lovley D. R. Appl. Environ. Microbiol., 2006, 72, (11), 7345 LINK https://doi.org/10.1128/aem.01444-06 [Google Scholar]
  50. Steidl R. J., Lampa-Pastirk S., and Reguera G. Nat. Commun., 2016, 7, 12217 LINK https://doi.org/10.1038/ncomms12217 [Google Scholar]
  51. Kalathil S., Katuri K. P., Alazmi A. S., Pedireddy S., Kornienko N., Costa P. M. F. J., and Saikaly P. E. Chem. Mater., 2019, 31, (10), 3686 LINK https://doi.org/10.1021/acs.chemmater.9b00394 [Google Scholar]
  52. Xie X., Hu L., Pasta M., Wells G. F., Kong D., Criddle C. S., and Cui Y. Nano Lett., 2010, 11, (1), 291 LINK https://doi.org/10.1021/nl103905t [Google Scholar]
  53. Hou Y., Yuan H., Wen Z., Cui S., Guo X., He Z., and Chen J. J. Power Sources, 2016, 307, 561 LINK https://doi.org/10.1016/j.jpowsour.2016.01.018 [Google Scholar]
  54. La J. A., Jeon J.-M., Sang B.-I., Yang Y.-H., and Cho E. C. ACS Appl. Mater. Interfaces, 2017, 9, (50), 43563 LINK https://doi.org/10.1021/acsami.7b09874 [Google Scholar]
  55. Zhang T., Nie H., Bain T. S., Lu H., Cui M., Snoeyenbos-West O. L., Franks A. E., Nevin K. P., Russell T. P., and Lovley D. R. Energy Environ. Sci., 2013, 6, (1), 217 LINK https://doi.org/10.1039/c2ee23350a [Google Scholar]
  56. Peng L., You S.-J., and Wang J.-Y. Biosens. Bioelectron., 2010, 25, (5), 1248 LINK https://doi.org/10.1016/j.bios.2009.10.002 [Google Scholar]
  57. Zhao C., Wu J., Ding Y., Wang V. B., Zhang Y., Kjelleberg S., Loo J. S. C., Cao B., and Zhang Q. ChemElectroChem, 2015, 2, (5), 654 LINK https://doi.org/10.1002/celc.201402458 [Google Scholar]
  58. Yong Y.-C., Yu Y.-Y., Zhang X., and Song H. Angew. Chem. Int. Ed., 2014, 53, (17), 4480 LINK https://doi.org/10.1002/anie.201400463 [Google Scholar]
  59. Ding C., Liu H., Zhu Y., Wan M., and Jiang L. Energy Environ. Sci., 2012, 5, (9), 8517 LINK https://doi.org/10.1039/c2ee22269h [Google Scholar]
  60. Mehdinia A., Dejaloud M., and Jabbari A. Chem. Pap., 2013, 67, (8), 1096 LINK https://doi.org/10.2478/s11696-013-0381-1 [Google Scholar]
  61. Zhang P., Zhou X., Qi R., Gai P., Liu L., Lv F., and Wang S. Adv. Electron. Mater., 2019, 5, (8), 1900320 LINK https://doi.org/10.1002/aelm.201900320 [Google Scholar]
  62. Pous N., Carmona-Martínez A. A., Vilajeliu-Pons A., Fiset E., Bañeras L., Trably E., Balaguer M. D., Colprim J., Bernet N., and Puig S. Biosens. Bioelectron., 2016, 75, 352 LINK https://doi.org/10.1016/j.bios.2015.08.035 [Google Scholar]
  63. Ueki T., Nevin K. P., Woodard T. L., Aklujkar M. A., Holmes D. E., and Lovley D. R. Front. Microbiol., 2018, 9, 1512 LINK https://doi.org/10.3389/fmicb.2018.01512 [Google Scholar]
  64. Zhang W., Wu H., and Hsing I.-M. Electroanalysis, 2015, 27, (3), 648 LINK https://doi.org/10.1002/elan.201400578 [Google Scholar]
  65. Malvankar N. S., Tuominen M. T., and Lovley D. R. Energy Environ. Sci., 2012, 5, (2), 5790 LINK https://doi.org/10.1039/c2ee03388g [Google Scholar]
  66. Wu X., Zhao F., Rahunen N., Varcoe J. R., Avignone-Rossa C., Thumser A. E., and Slade R. C. T. Angew. Chem. Int. Ed., 2011, 50, (2), 427 LINK https://doi.org/10.1002/anie.201002951 [Google Scholar]
  67. Zhang L., Hu Y., Chen J., Huang W., Cheng J., and Chen Y. J. Power Sources, 2018, 384, 98 LINK https://doi.org/10.1016/j.jpowsour.2018.02.078 [Google Scholar]
  68. Kato S., Hashimoto K., and Watanabe K. Microbes Environ., 2013, 28, (1), 141 LINK https://doi.org/10.1264/jsme2.me12161 [Google Scholar]
  69. Yang C., Aslan H., Zhang P., Zhu S., Xiao Y., Chen L., Khan N., Boesen T., Wang Y., Liu Y., Wang L., Sun Y., Feng Y., Besenbacher F., Zhao F., and Yu M. Nat. Commun., 2020, 11, 1379 LINK https://doi.org/10.1038/s41467-020-14866-0 [Google Scholar]
  70. Chen M., Zhou X., Liu X., Zeng R. J., Zhang F., Ye J., and Zhou S. Biosens. Bioelectron., 2018, 108, 20 LINK https://doi.org/10.1016/j.bios.2018.02.030 [Google Scholar]
  71. Kaneko M., Ishihara K., and Nakanishi S. Small, 2020, 16, (34), 2001849 LINK https://doi.org/10.1002/smll.202001849 [Google Scholar]
  72. Gomez-Carretero S., Libberton B., Svennersten K., Persson K., Jager E., Berggren M., Rhen M., and Richter-Dahlfors A. npj Biofilms Microbiomes, 2017, 3, 19 LINK https://doi.org/10.1038/s41522-017-0027-0 [Google Scholar]
  73. Pankratova G., Hasan K., Leech D., Hederstedt L., and Gorton L. Electrochem. Commun., 2017, 75, 56 LINK https://doi.org/10.1016/j.elecom.2016.12.010 [Google Scholar]
  74. Coman V., Gustavsson T., Finkelsteinas A., von Wachenfeldt C., Hägerhäll C., and Gorton L. J. Am. Chem. Soc., 2009, 131, (44), 16171 LINK https://doi.org/10.1021/ja905442a [Google Scholar]
  75. Hasan K., Patil S. A., Leech D., Hägerhäll C., and Gorton L. Biochem. Soc. Trans., 2012, 40, (6), 1330 LINK https://doi.org/10.1042/bst20120120 [Google Scholar]
  76. Pankratova G., and Gorton L. Curr. Opin. Electrochem., 2017, 5, (1), 193 LINK https://doi.org/10.1016/j.coelec.2017.09.013 [Google Scholar]
  77. Rawson F. J., Gross A. J., Garrett D. J., Downard A. J., and Baronian K. H. R. Electrochem. Commun., 2012, 15, (1), 85 LINK https://doi.org/10.1016/j.elecom.2011.11.030 [Google Scholar]
  78. Yang Y., Wang Z., Gan C., Klausen L. H., Bonné R., Kong G., Luo D., Meert M., Zhu C., Sun G., Guo J., Ma Y., Bjerg J. T., Manca J., Xu M., Nielsen L. P., and Dong M. Nat. Commun., 2021, 12, 1709 LINK https://doi.org/10.1038/s41467-021-21709-z [Google Scholar]
  79. Logan B. E. Nat. Rev. Microbiol., 2009, 7, (5), 375 LINK https://doi.org/10.1038/nrmicro2113 [Google Scholar]
  80. Walker D. J. F., Adhikari R. Y., Holmes D. E., Ward J. E., Woodard T. L., Nevin K. P., and Lovley D. R. ISME J., 2018, 12, (1), 48 LINK https://doi.org/10.1038/ismej.2017.141 [Google Scholar]
  81. Zou L., Qiao Y., Wu X.-S., and Li C. M. J. Power Sources, 2016, 328, 143 LINK https://doi.org/10.1016/j.jpowsour.2016.08.009 [Google Scholar]
  82. Rawson F. J., Garrett D. J., Leech D., Downard A. J., and Baronian K. H. R. Biosens. Bioelectron., 2011, 26, (5), 2383 LINK https://doi.org/10.1016/j.bios.2010.10.016 [Google Scholar]
  83. Yalcin S. E., O’Brien J. P., Gu Y., Reiss K., Yi S. M., Jain R., Srikanth V., Dahl P. J., Huynh W., Vu D., Acharya A., Chaudhuri S., Varga T., Batista V. S., and Malvankar N. S. Nat. Chem. Biol., 2020, 16, (10), 1136 LINK https://doi.org/10.1038/s41589-020-0623-9 [Google Scholar]
  84. Filman D. J., Marino S. F., Ward J. E., Yang L., Mester Z., Bullitt E., Lovley D. R., and Strauss M. Commun. Biol., 2019, 2, 219 LINK https://doi.org/10.1038/s42003-019-0448-9 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16621070592195
Loading
/content/journals/10.1595/205651322X16621070592195
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error