Skip to content
1887
Volume 67, Issue 2
  • ISSN: 2056-5135

Abstract

Lozenge-patterned surfaces obtained with laser texturing can reduce the risk of infection by preventing or delaying biofilm formation of To investigate this aspect, the biofilm formation ability of on both lozenge-patterned and untreated surfaces of 630 stainless steel coupons was examined over 48 h. Biofilm on the coupons was analysed for bacterial enumeration and total carbohydrates concentration and was observed using scanning electron microscopy (SEM). The surface modification by texturing caused a 6 h delay in the attachment of and an approximately 99% decrease in the number of adhered bacteria. However, it was determined that produced more extracellular polymeric substances (EPS) (<0.01) to attach to the lozenge-patterned surface and formed a multi-layered biofilm. In conclusion, lozenge-patterned surfaces can be applied to reduce bacterial count and induce a delay in attachment, but the increased amount of EPS limits its use.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16457881164562
2022-02-25
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/2/Ozdemir_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16457881164562&mimeType=html&fmt=ahah

References

  1. ‘Healthcare-Associated Infections (HAIs)’, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA:https://www.cdc.gov/hai/index.html (Accessed on 20th September 2021) [Google Scholar]
  2. Allegranzi B., Nejad S. B., Combescure C., Graafmans W., Attar H., Donaldson L., and Pittet D. Lancet, 2011, 377, (9761), 228 LINK https://doi.org/10.1016/s0140-6736(10)61458-4 [Google Scholar]
  3. Donlan R. Emerg. Infect. Dis., 2001, 7, (2), 277 [Google Scholar]
  4. Sanchez C. J., Mende K., Beckius M. L., Akers K. S., Romano D. R., Wenke J. C., and Murray C. K. BMC Infect. Dis., 2013, 13, 47 LINK https://doi.org/10.1186/1471-2334-13-47 [Google Scholar]
  5. de Souza Evangelista S., dos Santos S. G., de Resende Stoianoff M. A., and de Oliveira A. C. Am. J. Infect. Control, 2015, 43, (5), 522 LINK https://doi.org/10.1016/j.ajic.2014.12.018 [Google Scholar]
  6. Kaper J. B., Nataro J. P., and Mobley H. L. T. Nat. Rev. Microbiol., 2004, 2, (2), 123 LINK https://doi.org/10.1038/nrmicro818 [Google Scholar]
  7. Jang J., Hur H.-G., Sadowsky M. J., Byappanahalli M. N., Yan T., and Ishii S. J. Appl. Microbiol., 2017, 123, (3), 570 LINK https://doi.org/10.1111/jam.13468 [Google Scholar]
  8. Croxen M. A., and Finlay B. B. Nat. Rev. Microbiol., 2009, 8, (1), 26 LINK https://doi.org/10.1038/nrmicro2265 [Google Scholar]
  9. Vickery K., Hu H., Jacombs A. S., Bradshaw D. A., and Deva A. K. Healthc. Infect., 2013, 18, (2), 61 LINK https://doi.org/10.1071/hi12059 [Google Scholar]
  10. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., and Lappin-Scott H. M. Annu. Rev. Microbiol., 1995, 49, (1), 711 LINK https://doi.org/10.1146/annurev.mi.49.100195.003431 [Google Scholar]
  11. Davey M. E., and O’toole G. A. Microbiol. Mol. Biol. Rev., 2000, 64, (4), 847 LINK https://doi.org/10.1128/mmbr.64.4.847-867.2000 [Google Scholar]
  12. Flemming H.-C., and Wingender J. Nat. Rev. Microbiol., 2010, 8, (9), 623 LINK https://doi.org/10.1038/nrmicro2415 [Google Scholar]
  13. Fulaz S., Vitale S., Quinn L., and Casey E. Trends Microbiol., 2019, 27, (11), 915 LINK https://doi.org/10.1016/j.tim.2019.07.004 [Google Scholar]
  14. Frølund B., Palmgren R., Keiding K., and Nielsen P. H. Water Res., 1996, 30, (8), 1749 LINK https://doi.org/10.1016/0043-1354(95)00323-1 [Google Scholar]
  15. Wingender J., Strathmann M., Rode A., Leis A., Flemming H.-C., ‘Section Extracellular VI. Polymers: Isolation and Biochemical Characterization of Extracellular Polymeric Substances from Pseudomonas Aeruginosa’, in “Microbial Growth in Biofilms – Part A: Developmental and Molecular Biological Aspects”, ed. and Doyle R. J. 336, Elsevier, Cambridge, USA, 2001, pp. 302314 LINK https://doi.org/10.1016/s0076-6879(01)36597-7 [Google Scholar]
  16. Decho A. W., and Gutierrez T. Front. Microbiol., 2017, 8, 922 LINK https://doi.org/10.3389/fmicb.2017.00922 [Google Scholar]
  17. Flemming H.-C., Wingender J., Szewzyk U., Steinberg P., Rice S. A., and Kjelleberg S. Nat. Rev. Microbiol., 2016, 14, (9), 563 LINK https://doi.org/10.1038/nrmicro.2016.94 [Google Scholar]
  18. Sutherland I. Trends Microbiol., 2001, 9, (5), 222 LINK https://doi.org/10.1016/s0966-842x(01)02012-1 [Google Scholar]
  19. Li X. Z., Hauer B., and Rosche B. Appl. Microbiol. Biotechnol., 2007, 76, (6), 1255 LINK https://doi.org/10.1007/s00253-007-1108-4 [Google Scholar]
  20. Bryers J. D. Biotechnol. Bioeng., 2008, 100, (1), 1 LINK https://doi.org/10.1002/bit.21838 [Google Scholar]
  21. Costerton J. W., Montanaro L., and Arciola C. r. Int. J. Artif. Organs, 2007, 30, (9), 757 LINK https://doi.org/10.1177/039139880703000903 [Google Scholar]
  22. Kostakioti M., Hadjifrangiskou M., and Hultgren S. J. Cold Spring Harb. Perspect. Med., 2013, 3, (4), a010306 LINK https://doi.org/10.1101/cshperspect.a010306 [Google Scholar]
  23. Rutala W. A., and Weber D. J. Clin. Infect. Dis., 2004, 39, (5), 702 LINK https://doi.org/10.1086/423182 [Google Scholar]
  24. Lorenzetti M., Dogša I., Stošicki T., Stopar D., Kalin M., Kobe S., and Novak S. ACS Appl. Mater. Interfaces, 2015, 7, (3), 1644 LINK https://doi.org/10.1021/am507148n [Google Scholar]
  25. Hasan J., Raj S., Yadav L., and Chatterjee K. RSC Adv., 2015, 5, (56), 44953 LINK https://doi.org/10.1039/c5ra05206h [Google Scholar]
  26. Zhang X., Wang L., and Levänen E. RSC Adv., 2013, 3, (30), 12003 LINK https://doi.org/10.1039/c3ra40497h [Google Scholar]
  27. Wu S., Zhang B., Liu Y., Suo X., and Li H. Biointerphases, 2018, 13, (6), 060801 LINK https://doi.org/10.1116/1.5054057 [Google Scholar]
  28. Hsu L. C., Fang J., Borca-Tasciuc D. A., Worobo R. W., and Moraru C. I. Appl. Environ. Microbiol., 2013, 79, (8), 2703 LINK https://doi.org/10.1128/aem.03436-12 [Google Scholar]
  29. Whitehead K. A., Colligon J., and Verran J. Coll. Surf. B: Bioint., 2005, 41, (2–3), 129 LINK https://doi.org/10.1016/j.colsurfb.2004.11.010 [Google Scholar]
  30. Friedlander R. S., Vlamakis H., Kim P., Khan M., Kolter R., and Aizenberg J. Proc. Natl. Acad. Sci., 2013, 110, (14), 5624 LINK https://doi.org/10.1073/pnas.1219662110 [Google Scholar]
  31. Chen F., Zhang D., Yang Q., Yong J., Du G., Si J., Yun F., and Hou X. ACS Appl. Mater. Interfaces, 2013, 5, (15), 6777 LINK https://doi.org/10.1021/am401677z [Google Scholar]
  32. Vorobyev A. Y., and Guo C. Laser Photonics Rev., 2012, 7, (3), 385 LINK https://doi.org/10.1002/lpor.201200017 [Google Scholar]
  33. Dunn A., Carstensen J. V., Wlodarczyk K. L., Hansen E. B., Gabzdyl J., Harrison P. M., Shephard J. D., and Hand D. P. Opt. Lasers Eng., 2014, 62, 9 LINK https://doi.org/10.1016/j.optlaseng.2014.05.003 [Google Scholar]
  34. Song F., Koo H., and Ren D. J. Dent. Res., 2015, 94, (8), 1027 LINK https://doi.org/10.1177/0022034515587690 [Google Scholar]
  35. Wassmann T., Kreis S., Behr M., and Buergers R. Int. J. Implant Dent., 2017, 3, 32 LINK https://doi.org/10.1186/s40729-017-0093-3 [Google Scholar]
  36. Díaz C., Cortizo M. C., Schilardi P. L., de Saravia S. G. G., and de Mele M. A. F. L. Mat. Res., 2007, 10, (1), 11 LINK https://doi.org/10.1590/s1516-14392007000100004 [Google Scholar]
  37. Lutey A. H. A., Gemini L., Romoli L., Lazzini G., Fuso F., Faucon M., and Kling R. Sci. Rep., 2018, 8, (1), 10112 LINK https://doi.org/10.1038/s41598-018-28454-2 [Google Scholar]
  38. Helbig R., Günther D., Friedrichs J., Rößler F., Lasagni A., and Werner C. Biomater. Sci., 2016, 4, (7), 1074 LINK https://doi.org/10.1039/c6bm00078a [Google Scholar]
  39. Pan Q., Cao Y., Xue W., Zhu D., and Liu W. Langmuir, 2019, 35, (35), 11414 LINK https://doi.org/10.1021/acs.langmuir.9b01333 [Google Scholar]
  40. de Bruin A. Johnson Matthey Technol. Rev., 2018, 62, (3), 259 LINK https://technology.matthey.com/article/62/3/259-262/ [Google Scholar]
  41. Ayazi M., Ebrahimi N. G., and Nodoushan E. J. Int. J. Adhes. Adhes., 2019, 88, 66 LINK https://doi.org/10.1016/j.ijadhadh.2018.10.017 [Google Scholar]
  42. Xu L.-C., and Siedlecki C. A. Acta Biomater., 2012, 8, (1), 72 LINK https://doi.org/10.1016/j.actbio.2011.08.009 [Google Scholar]
  43. Ge H.-H., Zhou G.-D., and Wu W.-Q. Appl. Surf. Sci., 2003, 211, (1–4), 321 LINK https://doi.org/10.1016/s0169-4332(03)00355-6 [Google Scholar]
  44. Zhang X., Bishop P. L., and Kinkle B. K. Water Sci. Technol., 1999, 39, (7), 211 LINK https://doi.org/10.2166/wst.1999.0361 [Google Scholar]
  45. DuBois M., Gilles K. A., Hamilton J. K., Rebers P. A., and Smith F. Anal. Chem., 1956, 28, (3), 350 LINK https://doi.org/10.1021/ac60111a017 [Google Scholar]
  46. Campanac C., Pineau L., Payard A., Baziard-Mouysset G., and Roques C. Antimicrob. Agents Chemother., 2002, 46, (5), 1469 LINK https://doi.org/10.1128/aac.46.5.1469-1474.2002 [Google Scholar]
  47. Mah T.-F. C., and O’Toole G. A. Trends Microbiol., 2001, 9, (1), 34 LINK https://doi.org/10.1016/s0966-842x(00)01913-2 [Google Scholar]
  48. Stoodley P., Sauer K., Davies D. G., and Costerton J. W. Annu. Rev. Microbiol., 2002, 56, 187 LINK https://doi.org/10.1146/annurev.micro.56.012302.160705 [Google Scholar]
  49. An Y. H., and Friedman R. J. J. Biomed. Mater. Res., 1998, 43, (3), 338 LINK https://doi.org/10.1002/(sici)1097-4636(199823)43:3<338::aid-jbm16>3.0.co;2-b [Google Scholar]
  50. Katsikogianni M., and Missirlis Y. F. Eur. Cells Mater., 2004, 8, 37 LINK https://doi.org/10.22203/ecm.v008a05 [Google Scholar]
  51. Garrett T. R., Bhakoo M., and Zhang Z. Prog. Nat. Sci., 2008, 18, (9), 1049 LINK https://doi.org/10.1016/j.pnsc.2008.04.001 [Google Scholar]
  52. Goulter R. M., Gentle I. R., and Dykes G. A. Lett. Appl. Microbiol., 2009, 49, (1), 1 LINK https://doi.org/10.1111/j.1472-765x.2009.02591.x [Google Scholar]
  53. Villapún V. M., Gomez A. P., Wei W., Dover L. G., Thompson J. R., Barthels T., Rodriguez J., Cox S., and González S. APL Mater., 2020, 8, (9), 091108 LINK https://doi.org/10.1063/5.0017580 [Google Scholar]
  54. Chik N., Wan Md Zain W. S., Mohamad A. J., Sidek M. Z., Wan Ibrahim W. H., Reif A., Rakebrandt J. H., Pfleging W., and Liu X. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 358, 012034 LINK https://doi.org/10.1088/1757-899x/358/1/012034 [Google Scholar]
  55. Mirani Z. A., Fatima A., Urooj S., Aziz M., Khan M., and Abbas T. Iran J. Basic Med. Sci., 2018, 21, (7), 760 LINK https://doi.org/10.22038/IJBMS.2018.28525.6917 [Google Scholar]
  56. Hassan A. N., and Frank J. F. Int. J. Food Microbiol., 2004, 96, (1), 103 LINK https://doi.org/10.1016/s0168-1605(03)00160-0 [Google Scholar]
  57. Rajab F. H., Liauw C. M., Benson P. S., Li L., and Whitehead K. A. Food Bioprod. Process., 2018, 109, 29 LINK https://doi.org/10.1016/j.fbp.2018.02.009 [Google Scholar]
  58. Patil D., Aravindan S., Wasson M. K., and V. P., and Rao P. V. J. Micro Nano-Manuf., 2018, 6, (1), 011002 LINK https://doi.org/10.1115/1.4038093 [Google Scholar]
  59. Mahalakshmi P. V., Vanithakumari S. C., Gopal J., Mudali U. K., and Raj B. Curr. Sci., 2011, 101, (10), 1328 LINK https://www.currentscience.ac.in/Volumes/101/10/1328.pdf [Google Scholar]
  60. Chapman J., and Regan F. Adv. Eng. Mater., 2012, 14, (4), B 175 LINK https://doi.org/10.1002/adem.201180037 [Google Scholar]
  61. Pitt W. G., Alizadeh M., Husseini G. A., McClellan D. S., Buchanan C. M., Bledsoe C. G., Robison R. A., Blanco R., Roeder B. L., Melville M., and Hunter A. K. Biotechnol. Prog., 2016, 32, (4), 823 LINK https://doi.org/10.1002/btpr.2299 [Google Scholar]
  62. Arkan-Ozdemir S., Cansever N., and Ilhan-Sungur E. Water Sci. Technol., 2020, 82, (5), 940 LINK https://doi.org/10.2166/wst.2020.396 [Google Scholar]
  63. Ilhan-Sungur E., and Çotuk A. Corros. Sci., 2010, 52, (1), 161 LINK https://doi.org/10.1016/j.corsci.2009.08.049 [Google Scholar]
  64. Rohde H., Burandt E. C., Siemssen N., Frommelt L., Burdelski C., Wurster S., Scherpe S., Davies A. P., Harris L. G., Horstkotte M. A., Knobloch J. K.-M., Ragunath C., Kaplan J. B., and Mack D. Biomaterials, 2007, 28, (9), 1711 LINK https://doi.org/10.1016/j.biomaterials.2006.11.046 [Google Scholar]
  65. Izano E. A., Amarante M. A., Kher W. B., and Kaplan J. B. Appl. Environ. Microbiol., 2008, 74, (2), 470 LINK https://doi.org/10.1128/aem.02073-07 [Google Scholar]
  66. Sharma G., Sharma S., Sharma P., Chandola D., Dang S., Gupta S., and Gabrani R. J. Appl. Microbiol., 2016, 121, (2), 309 LINK https://doi.org/10.1111/jam.13078 [Google Scholar]
  67. Anderson G. G., Palermo J. J., Schilling J. D., Roth R., Heuser J., and Hultgren S. J. Science, 2003, 301, (5629), 105 LINK https://doi.org/10.1126/science.1084550 [Google Scholar]
  68. Justice S. S., Hung C., Theriot J. A., Fletcher D. A., Anderson G. G., Footer M. J., and Hultgren S. J. Proc. Natl. Acad. Sci., 2004, 101, (5), 1333 LINK https://doi.org/10.1073/pnas.0308125100 [Google Scholar]
  69. Beloin C., Roux A., Ghigo J.-M., and Romeo T Escherichia coli Biofilms’, in “Bacterial Biofilms”, ed. 322, Springer-Verlag, Berlin, Germany, 2008, pp. 249289 LINK https://doi.org/10.1007/978-3-540-75418-3_12 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16457881164562
Loading
/content/journals/10.1595/205651322X16457881164562
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error